Functional Programming

WOLFRAM KAHL

kahl@mcmaster.ca

Department of Computing and Software McMaster University

4

Imperative — "telling the machine what to **do**"

Programming Language Paradigms

Imperative Programming Languages

Statement oriented languages

Every statement changes the machine state

Object-oriented languages

Organising the state into objects with individual state and behaviour

Message passing paradigm (instead of subprogram call)

Rule-Based (Logical) Programming Languages

Specify rule that specifies problem solution (Prolog, BNF Parsing)

Other examples: Decision procedures, Grammar rules (BNF)

Programming consists of specifying the attributes of the answer

Functional (Applicative) Programming Languages

Goal is to understand the function that produces the answer

Function composition is major operation

Programming consists of building the function that computes the answer

Emphasis has changed:

Emphasis has changed:

– from making life easier for the computer

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

– Use languages that facilitate writing **error-free programs**

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

- Use languages that facilitate writing error-free programs
- Use languages that facilitate writing programs that are **easy to maintain**

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

- Use languages that facilitate writing error-free programs
- Use languages that facilitate writing programs that are **easy to maintain**
- Goal of language development:

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

- Use languages that facilitate writing error-free programs
- Use languages that facilitate writing programs that are **easy to maintain**

Goal of language development:

- Developers concentrate on design (or even just specification)
- Programming is trivial or handled by computer
 (executable specification languages, rapid prototyping)

• functional

• **functional** — programs are function definitions

• **functional** — programs are function definitions; functions are **"first-class** citizens"

- **functional** programs are function definitions; functions are **"first-class** citizens"
- **pure** (referentially transparent)

- **functional** programs are function definitions; functions are **"first-class** citizens"
- **pure** (referentially transparent) "**no side-effects**"

- functional programs are function definitions; functions are "first-class citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy)

- functional programs are function definitions; functions are "first-class citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy) arguments are evaluated only when needed

- functional programs are function definitions; functions are "first-class citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy) arguments are evaluated only when needed
- statically strongly typed

- **functional** programs are function definitions; functions are **"first-class** citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy) arguments are evaluated only when needed
- **statically strongly typed** all type errors caught at compile-time

- functional programs are function definitions; functions are "first-class citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy) arguments are evaluated only when needed
- **statically strongly typed** all type errors caught at compile-time
- type classes safe overloading

Haskell

- functional programs are function definitions; functions are "first-class citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy) arguments are evaluated only when needed
- **statically strongly typed** all type errors caught at compile-time
- **type classes** safe overloading
- Standardised language version: Haskell 98

Haskell

- functional programs are function definitions; functions are "first-class citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy) arguments are evaluated only when needed
- **statically strongly typed** all type errors caught at compile-time
- **type classes** safe overloading
- Standardised language version: Haskell 98
- Several compilers and interpreters available

Haskell

- functional programs are function definitions; functions are "first-class citizens"
- **pure** (referentially transparent) **"no side-effects"**
- **non-strict** (lazy) arguments are evaluated only when needed
- **statically strongly typed** all type errors caught at compile-time
- **type classes** safe overloading
- Standardised language version: Haskell 98
- Several compilers and interpreters available
- Comprehensive web site: http://haskell.org/

• Execution of Haskell programs

• Execution of Haskell programs is expression evaluation

• Execution of Haskell programs is expression evaluation

• Execution of Haskell programs is expression evaluation

— (for the time being)

• Defining functions in Haskell

• Execution of Haskell programs <u>is expression evaluation</u>

— (for the time being)

• Defining functions in Haskell is more like **defining functions in mathematics**

• Execution of Haskell programs <u>is</u> expression evaluation

— (for the time being)

• Defining functions in Haskell is more like **defining functions in mathematics** than like defining procedures in C or classes and methods in Java

• Execution of Haskell programs **is expression evaluation**

- Defining functions in Haskell is more like **defining functions in mathematics** than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations"

• Execution of Haskell programs <u>is</u> expression evaluation

- Defining functions in Haskell is more like **defining functions in mathematics** than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" the first that matches is used

• Execution of Haskell programs <u>is</u> expression evaluation

- Defining functions in Haskell is more like **defining functions in mathematics** than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" the first that matches is used
- Lists are an easy-to-use datastructure with lots of language and library support

• Execution of Haskell programs <u>is</u> expression evaluation

- Defining functions in Haskell is more like **defining functions in mathematics** than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" the first that matches is used
- Lists are an easy-to-use datastructure with lots of language and library support therefore, lists are heavily used in *beginners' material*.

• Execution of Haskell programs <u>is</u> expression evaluation

— (for the time being)

- Defining functions in Haskell is more like **defining functions in mathematics** than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" the first that matches is used
- Lists are an easy-to-use datastructure with lots of language and library support therefore, lists are heavily used in *beginners' material*.

In many cases, advanced Haskell programmers will use other datastructures, for example Sets, or *FiniteMaps* instead of association lists.

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from *evaluation* of that expression.

Prelude> 4*(5+6)-2 42

Expression evaluation proceeds by applying rules to subexpressions:

4*(5+6)-2

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from *evaluation* of that expression.

Prelude> 4*(5+6)-2 42

```
4*(5+6)-2 [subtraction & mult. impossible]
```

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from *evaluation* of that expression.

Prelude> 4*(5+6)-2 42

```
4*(5+6)-2 [subtraction & mult. impossible]
= (addition)
4*11-2
```

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from *evaluation* of that expression.

Prelude> 4*(5+6)-2 42

	4*(5+6)-2		[subtraction & mult. impossible]
=		(addition)	
	4*11-2		[subtraction impossible]

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from *evaluation* of that expression.

Prelude> 4*(5+6)-2 42

	4*(5+6)-2		[subtraction & mult. impossible]
=		(addition)	
	4*11-2		[subtraction impossible]
=		(multiplication)	
	44-2		

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from *evaluation* of that expression.

Prelude> 4*(5+6)-2 42

	4*(5+6)-2		[subtraction & mult. impossible]
=		(addition)	
	4*11-2		[subtraction impossible]
=		(multiplication)	
	44-2		
=		(subtraction)	
	42		

• Arguments to a fuction or operation are evaluated only when needed.

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments,

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict:

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict:

(const 5) undefined = 5

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict:

(const 5) undefined = 5

- Checking a list for emptyness is **strict**:

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict: (const 5) undefined = 5
 - Checking a list for emptyness is strict: null undefined = undefined

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict: (const 5) undefined = 5
 - Checking a list for emptyness is **strict**:
- null undefined = undefined

- **List construction** is **non-strict**:

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict: (const 5) undefined = 5
 - Checking a list for emptyness is strict: null undefined = undefined
 - List construction is non-strict: null (undefined : undefined) = False

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict: (const 5) undefined = 5
 - Checking a list for emptyness is strict: null undefined = undefined
 - List construction is non-strict: null (undefined : undefined) = False
 - Standard arithmetic operators are strict in both arguments:

Simple Expression Evaluation — Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function *f* to a number of arguments, the value of the argument at position *i* is always needed. then *f* is called **strict in its** *i***-th argument**
- Therefore: If *f* is strict in its *i*-th argument, then the *i*-th argument has to be evaluated whenever a result is needed from *f*.
- Simpler: A one-argument function *f* is strict iff *f* undefined = undefined.
 - Constant functions are non-strict: (const 5) undefined = 5
 - Checking a list for emptyness is strict: null undefined = undefined
 - List construction is non-strict: null (undefined : undefined) = False
 - Standard arithmetic operators are strict in both arguments:

0 * undefined = undefined

Assume the following definitions to be in scope:

answer = 42magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

(answer - 1) * (magic * answer - 23)

Assume the following definitions to be in scope:

answer = 42magic = 7

Expression evaluation will **unfold** (or **expand**) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

(answer - 1) * (magic * answer - 23) = (42 - 1) * (magic * 42 - 23) (answer)

Assume the following definitions to be in scope:

answer = 42magic = 7

Expression evaluation will unfold (or expand) definitions:

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

(answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)

Assume the following definitions to be in scope:

answer = 42magic = 7

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

```
(answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
```

Assume the following definitions to be in scope:

answer = 42magic = 7

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

```
(answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
```

Assume the following definitions to be in scope:

answer = 42magic = 7

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

```
(answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271 (subtraction)
```

Assume the following definitions to be in scope:

answer = 42magic = 7

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

```
(answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271 (subtraction)
= 11111 (multiplication)
```

How did I find those numbers?

Easy!

Prelude> [n | n <- [1 .. 400] , 11111 `mod` n == 0]
[1,41,271]</pre>

This is a **list comprehension**:

- return all n
- where n is taken from then list [1 . . 400]
- and a result is returned only if n divides 11111.

Conditional Expressions

Prelude> if 11111 'mod' 41 == 0 then 11111 'div' 41 else 5 271

The pattern is:

if condition then expression1 else expression2

- If the condition evaluates to **True**, the conditional expression evaluates to the value of *expression1*.
- If the condition evaluates to False, the conditional expression evaluates to the value of *expression2*.

Conditional Expressions

Prelude> if 11111 'mod' 41 == 0 then 11111 'div' 41 else 5 271

The pattern is:

if condition then expression1 else expression2

- If the condition evaluates to **True**, the conditional expression evaluates to the value of *expression1*.
- If the condition evaluates to False, the conditional expression evaluates to the value of *expression2*.

Therefore: "if _ then _ else" is strict in the condition.

Conditional Expressions

Prelude> if 11111 'mod' 41 == 0 then 11111 'div' 41 else 5 271

The pattern is:

if condition then expression1 else expression2

- If the condition evaluates to **True**, the conditional expression evaluates to the value of *expression1*.
- If the condition evaluates to False, the conditional expression evaluates to the value of *expression2*.

Therefore: "if _ then _ else" is strict in the condition.

In C: (condition ? expression1 : expression2)

fact :: Integer -> Integer fact n = if n == 0 then 1 else n * fact (n-1)

fact :: Integer -> Integer fact n = if n == 0 then 1 else n * fact (n-1)

fact 3

fact :: Integer -> Integer fact n = if n == 0 then 1 else n * fact (n-1)

fact 3 = if 3 == 0 then 1 else 3 * fact (3-1)

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 0 then 1 else (1-1) * fact ((1-1)-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * \text{ if } 2 == 0 \text{ then } 1 \text{ else } 2 * \text{ fact } (2-1)
= 3 * \text{ if False then 1 else 2 * fact (2-1)}
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * \text{ if False then 1 else 1 * fact (1-1)}
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * \text{ if True then 1 else 0 * fact (0-1)}
= 3 * 2 * 1 * 1
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * \text{ if } 2 == 0 \text{ then } 1 \text{ else } 2 * \text{ fact } (2-1)
= 3 * \text{ if False then 1 else 2 * fact (2-1)}
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * \text{ if False then 1 else 1 * fact (1-1)}
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * \text{ if True then 1 else 0 * fact (0-1)}
= 3 * 2 * 1 * 1
= 3 * 2 * 1
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * \text{ if } 2 == 0 \text{ then } 1 \text{ else } 2 * \text{ fact } (2-1)
= 3 * \text{ if False then 1 else 2 * fact (2-1)}
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * \text{ if False then 1 else 1 * fact (1-1)}
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * \text{ if True then 1 else 0 * fact (0-1)}
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
```

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * \text{ if } 2 == 0 \text{ then } 1 \text{ else } 2 * \text{ fact } (2-1)
= 3 * \text{ if False then 1 else 2 * fact (2-1)}
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * \text{ if False then 1 else 1 * fact (1-1)}
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * \text{ if True then 1 else 0 * fact (0-1)}
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
= 6
```

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

Matching Function Definitions

fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)

fact 3

Matching Function Definitions

fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)

fact 3
= 3 * fact (3-1) (fact n)

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

fact 3 = 3 * fact (3-1) = 3 * fact 2

(fact n)
(determining which fact rule matches)

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
```

(fact n)
(determining which fact rule matches)
(fact n)

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
```

(fact n)
(determining which fact rule matches)
(fact n)
(determining which fact rule matches)

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
```

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
```

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
```

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)
```

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3 * 2
```

```
(fact n)
(determining which fact rule matches)
(fact n)
(fact 0)
(multiplication)
(multiplication)
```

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0))
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3 * 2
= 6
```

(fact n) (determining which fact rule matches) (fact n) (determining which fact rule matches) (fact 0)(multiplication) (multiplication) (multiplication)

Lists

• List display: between square brackets explicitly listing all elements, separated by commas:

[1,4,9,16,25]

Lists

• List display: between square brackets explicitly listing all elements, separated by commas:

• Enumeration lists: denoted by ellipsis ". . " inside square brackets; defined by beginning (and end, if applicable):

[1 .. 10] = [1,2,3,4,5,6,7,8,9,10] [1,3 .. 10] = [1,3,5,7,9] [1,3 .. 11] = [1,3,5,7,9,11] [11,9 .. 1] = [11,9,7,5,3,1] [11 .. 1] = [] [1 ..] = [1,2,3,4,5,6,7,8,9,10, ...] -- infinite list [1,3 ..] = [1,3,5,7,9,11, ...] -- infinite list

Display and enumeration lists are *syntactic sugar*

- either the empty list: [],
- or **non-empty**

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

Display and enumeration lists are *syntactic sugar*: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

Display and enumeration lists are *syntactic sugar*: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs - read: "x cons xes".

Display and enumeration lists are *syntactic sugar*: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

":" is used as *infix list constructor*:

3:[]

Display and enumeration lists are *syntactic sugar*: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

":" is used as *infix list constructor*:

3 : [] = [3]

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs - read: "x cons xes".

":" is used as *infix list constructor*:

3 : [] = [3] 2 : [3]

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

3	:	[]	=		[3]
2	:	[3]	=	[2,	3]

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

3	:	[]		=	[3]
2	:	[3]		=	[2, 3]
1	•	[2,	3]		

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

3	:	[]		=			[3]
2	:	[3]		=		[2,	3]
1	:	[2,	3]	=	[1,	2,	3]

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

":" is used as *infix list constructor*:

3	:	[]	=			[3]
2	:	[3]	=		[2,	3]
1	•	[2, 3]	=	[1,	2,	3]

As an infix operator, ":" associates to the right

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs - read: "x cons xes".

":" is used as *infix list constructor*:

3	:	[]		=			[3]
2	:	[3]		=		[2,	3]
1	•	[2,	3]	=	[1,	2,	3]

As an infix operator, ":" associates to the right:

x : y : ys = x : (y : ys)

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

":" is used as *infix list constructor*:

3	:	[]		=			[3]
2	:	[3]		=		[2,	3]
1	•	[2,	3]	=	[1,	2,	3]

As an infix operator, ":" associates to the right:

x : y : ys = x : (y : ys)

Example:

1:2:[3,4]

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs - read: "x cons xes".

":" is used as *infix list constructor*:

3	:	[]		=			[3]
2	:	[3]		=		[2,	3]
1	•	[2,	3]	=	[1,	2,	3]

As an infix operator, ":" associates to the right:

$$x : y : ys = x : (y : ys)$$

Example:

1:2:[3,4] = 1:(2:[3,4])

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

":" is used as *infix list constructor*:

3	•	[]		=			[3]
2	:	[3]		=		[2,	3]
1	•	[2,	3]	=	[1,	2,	3]

As an infix operator, ":" associates to the right:

x : y : ys = x : (y : ys)

Example:

1:2:[3,4] = 1:(2:[3,4]) = 1:[2,3,4]

Display and enumeration lists are *syntactic sugar*: A list is

- either the empty list: [],
- or **non-empty**, and **cons**tructed from a **head** x and a **tail** xs (read: "xes")

x : xs — read: "x cons xes".

":" is used as *infix list constructor*:

3	:	[]		=			[3]
2	:	[3]		=		[2,	3]
1	•	[2,	3]	=	[1,	2,	3]

As an infix operator, ":" associates to the right:

x : y : ys = x : (y : ys)

Example:

1:2:[3,4] = 1:(2:[3,4]) = 1:[2,3,4] = [1,2,3,4]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

However, ":" is **not** associative:

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

However, ":" is **not** associative:

- A list of integers:
 - 1 : (2 : [3,4])

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

However, ":" is **not** associative:

• A list of integers:

1 : (2 : [3,4]) = 1 : 2 : [3,4]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

However, ":" is **not** associative:

• A list of integers:

1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is nonsense

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2]: [[3,4,5], [6,7]]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2]: [[3,4,5], [6,7]] = [[2], [3,4,5], [6,7]]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2]: [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]
- Another list of lists of integers:
 (1 : [2]) : [[3,4,5], [6,7]]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2]: [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]
- Another list of lists of integers:
 (1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2]: [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]
- Another list of lists of integers:
 (1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]
- 1 : ([2] : [[3,4,5], [6,7]])

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2]: [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]
- Another list of lists of integers:
 (1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]
- 1 : ([2] : [[3,4,5], [6,7]]) is **nonsense** again!

The convention that ":" *associates to the right* allows to save parentheses in certain cirtcumstances.

- A list of integers:
 1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
- (1 : 2) : [3,4] is **nonsense**, since 2 is not a list!
- A list of lists of integers:
 [2]: [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]
- Another list of lists of integers:
 (1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]
- 1 : ([2] : [[3,4,5], [6,7]]) is nonsense again!
 Reason: 1 and [2] cannot be members of the same list (*type error*).

General shape:

[term | generator { , generator_or_constraint }*]

General shape:

[term | generator { , generator_or_constraint }*]

Examples:

 $[n*n | n \leftarrow [1..5]]$

General shape:

[term | generator { , generator_or_constraint }*]

Examples:

 $[n*n \mid n \leftarrow [1..5]] = [1,4,9,16,25]$

General shape:

```
[ term | generator { , generator_or_constraint }* ]
```

Examples:

 $[n*n | n \leftarrow [1..5]] = [1,4,9,16,25]$

 $[n*n | n \leftarrow [1..10], even n]$

General shape:

[term | generator { , generator_or_constraint }*]

Examples:

 $[n*n \mid n \leftarrow [1..5]] = [1,4,9,16,25]$

 $[n*n | n \leftarrow [1..10], even n] = [4,16,36,64,100]$

General shape:

[term | generator { , generator_or_constraint }*]

Examples:

 $[n*n \mid n \leftarrow [1..5]] = [1,4,9,16,25]$

 $[n*n | n \leftarrow [1..10], even n] = [4,16,36,64,100]$

 $[m * n | m \leftarrow [1,3,5], n \leftarrow [2,4,6]]$

General shape:

[term | generator { , generator_or_constraint }*]

Examples:

 $[n*n \mid n \leftarrow [1..5]] = [1,4,9,16,25]$

 $[n*n | n \leftarrow [1..10], even n] = [4,16,36,64,100]$

 $[m * n | m \leftarrow [1,3,5], n \leftarrow [2,4,6]] = [2,4,6,6,12,18,10,20,30]$

General shape:

[term | generator { , generator_or_constraint }*]

Examples:

 $[n*n \mid n \leftarrow [1..5]] = [1,4,9,16,25]$

 $[n*n | n \leftarrow [1..10], even n] = [4,16,36,64,100]$

 $[m * n | m \leftarrow [1,3,5], n \leftarrow [2,4,6]] = [2,4,6,6,12,18,10,20,30]$

Note:

- The left generator "generates slower".

General shape:

```
[ term | generator { , generator_or_constraint }* ]
```

Examples:

 $[n*n \mid n \leftarrow [1..5]] = [1,4,9,16,25]$

 $[n*n | n \leftarrow [1..10], even n] = [4,16,36,64,100]$

 $[m * n | m \leftarrow [1,3,5], n \leftarrow [2,4,6]] = [2,4,6,6,12,18,10,20,30]$

Note:

- The left generator "generates slower".
- Haskell code fragments will frequently be presented like above in a form that is more readable than plain typewriter text — in that case, the "comes from" arrow "<-" in generators turns into "←"

The Type Language

Haskell has a full-fledged type language, with

- Simple predefined datatypes: Bool, Char, Integer, ...
- Predefined type constructors: lists, tuples, functions, ...
- Type synonyms
- User-defined datatypes and type constructors
- Type variables to express **parametric polymorphism**

• ...

Simple Predefined Datatypes

Bool	truth values	False, True
Char	"Unicode" characters	(in GHC: ISO-10646)
Integer	integers	arbitrary precision
Int	"machine integers"	\geq 32 bits
Float	real floating point	single precision
Double	real floating point	double precision
Complex Float	complex floating point	single precision
Complex Double	complex floating point	double precision

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer
answer = 42
limit :: Int
limit = 100

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer answer = 42 limit :: Int limit = 100

Then:

• [1, 2, 3, answer] :: ???

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer answer = 42 limit :: Int limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer answer = 42 limit :: Int limit = 100 Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: ???

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer answer = 42 limit :: Int limit = 100 Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer answer = 42 limit :: Int limit = 100 Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: ???

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer answer = 42 limit :: Int limit = 100

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer
answer = 42
limit :: Int
limit = 100

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] ::???

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

```
answer :: Integer
answer = 42
limit :: Int
limit = 100
```

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer
answer = 42
limit :: Int
limit = 100

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: ???

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer
answer = 42
limit :: Int
limit = 100

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer
answer = 42
limit :: Int
limit = 100

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: ???

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer
answer = 42
limit :: Int
limit = 100

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]

List Types

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

```
answer :: Integer
answer = 42
limit :: Int
limit = 100
```

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]
- [["first", "line"], ["second", "line"]] :: ???

List Types

If t is a type, then the **list type** [t] is the type of **lists** with elements of type t.

answer :: Integer
answer = 42
limit :: Int
limit = 100

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]
- [["first", "line"], ["second", "line"]] :: [[[Char]]]

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

• (answer, limit) :: ???

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

• (answer, limit) :: (Integer, Int)

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: ???

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ???

If *t* and *u* are types, then the **product type** (t, u) is the type of **pairs** with first component of type *t* and second component of type *u* (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ???

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))

If *t* and *u* are types, then the **product type** (t, u) is the type of **pairs** with first component of type *t* and second component of type *u* (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') :: ???

If *t* and *u* are types, then the **product type** (t, u) is the type of **pairs** with first component of type *t* and second component of type *u* (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') :: ([Char], Char)

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') :: ([Char], Char)
- (limit, ("???", 'X')) :: ???

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') :: ([Char], Char)
- (limit, ("???", 'X')) :: (Int, ([Char], Char))

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') :: ([Char], Char)
- (limit, ("???", 'X')) :: (Int, ([Char], Char))
- (True, [("X",limit),("Y",5)]) :: ???

If t and u are types, then the **product type** (t, u) is the type of **pairs** with first component of type t and second component of type u (mathematically: $t \times u$).

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
- ("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) :: ([Char], (Int, Integer))
- ("???", 'X') :: ([Char], Char)
- (limit, ("???", 'X')) :: (Int, ([Char], Char))
- (True, [("X",limit),("Y",5)]) :: (Bool, [([Char], Int)])

Tuple Types

If $n \neq 1$ is a natural number and t_1, \ldots, t_n are types, then the **tuple type** (t_1, \ldots, t_n) is the type of *n*-tuples with the *i*th component of type t_i .

Examples:

- (answer, 'c', limit) :: (Integer, Char, Int)
- (answer, 'c', limit, "all") :: (Integer, Char, Int, [Char])
- () :: ()

— there is exactly one **zero-tuple**.

The type () of zero-tuples is also called the **unit type**.

Simple Type Synonyms

If *t* is a type not containing any type variables, and *Name* is an identifier with a capital first letter, then

```
type Name = t
```

defines *Name* as a **type synonym** for *t*, i.e., *Name* can now be used interchangeably with *t*.

Examples:

type String = [Char] -- predefined
type Point = (Double, Double) -- (1.5, 2.7)
type Triangle = (Point, Point, Point)
type CharEntity = (Char, String) -- ('ü', "ü")
type Dictionary = [(String,String)] -- [("day","jour")]

Type Variables and Polymorphic Types

- Identifiers with lower-case first letter can be used as type variables.
- Type variables can be used like other types in the construction of types, e.g.:

```
[(a,b)]
(Bool, (a, Int))
[ ( String, [(key, val)] ) ]
```

- A type containing at least one type variable is called **polymorphic**
- Polymorphic types can be instantiated by instantiating type variables with types, e.g.:
 - $[(a,b)] \Rightarrow [(Char,b)]$
 - $[(a,b)] \Rightarrow [(Char,Int)]$
 - $[(a,b)] \Rightarrow [(a,[(String,Int)])]$
 - $[(a,b)] \Rightarrow [(a,[(String,c)])]$

FP 2005 3.38

Typing of List Construction

- The empty list can be used at any list type: [] :: [a]
- If an element x :: a and a list xs :: [a] are given, then

```
(x : xs) :: [a]
```

Examples:

2 :: Int [] :: [Int] [2] = 2 : [] :: [Int] [[3,4,5], [6,7]] :: [[Int]] [2] : [[3,4,5], [6,7]] :: [[Int]] 1 : ([2] : [[3,4,5], [6,7]]) -- cannot be typed!

Function Types and Function Application

If *t* and *u* are types, then the **function type** $t \rightarrow u$ is the type of all **functions** accepting arguments of type *t* and producing results of type *u* (mathematically: $t \rightarrow u$).

- If a function f :: a -> b and an argument x :: a are given, then we have (f x) :: b.
- If a function f :: a -> b is given and we know that (f x) :: b, then the argument x is used at type a.
- If an argument x :: a is given and we know that (f x) :: b, then the function f is used at type a -> b.

```
fst :: (a,b) -> a
fst (x,y) = x
```

fst ('c', False)

fst :: (a,b) -> a fst (x,y) = x

fst ('c', False)

:: Char

fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char

["hello", fst (x, 17)]

fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char
["hello", fst (x, 17)] \Rightarrow x :: String

fst :: (a,b) -> a fst (x,y) = x fst ('c', False) :: Char ["hello", fst (x, 17)] \Rightarrow x :: String

f p = limit + fst p

fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char
["hello", fst (x, 17)] \Rightarrow x :: String
f p = limit + fst p \Rightarrow p :: (Int,a)

fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char
["hello", fst (x, 17)] \Rightarrow x :: String
f p = limit + fst p \Rightarrow p :: (Int,a)
f :: (Int,a) -> Int

fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False) :: Char
["hello", fst (x, 17)] \Rightarrow x :: String
f p = limit + fst p \Rightarrow p :: (Int,a)
f :: (Int,a) -> Int

g h = fst (h "") : [limit]

fst :: $(a,b) \rightarrow a$ fst(x,y) = xfst ('c', False) :: Char ["hello", fst (x, 17)] \Rightarrow x :: String f p = limit + fst p \Rightarrow p :: (Int,a) f :: (Int,a) -> Int g h = fst (h "") : [limit]

 \Rightarrow h :: String -> (Int,a)

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
```

gh = fst(h""): [limit]

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
```

gh = fst(h""): [limit]

Then:

g hl

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
```

gh = fst(h""): [limit]

- g hl
- = fst (h1 "") : [limit]

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
```

gh = fst(h""): [limit]

- g hl
- = fst (h1 "") : [limit]
- = fst (length "", ' ' : "") : [limit]

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
```

gh = fst(h""): [limit]

```
g h1
= fst (h1 "") : [limit]
= fst (length "", ' ' : "") : [limit]
= length "" : [limit]
```

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
```

g h = fst (h "") : [limit]

```
g h1
= fst (h1 "") : [limit]
= fst (length "", ' ' : "") : [limit]
= length "" : [limit]
= 0 : [limit]
```

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
```

gh = fst(h""): [limit]

```
g h1
= fst (h1 "") : [limit]
= fst (length "", ' ' : "") : [limit]
= length "" : [limit]
= 0 : [limit]
= [0, 100]
```

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

```
gh = fst(h""): [limit]
```

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

```
gh = fst(h""): [limit]
```

Then:

g h2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

gh = fst(h""): [limit]

Then:

g h2

= fst (h2 "") : [limit]

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

gh = fst(h""): [limit]

Then:

g h2

- = fst (h2 "") : [limit]
- = fst (sum (map ord (notOccCaps "")), head "") : [limit]

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

gh = fst(h""): [limit]

Then:

g h2

- = fst (h2 "") : [limit]
- = fst (sum (map ord (notOccCaps "")), head "") : [limit]
- = sum (map ord (notOccCaps "")) : [limit]

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

gh = fst(h""): [limit]

```
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]
= ...
```

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

gh = fst(h""): [limit]

```
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]
= ...
= 2015 : [limit]
```

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
```

```
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
```

gh = fst(h""): [limit]

```
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]
= ...
= 2015 : [limit]
= [2015, 100]
```

g h = fst (h "") : [limit]

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be **arguments of other functions**: g h2

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

- Functions can be **arguments of other functions**: g h2
- Functions can be **components of data structures**: (7,h1), [h1, h2]

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

- Functions can be **arguments of other functions**: g h2
- Functions can be **components of data structures**: (7,h1), [h1, h2]
- Functions can be **results of function application**: succ . succ

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

- Functions can be **arguments of other functions**: g h2
- Functions can be **components of data structures**: (7,h1), [h1, h2]
- Functions can be **results of function application**: succ . succ

A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

- Functions can be **arguments of other functions**: g h2
- Functions can be **components of data structures**: (7,h1), [h1, h2]
- Functions can be **results of function application**: succ . succ

A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.

g is a second-order function: it expects first-order functions like h1, h2 as arguments.

Type Inference Examples

fst :: $(a,b) \rightarrow a$ fst(x,y) = xfst ('c', False) :: Char ["hello", fst (x, 17)] \Rightarrow x :: String f p = limit + fst p \Rightarrow p :: (Int,a) f :: (Int,a) -> Int gh = fst(h""): [limit]

 \Rightarrow h :: String -> (Int,a)

Type Inference Examples

fst :: $(a,b) \rightarrow a$ fst(x,y) = xfst ('c', False) :: Char ["hello", fst (x, 17)] \Rightarrow x :: String f p = limit + fst p \Rightarrow p :: (Int,a) f :: (Int,a) -> Int gh = fst(h""): [limit] \Rightarrow h :: String -> (Int,a) g :: (String -> (Int,a)) -> [Int]

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as **curried** function, i.e., "they accept their arguments one at a time":

cylVol r h = (pi :: Double) * r * r * h

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as **curried** function, i.e., "they accept their arguments one at a time":

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we have;

(cylVol r) :: ???

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as **curried** function, i.e., "they accept their arguments one at a time":

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we have;

(cylVol r) :: Double -> Double

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as **curried** function, i.e., "they accept their arguments one at a time":

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we have;

(cylVol r) :: Double -> Double
cylVol :: ???

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as **curried** function, i.e., "they accept their arguments one at a time":

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we have;

(cylVol r) :: Double -> Double
cylVol :: Double -> (Double -> Double)

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as **curried** function, i.e., "they accept their arguments one at a time":

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we have;

(cylVol r) :: Double -> Double
cylVol :: Double -> (Double -> Double)

• Function type construction associates to the right, i.e.,

 $a \rightarrow b \rightarrow c = a \rightarrow (b \rightarrow c)$

Let values with the following types be given:

 $f :: a \rightarrow b \rightarrow c$ x :: ay :: b

Let values with the following types be given:

The type of *f* is the function type $a \rightarrow (b \rightarrow c)$

Let values with the following types be given:

- $f :: a \to b \to c$ x :: a
- y :: b

The type of *f* is the function type $a \rightarrow (b \rightarrow c)$, with

- argument type *a*,
- result type $b \rightarrow c$.

Let values with the following types be given:

- $f :: a \rightarrow b \rightarrow c$
- х :: а
- y :: b

The type of *f* is the function type $a \rightarrow (b \rightarrow c)$, with

- argument type *a*,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:

Let values with the following types be given:

- $f :: a \to b \to c$
- х :: а
- y :: b

The type of *f* is the function type $a \rightarrow (b \rightarrow c)$, with

- argument type *a*,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:

 $(f x) :: b \to c$

Let values with the following types be given:

- $f :: a \rightarrow b \rightarrow c$
- х :: а
- y :: b

The type of *f* is the function type $a \rightarrow (b \rightarrow c)$, with

- argument type *a*,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:

 $(f x) :: b \to c$

The application of a "two-argument function" to a single argument is a "one-argument function"

Let values with the following types be given:

- $f :: a \rightarrow b \rightarrow c$
- х :: а
- y :: b

The type of *f* is the function type $a \rightarrow (b \rightarrow c)$, with

- argument type *a*,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:

 $(f x) :: b \to c$

The application of a "two-argument function" to a single argument is a "one-argument function", which can then be applied to a second argument:

(f x) y :: c = f x y

Partial Application — Example

```
g :: (String \rightarrow (Int, a)) \rightarrow [Int]g h = fst (h"") : [Imit]
```

Partial Application — Example

 $g :: (String \rightarrow (Int, a)) \rightarrow [Int]$ g h = fst (h"") : [Iimit]

k n str = (n * (length str + 1), unwords (replicate n str))

Partial Application — Example

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Iimit]$$

 $k :: Int \rightarrow String \rightarrow (Int, String)$ $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Iimit]$$

 $k :: Int \rightarrow String \rightarrow (Int, String)$ $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Iimit]$$

 $k :: Int \rightarrow String \rightarrow (Int, String)$ $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

g (k3) = fst (k3"") : [limit]

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Iimit]$$

 $k :: Int \rightarrow String \rightarrow (Int, String)$ $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

- = fst (k 3 "") : [limit]
- = fst (3 * (length "" + 1), unwords (replicate 3 "")) : [limit]

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Imit]$$

 $k :: Int \rightarrow String \rightarrow (Int, String)$ $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

- = fst (k 3 "") : [limit]
- = fst (3 * (length "" + 1), unwords (replicate 3 "")) : [limit]
- = (3 * (*length* "" + 1)) : [*limit*]

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Imit]$$

 $k :: Int \rightarrow String \rightarrow (Int, String)$ $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

- = fst (3 * (length "" + 1), unwords (replicate 3 "")) : [limit]
- = (3 * (*length* "" + 1)) : [*limit*]
- = (3 * (0 + 1)) : [limit]

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Iimit]$$

$$k :: Int \rightarrow String \rightarrow (Int, String)$$

 $k \ n \ str = (n * (length \ str + 1), unwords (replicate 3 \ str))$

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Iimit]$$

$$k :: Int \rightarrow String \rightarrow (Int, String)$$

 $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

$$g :: (String \rightarrow (Int, a)) \rightarrow [Int]$$
$$g h = fst (h"") : [Iimit]$$

$$k :: Int \rightarrow String \rightarrow (Int, String)$$

 $k \ n \ str = (n * (length \ str + 1), unwords (replicate \ n \ str))$

Operations on Functions

– – identity function id :: a -> a id x = x(.) :: $(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c) - -$ function composition $(f \cdot g) x = f (g x)$ flip :: $(a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c) - -$ argument swapping flip f x y = f y xcurry :: $((a,b) \rightarrow c) \rightarrow (a \rightarrow b \rightarrow c) - - currying$ curry g x y = q (x,y)uncurry :: (a -> b -> c) -> ((a,b) -> c)uncurry f(x,y) = f x y

Exercise (*necessary!*): Copy only the definitions to a sheet of paper, and then infer the types yourself!

Operator Sections

• Infix operators are turned into functions by surrounding them with parentheses:

$$(+)$$
 2 3 = 2 + 3

• This is necessary in type declarations:

(+) :: Int -> Int -> Int -> not the "natural" type of (+)
(:) :: a -> [a] -> [a]
(++) :: [a] -> [a] -> [a]

• It is also possible to supply only one argument (which has to be an atomic expression):

Turning Functions into Infix Operators

Surrounding a function name by **backquotes** turns it into an infix operator.

Frequently used examples (not the "natural" types throughout):

div, mod, max, min :: Int -> Int -> Int elem :: Int -> [Int] -> Bool

12	`div`	7			=	1
12	`mod`	7			=	5
12	`max`	7			=	12
12	`min`	7			=	7
12	`elem`	[1	• •	10]	=	False

Some functions taking lists as arguments can be defined directly via **pattern matching**:

null :: $[a] \rightarrow Bool$

Some functions taking lists as arguments can be defined directly via **pattern matching**:

 $\begin{array}{ll}null & :: [a] \rightarrow Bool\\null [] & =\end{array}$

Some functions taking lists as arguments can be defined directly via **pattern matching**:

 $null :: [a] \rightarrow Bool$ null [] =null (x : xs) =

Some functions taking lists as arguments can be defined directly via **pattern matching**:

 $null :: [a] \rightarrow Bool$ null [] = Truenull (x : xs) =

Some functions taking lists as arguments can be defined directly via **pattern matching**:

null:: $[a] \rightarrow Bool$ null[]= Truenull(x : xs)= False

Some functions taking lists as arguments can be defined directly via **pattern matching**:

null:: $[a] \rightarrow Bool$ null []= Truenull (x : xs)= False

head :: $[a] \rightarrow a$

Some functions taking lists as arguments can be defined directly via **pattern matching**:

 $null :: [a] \rightarrow Bool$ null [] = Truenull (x : xs) = False $head :: [a] \rightarrow a$

head (x : xs) = x

Some functions taking lists as arguments can be defined directly via **pattern matching**:

null:: $[a] \rightarrow Bool$ null []= Truenull (x : xs)= Falsehead:: $[a] \rightarrow a$ head (x : xs)= x

tail :: $[a] \rightarrow [a]$

Some functions taking lists as arguments can be defined directly via **pattern matching**:

 $null :: [a] \rightarrow Bool$ null [] = True null (x : xs) = False $head :: [a] \rightarrow a$ head (x : xs) = x $tail :: [a] \rightarrow [a]$ tail (x : xs) = xs

Some functions taking lists as arguments can be defined directly via **pattern matching**:

 $null :: [a] \rightarrow Bool$ null [] = True null (x : xs) = False $head :: [a] \rightarrow a$ head (x : xs) = x $tail :: [a] \rightarrow [a]$ tail (x : xs) = xs

(*head* and *tail* are **partial functions** — both are undefined on the empty list.)

Many functions taking lists as arguments can be defined via **structural induction**:

 $(`elem`) :: Int \rightarrow [Int] \rightarrow Bool$

Many functions taking lists as arguments can be defined via **structural induction**:

length	::[a	$a] \rightarrow Int$	concat	$:: [[a]] \to [a]$		
length []	=		concat []	=		
length $(x : xs) =$			concat (xs : xss) =			
(++) :	$: [a] \rightarrow [a]$	$a] \rightarrow [a]$	sum []	=		
[] +	+ <i>y</i> s =		<i>sum</i> (<i>x</i> : <i>xs</i>)	=		
$(\mathbf{x}:\mathbf{xs})$	++ <i>y</i> s =					
			product []	=		
			product $(x : x)$	x s) =		
x 'elem' [[] =					
x 'elem' ((y : y s) =					

Many functions taking lists as arguments can be defined via **structural induction**:

length	•••	$[a] \rightarrow Int$	concat		$:: [[a]] \to [a]$	
length []] =	0	concat []		=	
length $(x : xs) =$			concat (xs : xss) =			
(++)	$:: [a] \rightarrow$	[a] → [a]	sum []	=		
[]	++ <i>y</i> s =		<i>sum</i> (<i>x</i> : <i>xs</i>) =		
(x : xs)	++ <i>y</i> s =					
			product []		=	
			product (x:	XS)) =	
x 'elem'	[]	=				
x 'elem'	(y : y s)	=				

Many functions taking lists as arguments can be defined via **structural induction**:

Many functions taking lists as arguments can be defined via **structural induction**:

Many functions taking lists as arguments can be defined via **structural induction**:

length :: $[a] \rightarrow Int$ concat :: $[[a]] \rightarrow [a]$ *length* [] = 0 concat [] = length(x:xs) = 1 + lengthxs concat(xs:xss) =(+) :: $[a] \rightarrow [a] \rightarrow [a]$ sum [] = [] + ys = yssum(x:xs) =(x : xs) + ys = x : (xs + ys)product [] =product (x : xs) =x 'elem' [] =x 'elem' (y : ys) =

Many functions taking lists as arguments can be defined via **structural induction**:

concat :: $[[a]] \rightarrow [a]$ *length* :: $[a] \rightarrow Int$ *length* [] = 0 concat [] = [] length(x:xs) = 1 + lengthxs concat(xs:xss) =(+) :: $[a] \rightarrow [a] \rightarrow [a]$ sum [] = [] + ys = yssum(x:xs) =(x : xs) + ys = x : (xs + ys)product [] = product (x : xs) =x 'elem' [] =x 'elem' (y : ys) =

Many functions taking lists as arguments can be defined via **structural induction**:

Many functions taking lists as arguments can be defined via **structural induction**:

concat :: $[[a]] \rightarrow [a]$ length :: $[a] \rightarrow Int$ *length* [] = 0 *concat* [] = [] length(x : xs) = 1 + length xs concat(xs : xss) = xs + concat xss*sum* [] = 0 (+) :: $[a] \rightarrow [a] \rightarrow [a]$ sum(x:xs) =[] + ys = ys(x : xs) + ys = x : (xs + ys)product [] = product (x : xs) =x 'elem' [] =x 'elem' (y : ys) =

Many functions taking lists as arguments can be defined via **structural induction**:

Many functions taking lists as arguments can be defined via **structural induction**:

length :: $[a] \rightarrow Int$ concat :: $[[a]] \rightarrow [a]$ *length* [] = 0 *concat* [] = [] length(x : xs) = 1 + length xs concat(xs : xss) = xs + concat xss*sum* [] = 0 (+) :: $[a] \rightarrow [a] \rightarrow [a]$ [] + ys = yssum(x:xs) = x + sum xs(x : xs) + ys = x : (xs + ys)*product* [] = 0 product (x : xs) =x 'elem' [] =x 'elem' (y : ys) =

Many functions taking lists as arguments can be defined via **structural induction**:

length :: $[a] \rightarrow Int$ concat :: $[[a]] \rightarrow [a]$ *length* [] = 0 concat [] = [] length(x : xs) = 1 + length xs concat(xs : xss) = xs + concat xss*sum* [] = 0 (+) :: $[a] \rightarrow [a] \rightarrow [a]$ [] + ys = yssum(x:xs) = x + sum xs(x : xs) + ys = x : (xs + ys)*product* [] = 0 product (x : xs) = x * product xsx 'elem' [] =x 'elem' (y : ys) =

Many functions taking lists as arguments can be defined via **structural induction**:

length :: $[a] \rightarrow Int$ concat :: $[[a]] \rightarrow [a]$ *length* [] = 0 *concat* [] = [] length(x : xs) = 1 + length xs concat(xs : xss) = xs + concat xss*sum* [] = 0 (+) :: $[a] \rightarrow [a] \rightarrow [a]$ [] + ys = yssum(x:xs) = x + sum xs(x : xs) + ys = x : (xs + ys)*product* [] = 0 product (x : xs) = x * product xs*x* '*elem*' [] = **False** x 'elem' (y : ys) =

Many functions taking lists as arguments can be defined via **structural induction**:

Guarded Definitions

$$sign x | x > 0 = 1 | x == 0 = 0 | x < 0 = -1$$

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$| x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

```
take_while p(x : xs) | px = x : take_while p xs
take_while p xs = []
take_while ( < 5) [1, 2, 3]
```

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$| x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []
take_while (< 5) [1, 2, 3]
= take_while (< 5) (1 : 2 : 3 : [])</pre>

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$| x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

```
take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []
take_while ( < 5) [1, 2, 3]
= take_while ( < 5) (1 : 2 : 3 : [])
= 1 : take_while ( < 5) (2 : 3 : [])</pre>
```

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$| x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

```
take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []
take_while ( < 5) [1, 2, 3]
= take_while ( < 5) (1 : 2 : 3 : [])
= 1 : take_while ( < 5) (2 : 3 : [])
= 1 : 2 : take_while ( < 5) (3 : [])</pre>
```

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$| x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

```
take_while p(x : xs) | px = x : take_while p xs

take_while p xs = []

take_while ( < 5) [1, 2, 3]

= take_while ( < 5) (1 : 2 : 3 : [])

= 1 : take_while ( < 5) (2 : 3 : [])

= 1 : 2 : take_while ( < 5) (3 : [])

= 1 : 2 : 3 : take_while ( < 5) []
```

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$| x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

```
take_while p(x : xs) | px = x : take_while p xs

take_while p xs = []

take_while ( < 5) [1, 2, 3]

= take_while ( < 5) (1 : 2 : 3 : [])

= 1 : take_while ( < 5) (2 : 3 : [])

= 1 : 2 : take_while ( < 5) (3 : [])

= 1 : 2 : 3 : take_while ( < 5) []
```

$$sign x | x > 0 = 1$$

$$| x == 0 = 0$$

$$| x < 0 = -1$$

$$choose :: Ord a \Rightarrow (a,b) \rightarrow (a,b) \rightarrow b$$

$$choose (x,v) (y,w)$$

$$| x > y = v$$

$$| x < y = w$$

$$| otherwise = error "I cannot decide!"$$

```
take_while p (x : xs) | p x = x : take_while p xs 
take_while p xs = []take_while (<5) [1, 2, 3] 
= take_while (<5) (1 : 2 : 3 : []) 
= 1 : take_while (<5) (2 : 3 : []) 
= 1 : 2 : take_while (<5) (3 : []) 
= 1 : 2 : 3 : take_while (<5) [] 
= 1 : 2 : 3 : [] 
= 1 : 2 : 3 : [] 
= [1, 2, 3]
```

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]</pre>

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs take_while p xs = [] take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6] = take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])</pre>

If no guard succeeds, the next pattern is tried:

take_while $p(x : xs) | px = x : take_while p xs$ take_while p xs = []take_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]= take_while (<5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])= 1 : take_while (<5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

If no guard succeeds, the next pattern is tried:

 $\begin{array}{l} take_while \ p \ (x : xs) \ | \ p \ x \ = \ x : take_while \ p \ xs \\ take_while \ p \ xs \ = \ [] \\ take_while \ (\ < 5) \ [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6] \\ = \ take_while \ (\ < 5) \ (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : \ []) \\ = \ 1 : \ take_while \ (\ < 5) \ (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : \ []) \\ = \ 1 : 2 : \ take_while \ (\ < 5) \ (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : \ []) \end{array}$

If no guard succeeds, the next pattern is tried:

 $take_while p (x : xs) | p x = x : take_while p xs = []$ $take_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]$ $= take_while (<5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$ $= 1 : take_while (<5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$ $= 1 : 2 : take_while (<5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$ $= 1 : 2 : 3 : take_while (<5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$

If no guard succeeds, the next pattern is tried:

 $take_while p (x : xs) | p x = x : take_while p xs$ $take_while p xs = []$ $take_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]$ $= take_while (<5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$ $= 1 : take_while (<5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$ $= 1 : 2 : take_while (<5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$ $= 1 : 2 : 3 : take_while (<5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$ $= 1 : 2 : 3 : take_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])$

```
take\_while p (x : xs) | p x = x : take\_while p xs
take\_while p xs = []
take\_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take\_while (<5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take\_while (<5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take\_while (<5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take\_while (<5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take\_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take\_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take\_while (<5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
```

```
take\_while p (x : xs) | p x = x : take\_while p xs
take\_while p xs = []
take\_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take\_while (<5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take\_while (<5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take\_while (<5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take\_while (<5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take\_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take\_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take\_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take\_while (<5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take\_while (<5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
```

```
take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []
take_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take_while (<5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (<5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (<5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (<5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take_while (<5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take_while (<5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 6 : [])
```

```
take_while p(x : xs) | px = x : take_while p xs
take_while p xs
                     = []
take_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take_while (<5) (1:2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1: take_while (<5) (2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2: take_while (<5) (3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3: take_while (<5) (2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2: take_while (<5) (3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:take_while (<5) (4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4: take_while (<5)(3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:take_while (<5) (4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:4: take_while ( < 5) (5:4:3:4:5:6: [])
= 1:2:3:2:3:4:3:4:[]
```

```
take_while p(x : xs) | px = x : take_while p xs
take_while p xs
                     = []
take_while (<5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take_while (<5) (1:2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1: take_while (<5) (2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2: take_while (<5) (3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3: take_while (<5) (2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2: take_while (<5) (3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:take_while (<5) (4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4: take_while (<5)(3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:take_while (<5) (4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:4: take_while ( < 5) (5:4:3:4:5:6: [])
= 1:2:3:2:3:4:3:4:[]
= [1, 2, 3, 2, 3, 4, 3, 4]
```

```
sign x = case compare x 0 of

GT \rightarrow 1

EQ \rightarrow 0

LT \rightarrow -1
```

```
sign x = case compare x 0 of

GT \rightarrow 1

EQ \rightarrow 0

LT \rightarrow -1
```

The prelude datatype Ordering has three elements

data Ordering = LT | EQ | GT

```
sign x = case compare x 0 of

GT \rightarrow 1

EQ \rightarrow 0

LT \rightarrow -1
```

The prelude datatype *Ordering* has three elements and is used mostly as result type of the prelude function *compare*:

data Ordering = LT | EQ | GT

compare :: Ord $a \Rightarrow a \rightarrow a \rightarrow$ Ordering

```
sign x = case compare x 0 of

GT \rightarrow 1

EQ \rightarrow 0

LT \rightarrow -1
```

The prelude datatype *Ordering* has three elements and is used mostly as result type of the prelude function *compare*:

```
data Ordering = LT \mid EQ \mid GT

compare :: Ord a \Rightarrow a \rightarrow a \rightarrow Ordering

Another example:

choose (x, v) (y, w) = case compare x y of

GT \rightarrow v

LT \rightarrow w

EQ \rightarrow error "I cannot decide!"
```

if ... then ... else ... and case Expressions

The type *Bool* can be considered as a two-element enumeration type: data *Bool* = False | True

if ... then ... else ... and case Expressions

The type *Bool* can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are "syntactic sugar" for case expressions over Bool:

if condition	 case condition of
then expr1	 True \rightarrow <i>expr1</i>
else expr2	False \rightarrow <i>expr</i> 2

if ... then ... else ... and case Expressions

The type *Bool* can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are "syntactic sugar" for **case** expressions over *Bool*:

Two ways of defining functions:

Pattern Matching

not True = False *not* False = True case

not b = case b of

True \rightarrow **False**

 $\textbf{False} \rightarrow \textbf{True}$

$$commaWords :: [String] \rightarrow String$$

$$commaWords [] = []$$

$$commaWords (x : xs) = x + case xs of$$

$$[] \rightarrow []$$

$$_ \rightarrow ", " : commaWords xs$$

```
\begin{array}{l} commaWords :: [String] \rightarrow String\\ commaWords [] = []\\ commaWords (x : xs) = x + case xs of\\ [] \rightarrow []\\ \_ \rightarrow ", " : commaWords xs \end{array}
```

Every use of a case expression can be transformed into the use of an auxiliary function defined by pattern matching

```
commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords (x : xs) = x + case xs of
[] \rightarrow []
\_ \rightarrow ", " : commaWords xs
```

Every use of a case expression can be transformed into the use of an auxiliary function defined by pattern matching:

 $commaWords :: [String] \rightarrow String$ commaWords [] = []commaWords (x : xs) = x + commaWordsAux xs

```
commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords (x : xs) = x + case xs of
[] \rightarrow []
\_ \rightarrow ", " : commaWords xs
```

Every use of a case expression can be transformed into the use of an auxiliary function defined by pattern matching:

 $commaWords :: [String] \rightarrow String$ commaWords [] = []commaWords (x : xs) = x + commaWordsAux xs

commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

where Clauses

where **Clauses**

If an auxiliary definition is used only locally, it should be inside a **local definition**

where Clauses

If an auxiliary definition is used only locally, it should be inside a **local definition**, e.g.:

```
commaWords :: [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs
where
commaWordsAux [] = []
```

```
commaWordsAux xs = ", " : commaWords xs
```

where Clauses

If an auxiliary definition is used only locally, it should be inside a **local definition**, e.g.:

```
commaWords :: [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs
where
commaWordsAux [] = []
commaWordsAux xs = "," : commaWords xs
```

where clauses are visible **only** within their enclosing clause, here "*commaWords* (x : xs) = ..."

where Clauses

If an auxiliary definition is used only locally, it should be inside a **local definition**, e.g.:

```
commaWords :: [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs
where
commaWordsAux [] = []
commaWordsAux xs = "," : commaWords xs
```

where clauses are visible **only** within their enclosing clause, here "*commaWords* (x : xs) = ..."

where clauses are visible within all guards:

```
f x y | y > z = ...
| y == z = ...
| y < z = ...
where z = x * x
```

Local definitions can also be part of expressions:

Local definitions can also be part of expressions:

```
f k n = let m = k `mod` n
in if m == 0
then n
else f n m
h x y = let x2 = x * x
y2 = y * y
in sqrt (x2 + y2)
```

Local definitions can also be part of expressions:

Definitions can use **pattern bindings**:

Local definitions can also be part of expressions:

```
f k n = let m = k `mod` n
in if m == 0
then n
else f n m
h x y = let x2 = x * x
y2 = y * y
in sqrt (x2 + y2)
```

Definitions can use **pattern bindings**:

Guards, let and where bindings, and case cases all are layout sensitive!

let or where?

• let *bindings* in *expression* is an **expression**

- let bindings in expression is an expression
- *fname patterns guardedRHSs* where *bindings* is a clause that is part of a **definition**

- let bindings in expression is an expression
- *fname patterns guardedRHSs* where *bindings* is a clause that is part of a **definition**
- (where clauses can also modify case cases)

- let bindings in expression is an expression
- fname patterns guardedRHSs where bindings is a clause that is part of a definition
- (where clauses can also modify case cases)

Frequently, the choice between let and where is a matter of *style*:

- where clauses result in a top-down presentation
- let expressions lend themselves also to bottom-up presentations

Some Prelude Functions — Elementary List Access

head head	(x:_)	:: [a] -> a = x
last last last	[x] (_:xs)	:: [a] -> a = x = last xs
tail tail	(_:xs)	:: [a] -> [a] = xs
init init init	[x] (x:xs)	:: [a] -> [a] = [] = x : init xs
null null null	[] (_:_)	:: [a] -> Bool = True = False

Some Prelude Functions — List Indexing

length			[a] ->		
length		=	foldl'	(\n> n + 1)	0
(!!)		••	[b] _>	Int -> b	
(• •)		• •	[D] /		
(x:_)	!! 0	=	Х		
(_:xs)	!! n	n>0 =	xs !!	(n-1)	
(_:_)	!! _	=	error	"PreludeList.!!:	negative index"
[]	!! _	=	error	"PreludeList.!!:	index too large"

Some Prelude Functions — Positional List Splitting

```
take
               :: Int -> [a] -> [a]
take 0
                = []
take []
          = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ _
               = error "take: negative argument"
            :: Int -> [a] -> [a]
drop
drop 0 xs
                  = XS
drop [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _
              = error "drop: negative argument"
                :: Int -> [a] -> ([a], [a])
splitAt
splitAt 0 xs = ([], xs)
splitAt [] = ([],[])
splitAt n (x:xs) | n>0 = (x:xs',xs'')
              where (xs', xs'') = splitAt (n-1) xs
splitAt = error "splitAt: negative argument"
```

Some Prelude Functions — Concatenation, Iteration

```
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
concat :: [[a]] -> [a]
concat = foldr (++) []
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
repeat :: a -> [a]
repeat x = xs where xs = x:xs
\{-\text{ repeat } x = x : \text{ repeat } x - \} = - \text{ for understanding}
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)
            :: [a] -> [a]
cycle
           = xs' where xs' = xs + + xs'
cycle xs
```

replicate 3 '!'

replicate 3 '!'

= take 3 (repeat '!')

-- replicate

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!') -- repeat
```

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!') -- repeat
= '!' : take (3 - 1) (repeat '!') -- take (iii)
```

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!') -- repeat
= '!' : take (3 - 1) (repeat '!') -- take (iii)
= '!' : take 2 (repeat '!') -- subtraction
```

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!') -- repeat
= '!' : take (3 - 1) (repeat '!') -- take (iii)
= '!' : take 2 (repeat '!') -- subtraction
= '!' : take 2 ('!' : repeat '!') -- repeat
```

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!') -- repeat
= '!' : take (3 - 1) (repeat '!') -- take (iii)
= '!' : take 2 (repeat '!') -- subtraction
= '!' : take 2 ('!' : repeat '!') -- repeat
= '!' : '!' : take (2 - 1) (repeat '!') -- take (iii)
```

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!') -- repeat
= '!' : take (3 - 1) (repeat '!') -- take (iii)
= '!' : take 2 (repeat '!') -- subtraction
= '!' : take 2 ('!' : repeat '!') -- repeat
= '!' : '!' : take (2 - 1) (repeat '!') -- take (iii)
= '!' : '!' : take 1 (repeat '!') -- subtraction
```

```
replicate 3 '!'
= take 3 (repeat '!')
                                               -- replicate
= take 3 ('!' : repeat '!')
                                               -- repeat
= '!' : take (3 - 1) (repeat '!')
                                              -- take (iii)
= '!' : take 2 (repeat '!')
                                              – – subtraction
= '!' : take 2 ('!' : repeat '!')
                                              -- repeat
= '!' : '!' : take (2 - 1) (repeat '!')
                                              -- take (iii)
= '!' : '!' : take 1 (repeat '!')
                                              – – subtraction
= '!' : '!' : take 1 ('!' : repeat '!') -- repeat
```

```
replicate 3 '!'
= take 3 (repeat '!')
                                             -- replicate
= take 3 ('!' : repeat '!')
                                             -- repeat
= '!' : take (3 - 1) (repeat '!')
                                             -- take (iii)
= '!' : take 2 (repeat '!')
                                             – – subtraction
= '!' : take 2 ('!' : repeat '!')
                                             -- repeat
= '!' : '!' : take (2 - 1) (repeat '!')
                                             -- take (iii)
= '!' : '!' : take 1 (repeat '!')
                                 – – subtraction
= '!' : '!' : take 1 ('!' : repeat '!') -- repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') - - take (iii)
```

```
replicate 3 '!'
= take 3 (repeat '!')
                                             -- replicate
= take 3 ('!' : repeat '!')
                                             -- repeat
= '!' : take (3 - 1) (repeat '!')
                                             -- take (iii)
= '!' : take 2 (repeat '!')
                                             – – subtraction
= '!' : take 2 ('!' : repeat '!')
                                             -- repeat
= '!' : '!' : take (2 - 1) (repeat '!')
                                             -- take (iii)
= '!' : '!' : take 1 (repeat '!')
                                  – – subtraction
= '!' : '!' : take 1 ('!' : repeat '!') -- repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') - - take (iii)
= '!' : '!' : '!' : take 0 (repeat '!') -- subtraction
```

```
replicate 3 '!'
= take 3 (repeat '!')
                                              -- replicate
= take 3 ('!' : repeat '!')
                                              -- repeat
= '!' : take (3 - 1) (repeat '!')
                                              -- take (iii)
= '!' : take 2 (repeat '!')
                                              – – subtraction
= '!' : take 2 ('!' : repeat '!')
                                              -- repeat
= '!' : '!' : take (2 - 1) (repeat '!')
                                              -- take (iii)
= '!' : '!' : take 1 (repeat '!')
                                   – – subtraction
= '!' : '!' : take 1 ('!' : repeat '!') -- repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') - - take (iii)
= '!' : '!' : '!' : take 0 (repeat '!') -- subtraction
= ' ! ' : ' ! ' : ' ! ' : []
                                              -- take (i)
```

```
replicate 3 '!'
= take 3 (repeat '!')
                                              -- replicate
= take 3 ('!' : repeat '!')
                                              -- repeat
= '!' : take (3 - 1) (repeat '!')
                                              -- take (iii)
= '!' : take 2 (repeat '!')
                                              – – subtraction
= '!' : take 2 ('!' : repeat '!')
                                              -- repeat
= '!' : '!' : take (2 - 1) (repeat '!')
                                              -- take (iii)
= '!' : '!' : take 1 (repeat '!')
                                   – – subtraction
= '!' : '!' : take 1 ('!' : repeat '!') -- repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') - - take (iii)
= '!' : '!' : '!' : take 0 (repeat '!') -- subtraction
= ' ! ' : ' ! ' : ' ! ' : []
                                              -- take (i)
= "!!!"
```

• Functional programming:

• Functional programming: Higher-order functions

• **Functional programming:** Higher-order functions, functions as arguments and results

- **Functional programming:** Higher-order functions, functions as arguments and results
- Type systems:

- Functional programming: Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors

- Functional programming: Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism

- Functional programming: Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables)

- Functional programming: Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules:

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator

- Functional programming: Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"
- Argument passing:

- Functional programming: Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- **Powerful datatypes** with simple interface:

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- **Powerful datatypes** with simple interface: *Integer*, lists, lists of lists of ...

- **Functional programming:** Higher-order functions, functions as arguments and results
- **Type systems:** type constants and type constructors, parametric polymorphism (type variables), type inference
- **Operator precedence rules:** juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- **Powerful datatypes** with simple interface: *Integer*, lists, lists of lists of ...
- Non-local control (evaluation on demand): modularity (e.g., generate / prune)

Some Prelude Functions — List Splitting with Predicates

```
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
       p x = x : takeWhile p xs
otherwise = []
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
      | p x = dropWhile p xs'
| otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
      | p x = let (ys,zs) = span p xs' in (x:ys,zs)
| otherwise = ([],xs)
       = span (not . p)
break p
```

- *p* =
- XS =
- *x* =
- xs' =

- p = (< 5)
- XS =
- *x* =
- *xs*' =

- *p* = (< 5)
- xs = [1,2,3]
- *x* =
- *xs*' =

- p = (< 5)
- xs = [1,2,3]
- *x* = 1
- xs' =

- p = (< 5)
- xs = [1,2,3]
- *x* = 1
- xs' = [2,3]

- p = (< 5)
- xs = [1,2,3]
- *x* = 1
- xs' = [2,3]
- *p x* = (< 5) 1 = 1 < 5 = **True**

Consider matching of the third clause against *dropWhile* (< 5) [1,2,3]:

- p = (<5)
- xs = [1,2,3]
- *x* = 1
- xs' = [2,3]
- *p x* = (< 5) 1 = 1 < 5 = **True**

Therefore: dropWhile (< 5) [1,2,3] =

Consider matching of the third clause against *dropWhile* (< 5) [1,2,3]:

- p = (< 5)
- xs = [1,2,3]
- *x* = 1
- xs' = [2,3]
- *p x* = (< 5) 1 = 1 < 5 = **True**

Therefore: dropWhile (< 5) [1,2,3] = dropWhile (< 5) [2,3]

- *p* =
- xs =
- *x* =
- xs' =

- p = (< 5)
- xs =
- *x* =
- *xs*' =

- p = (< 5)
- xs = [5,4,3]
- *x* =
- *xs*' =

- p = (< 5)
- xs = [5,4,3]
- *x* = 5
- xs' =

- p = (< 5)
- xs = [5,4,3]
- *x* = 5
- xs' = [4,3]

- p = (< 5)
- xs = [5,4,3]
- *x* = 5
- xs' = [4,3]
- *p x* = (< 5) 5 = 5 < 5 = **False**

Consider matching of the third clause against *dropWhile* (< 5) [5,4,3]:

- p = (< 5)
- xs = [5,4,3]
- *x* = 5
- *xs*' = [4,3]
- *p x* = (< 5) 5 = 5 < 5 = False

Therefore: dropWhile (< 5) [5,4,3] =

Consider matching of the third clause against *dropWhile* (< 5) [5,4,3]:

- p = (< 5)
- xs = [5,4,3]
- *x* = 5
- *xs*' = [4,3]
- *p x* = (< 5) 5 = 5 < 5 = False

Therefore: *dropWhile* (< 5) [5,4,3] = [5,4,3]

Some Prelude Functions — List Splitting with Predicates

```
takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
       p x = x : takeWhile p xs
otherwise = []
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
      | p x = dropWhile p xs'
| otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
      | p x = let (ys,zs) = span p xs' in (x:ys,zs)
| otherwise = ([],xs)
       = span (not . p)
break p
```

Some Prelude Functions — **Text Processing**

```
lines :: String -> [String]
lines "" = []
lines s = let (l,s') = break (' n'==) s
            in 1 : case s' of [] -> []
                              ( :s") -> lines s"
words :: String -> [String]
words s = case dropWhile isSpace s of
                 "" -> []
                 s' \rightarrow w: words s''
                       where (w,s") = break isSpace s'
unlines :: [String] -> String
unlines [] = []
unlines (l:ls) = l + + ' \setminus n' : unlines ls
unwords :: [String] -> String
unwords [] = ""
unwords [w] = w
unwords (w:ws) = w ++ ' ' : unwords ws
```

map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
```

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
where rest = filter p xs
```

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
where rest = filter p xs
```

These functions could also be defined via list comprehension:

map f xs = [f x | x < -xs]

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
where rest = filter p xs
```

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]
filter p xs = [x | x <- xs, p x]</pre>

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
where rest = filter p xs
```

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]
filter p xs = [x | x <- xs, p x]</pre>

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
where rest = filter p xs
```

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]
filter p xs = [x | x <- xs, p x]</pre>

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]
filter even [1 .. 6] = [2, 4, 6]

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (\otimes) [x] = x

foldr1 (\otimes) (x:xs) = x \otimes (foldr1 (\otimes) xs)

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (\otimes) [x] = x

foldr1 (\otimes) (x:xs) = x \otimes (foldr1 (\otimes) xs)

foldr1 (\otimes) [x_1 , x_2 , x_3 , x_4 , x_5]

foldr1 :: $(a \rightarrow a \rightarrow a) \rightarrow [a] \rightarrow a$ foldr1 $(\otimes) [x] = x$ foldr1 $(\otimes) (x:xs) = x \otimes (foldr1 (\otimes) xs)$

foldr1 (\otimes) [x_1 , x_2 , x_3 , x_4 , x_5] = $x_1 \otimes$ (foldr1 (\otimes) [x_2 , x_3 , x_4 , x_5])

foldr1 (
$$\otimes$$
) [x_1 , x_2 , x_3 , x_4 , x_5]
= $x_1 \otimes$ (foldr1 (\otimes) [x_2 , x_3 , x_4 , x_5])
= $x_1 \otimes$ ($x_2 \otimes$ (foldr1 (\otimes) [x_3 , x_4 , x_5]))

$$\begin{array}{l} \text{foldr1} & (\otimes) \ [x_1, \ x_2, \ x_3, \ x_4, \ x_5 \] \\ = \ x_1 \otimes \ (\text{foldr1} \ (\otimes) \ [x_2, \ x_3, \ x_4, \ x_5 \]) \\ = \ x_1 \otimes \ (x_2 \otimes \ (\text{foldr1} \ (\otimes) \ [x_3, \ x_4, \ x_5 \])) \\ = \ x_1 \otimes \ (x_2 \otimes \ (x_3 \otimes \ (\text{foldr1} \ (\otimes) \ [x_4, \ x_5 \]))) \end{array}$$

$$\begin{array}{l} \text{foldrl} (\otimes) [x_{1}, x_{2}, x_{3}, x_{4}, x_{5}] \\ = x_{1} \otimes (\text{foldrl} (\otimes) [x_{2}, x_{3}, x_{4}, x_{5}]) \\ = x_{1} \otimes (x_{2} \otimes (\text{foldrl} (\otimes) [x_{3}, x_{4}, x_{5}])) \\ = x_{1} \otimes (x_{2} \otimes (x_{3} \otimes (\text{foldrl} (\otimes) [x_{4}, x_{5}]))) \\ = x_{1} \otimes (x_{2} \otimes (x_{3} \otimes (x_{4} \otimes (\text{foldrl} (\otimes) [x_{5}])))) \\ \end{array}$$

$$\begin{array}{l} \text{foldrl} (\otimes) [x_1, x_2, x_3, x_4, x_5] \\ = x_1 \otimes (\text{foldrl} (\otimes) [x_2, x_3, x_4, x_5]) \\ = x_1 \otimes (x_2 \otimes (\text{foldrl} (\otimes) [x_3, x_4, x_5])) \\ = x_1 \otimes (x_2 \otimes (x_3 \otimes (\text{foldrl} (\otimes) [x_4, x_5]))) \\ = x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (\text{foldrl} (\otimes) [x_5])))) \\ = x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes x_5))) \\ \end{array}$$

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (\otimes) z [] = z

foldr (\otimes) z (x:xs) = x \otimes (foldr (\otimes) z xs)

foldrX :: $(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$ foldrX (***) z [] = z foldrX (***) z (x:xs) = x *** (foldrX (***) z xs)

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (\otimes) z [] = z

foldr (\otimes) z (x:xs) = x \otimes (foldr (\otimes) z xs)

foldr (\otimes) z [x_1 , x_2 , x_3 , x_4 , x_5]

foldr :: $(a \to b \to b) \to b \to [a] \to b$ foldr $(\otimes) z [] = z$

foldr (\otimes) z (x:xs) = x \otimes (foldr (\otimes) z xs)

foldr (\otimes) z [x_1 , x_2 , x_3 , x_4 , x_5] = $x_1 \otimes$ (foldr (\otimes) z [x_2 , x_3 , x_4 , x_5])

foldr (
$$\otimes$$
) z [x_1 , x_2 , x_3 , x_4 , x_5]
= $x_1 \otimes$ (foldr (\otimes) z [x_2 , x_3 , x_4 , x_5])
= $x_1 \otimes$ ($x_2 \otimes$ (foldr (\otimes) z [x_3 , x_4 , x_5]))

foldr (
$$\otimes$$
) z [x_1 , x_2 , x_3 , x_4 , x_5]
= $x_1 \otimes$ (foldr (\otimes) z [x_2 , x_3 , x_4 , x_5])
= $x_1 \otimes$ ($x_2 \otimes$ (foldr (\otimes) z [x_3 , x_4 , x_5]))
= $x_1 \otimes$ ($x_2 \otimes$ ($x_3 \otimes$ (foldr (\otimes) z [x_4 , x_5]))

$$\begin{array}{l} \text{foldr } (\otimes) \ z \ [x_1, \ x_2, \ x_3, \ x_4, \ x_5 \] \\ = \ x_1 \otimes \ (\text{foldr } (\otimes) \ z \ [x_2, \ x_3, \ x_4, \ x_5 \]) \\ = \ x_1 \otimes \ (x_2 \otimes \ (\text{foldr } (\otimes) \ z \ [x_3, \ x_4, \ x_5 \])) \\ = \ x_1 \otimes \ (x_2 \otimes \ (x_3 \otimes \ (\text{foldr } (\otimes) \ z \ [x_4, \ x_5 \]))) \\ = \ x_1 \otimes \ (x_2 \otimes \ (x_3 \otimes \ (x_4 \otimes \ (\text{foldr } (\otimes) \ z \ [x_5 \])))) \\ \end{array}$$

$$\begin{array}{l} \text{foldr} (\otimes) \ z \ [x_1, \ x_2, \ x_3, \ x_4, \ x_5 \] \\ = \ x_1 \otimes (\text{foldr} (\otimes) \ z \ [x_2, \ x_3, \ x_4, \ x_5 \]) \\ = \ x_1 \otimes (x_2 \otimes (\text{foldr} (\otimes) \ z \ [x_3, \ x_4, \ x_5 \])) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (\text{foldr} (\otimes) \ z \ [x_4, \ x_5 \]))) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (\text{foldr} (\otimes) \ z \ [x_5 \])))) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (\text{foldr} (\otimes) \ z \ [x_5 \])))) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (x_5 \otimes (\text{foldr} (\otimes) \ z \ []))))) \\ \end{array}$$

$$\begin{array}{l} \text{foldr} (\otimes) \ z \ [x_1, \ x_2, \ x_3, \ x_4, \ x_5 \] \\ = \ x_1 \otimes (\text{foldr} (\otimes) \ z \ [x_2, \ x_3, \ x_4, \ x_5 \]) \\ = \ x_1 \otimes (x_2 \otimes (\text{foldr} (\otimes) \ z \ [x_3, \ x_4, \ x_5 \])) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (\text{foldr} (\otimes) \ z \ [x_4, \ x_5 \]))) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (\text{foldr} (\otimes) \ z \ [x_5 \])))) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (x_5 \otimes (\text{foldr} (\otimes) \ z \ []))))) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (x_5 \otimes (\text{foldr} (\otimes) \ z \ []))))) \\ = \ x_1 \otimes (x_2 \otimes (x_3 \otimes (x_4 \otimes (x_5 \otimes (\text{foldr} (\otimes) \ z \ []))))) \\ \end{array}$$

List Folding

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
```

A simple definition:

limit = 10 ^ 2

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (*limit* + 1)

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (*limit* + 1) = 4 * ((10 ^ 2) + 1)

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (*limit* + 1) = 4 * ((10 ^ 2) + 1) = ...

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)= 4 * ((10 ^ 2) + 1) = ...

Another definition:

concat = foldr (++) []

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)= 4 * ((10 ^ 2) + 1) = ...

Another definition:

concat = foldr (++) []

Expanding this definition:

concat [[1,2,3],[4,5]]

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)= 4 * ((10 ^ 2) + 1) = ...

Another definition:

concat = foldr (++) []

Expanding this definition:

concat [[1,2,3],[4,5]]

= (foldr (++) []) [[1,2,3],[4,5]]

= ...

Enumeration Type Definitions

data Bool = False | Truederiving (Eq, Ord, Read, Show)data Ordering = LT | EQ | GTderiving (Eq, Ord, Read, Show)

data Suit = Diamonds | Hearts | Spades | Clubs **deriving** (Eq, Ord) Pattern matching:

not False = True

not True = False

 $\begin{aligned} & \text{lexicalCombineOrdering} :: \text{Ordering} \to \text{Ordering} \to \text{Ordering} \\ & \text{lexicalCombineOrdering } LT _ = LT \\ & \text{lexicalCombineOrdering } EQ \ x = x \\ & \text{lexicalCombineOrdering } GT _ = GT \end{aligned}$

Simple data Type Definitions

data Point = Pt Int Int deriving (Eq) -- screen coordinates data Transport = Feet | Bike | Train Int -- price in cent This defines at the series data constructions

This defines at the same time **data constructors**:

Pt :: Int \rightarrow Int \rightarrow Point Feet :: Transport Bike :: Transport

Train :: *Int* \rightarrow *Transport*

Pattern matching:

addPt (Pt x1 y1) (Pt x2 y2) = Pt (x1 + x2) (y1 + y2) cost Feet = 0 cost Bike = 0cost (Train Int) = Int

Simple Polymorphic data Type Definitions

The prelude type constructors Maybe, Either, Complex are defined as follows:

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)
data Either a b = Left a | Right b

data Complex r = r :+ r deriving (Eq, Read, Show)

This defines at the same time **data constructors**:

Nothing :: Maybe a Just :: $a \rightarrow Maybe a$

Left :: $a \rightarrow Either \ a \ b$ Right :: $b \rightarrow Either \ a \ b$

 $(:+):: r \rightarrow r \rightarrow Complex r$