Functional Programming

Wolfram Kahl

kahl@mcmaster.ca

Department of Computing and Software
McMaster University

What Kinds of Programming Languages are There?

Programming Languages

What Kinds of Programming Languages are There?

Imperative - "telling the machine what to do"
Declarative - "telling the machine what to achieve"

What Kinds of Programming Languages are There?

Imperative - "telling the machine what to do"
Declarative - "telling the machine what to achieve"

What Kinds of Programming Languages are There?

Imperative - "telling the machine what to do"
Declarative - "telling the machine what to achieve"

What Kinds of Programming Languages are There?

Imperative - "telling the machine what to do"
Declarative - "telling the machine what to achieve"

What Kinds of Programming Languages are There?

Imperative - "telling the machine what to do"
Declarative - "telling the machine what to achieve"

What Kinds of Programming Languages are There?

Imperative - "telling the machine what to do"
Declarative - "telling the machine what to achieve"

Programming Language Paradigms

Imperative Programming Languages

Statement oriented languages
Every statement changes the machine state

Object-oriented languages

Organising the state into objects with individual state and behaviour
Message passing paradigm (instead of subprogram call)

Rule-Based (Logical) Programming Languages

Specify rule that specifies problem solution (Prolog, BNF Parsing)
Other examples: Decision procedures, Grammar rules (BNF)
Programming consists of specifying the attributes of the answer
Functional (Applicative) Programming Languages
Goal is to understand the function that produces the answer
Function composition is major operation
Programming consists of building the function that computes the answer

Historical Development of Programming Languages

Historical Development of Programming Languages

Emphasis has changed:

Historical Development of Programming Languages

Emphasis has changed:

- from making life easier for the computer

Historical Development of Programming Languages

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Historical Development of Programming Languages

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

Historical Development of Programming Languages

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

- Use languages that facilitate writing error-free programs

Historical Development of Programming Languages

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

- Use languages that facilitate writing error-free programs
- Use languages that facilitate writing programs that are easy to maintain

Historical Development of Programming Languages

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

- Use languages that facilitate writing error-free programs
- Use languages that facilitate writing programs that are easy to maintain

Goal of language development:

Historical Development of Programming Languages

Emphasis has changed:

- from making life easier for the computer
- to making it easier for the programmer.

Easier for the programmer means:

- Use languages that facilitate writing error-free programs
- Use languages that facilitate writing programs that are easy to maintain

Goal of language development:

- Developers concentrate on design (or even just specification)
- Programming is trivial or handled by computer (executable specification languages, rapid prototyping)

Important Functional Programming Languages

Functional Programming Languages

Important Functional Programming Languages

Important Functional Programming Languages

Important Functional Programming Languages

Important Functional Programming Languages

Important Functional Programming Languages

Important Functional Programming Languages

Haskell

Haskell

- functional

Haskell

- functional - programs are function definitions

Haskell

- functional - programs are function definitions; functions are "first-class citizens"

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent)

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) — "no side-effects"
- non-strict (lazy)

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"
- non-strict (lazy) - arguments are evaluated only when needed

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"
- non-strict (lazy) - arguments are evaluated only when needed
- statically strongly typed

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"
- non-strict (lazy) - arguments are evaluated only when needed
- statically strongly typed - all type errors caught at compile-time

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"
- non-strict (lazy) - arguments are evaluated only when needed
- statically strongly typed - all type errors caught at compile-time
- type classes - safe overloading

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"
- non-strict (lazy) - arguments are evaluated only when needed
- statically strongly typed - all type errors caught at compile-time
- type classes - safe overloading
- Standardised language version: Haskell 98

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"
- non-strict (lazy) - arguments are evaluated only when needed
- statically strongly typed - all type errors caught at compile-time
- type classes - safe overloading
- Standardised language version: Haskell 98
- Several compilers and interpreters available

Haskell

- functional - programs are function definitions; functions are "first-class citizens"
- pure (referentially transparent) - "no side-effects"
- non-strict (lazy) - arguments are evaluated only when needed
- statically strongly typed - all type errors caught at compile-time
- type classes - safe overloading
- Standardised language version: Haskell 98
- Several compilers and interpreters available
- Comprehensive web site: http://haskell.org/

Important Points

Important Points

- Execution of Haskell programs

Important Points

- Execution of Haskell programs is expression evaluation

Important Points

- Execution of Haskell programs is expression evaluation
- (for the time being)

Important Points

- Execution of Haskell programs is expression evaluation
- (for the time being)
- Defining functions in Haskell

Important Points

- Execution of Haskell programs is expression evaluation
- (for the time being)
- Defining functions in Haskell is more like defining functions in mathematics

Important Points

- Execution of Haskell programs is expression evaluation
- (for the time being)
- Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java

Important Points

- Execution of Haskell programs is expression evaluation
- (for the time being)
- Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations"

Important Points

- Execution of Haskell programs is expression evaluation
- (for the time being)
- Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" - the first that matches is used

Important Points

- Execution of Haskell programs is expression evaluation

> - (for the time being)

- Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" - the first that matches is used
- Lists are an easy-to-use datastructure with lots of language and library support

Important Points

- Execution of Haskell programs is expression evaluation

> - (for the time being)

- Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" - the first that matches is used
- Lists are an easy-to-use datastructure with lots of language and library support - therefore, lists are heavily used in beginners' material.

Important Points

- Execution of Haskell programs is expression evaluation

> - (for the time being)

- Defining functions in Haskell is more like defining functions in mathematics than like defining procedures in C or classes and methods in Java
- One Haskell function may be defined by several "equations" - the first that matches is used
- Lists are an easy-to-use datastructure with lots of language and library support - therefore, lists are heavily used in beginners' material. In many cases, advanced Haskell programmers will use other datastructures, for example Sets, or FiniteMaps instead of association lists.

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from evaluation of that expression.

Prelude> 4* $(5+6)-2$
42
Expression evaluation proceeds by applying rules to subexpressions:

$$
4 *(5+6)-2
$$

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from evaluation of that expression.

Prelude> 4* $(5+6)-2$
42
Expression evaluation proceeds by applying rules to subexpressions:

$$
4 *(5+6)-2
$$

[subtraction \& mult. impossible]

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from evaluation of that expression.

```
Prelude> 4* (5+6)-2
```

Expression evaluation proceeds by applying rules to subexpressions:

$=$	$4 *(5+6)-2$
$4 * 11-2$	\quad [addition) \quad [subtraction \& mult. impossible]

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from evaluation of that expression.

```
Prelude> 4* (5+6)-2
```

Expression evaluation proceeds by applying rules to subexpressions:

$=$| $4 *(5+6)-2$ | (addition) | [subtraction \& mult. impossible] |
| :--- | :--- | :--- |
| $4 * 11-2$ | | $[$ subtraction impossible] |

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from evaluation of that expression.

```
Prelude> 4* (5+6)-2
```

42

Expression evaluation proceeds by applying rules to subexpressions:

$=4 *(5+6)-2$		[subtraction \& mult. impossible]
$=4 * 11-2$	(addition)	(multiplication)

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their prompt and print (after the first ENTER) the value resulting from evaluation of that expression.

```
Prelude> 4* (5+6)-2
```

42

Expression evaluation proceeds by applying rules to subexpressions:

$=4 *(5+6)-2$		[subtraction \& mult. impossible]
$=4 * 11-2$	(addition)	
$=44-2$	(multiplication)	
$=42$	(subtraction impossible]	

Simple Expression Evaluation - Explanation

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments,

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its i-th argument

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its i-th argument
- Therefore: If f is strict in its i-th argument

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its i-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its i-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its i-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its \boldsymbol{i}-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:
(const 5) undefined $=5$

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its \boldsymbol{i}-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:
(const 5) undefined $=5$
- Checking a list for emptyness is strict:

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its \boldsymbol{i}-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:
- Checking a list for emptyness is strict:
(const 5) undefined $=5$
null undefined $=$ undefined

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its \boldsymbol{i}-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:
- Checking a list for emptyness is strict:
- List construction is non-strict:

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its \boldsymbol{i}-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:
(const 5) undefined $=5$
- Checking a list for emptyness is strict:
null undefined $=$ undefined
- List construction is non-strict: null (undefined : undefined) = False

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its \boldsymbol{i}-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict: (const 5) undefined $=5$
- Checking a list for emptyness is strict: null undefined = undefined
- List construction is non-strict: null (undefined : undefined) = False
- Standard arithmetic operators are strict in both arguments:

Simple Expression Evaluation - Explanation

- Arguments to a fuction or operation are evaluated only when needed.
- If for obtaining a result from an application of a function f to a number of arguments, the value of the argument at position i is always needed. then f is called strict in its \boldsymbol{i}-th argument
- Therefore: If f is strict in its i-th argument, then the i-th argument has to be evaluated whenever a result is needed from f.
- Simpler: A one-argument function f is strict iff f undefined $=$ undefined.
- Constant functions are non-strict:
(const 5) undefined $=5$
- Checking a list for emptyness is strict: null undefined = undefined
- List construction is non-strict: null (undefined : undefined) = False
- Standard arithmetic operators are strict in both arguments:

0 * undefined $=$ undefined

Unfolding Definitions

Assume the following definitions to be in scope:
answer = 42
magic $=7$
Expression evaluation will unfold (or expand) definitions:
Prelude> (answer - 1) * (magic * answer - 23)
11111

Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:
Prelude> (answer - 1) * (magic * answer - 23)
11111
(answer - 1) * (magic * answer - 23)

Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:
Prelude> (answer - 1) * (magic * answer - 23) 11111

$$
\begin{aligned}
& (\text { answer }-1) \star \text { (magic } \star \text { answer }-23) \\
= & (42-1) \star(\text { magic } \star 42-23)
\end{aligned} \text { (answer) }
$$

Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:
Prelude> (answer - 1) * (magic * answer - 23) 11111

```
    (answer - 1) * (magic * answer - 23)
=(42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
```


Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:
Prelude> (answer - 1) * (magic * answer - 23) 11111

```
    (answer - 1) * (magic * answer - 23)
=(42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
=41* (7* 42 - 23) (magic)
```


Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

```
    (answer - 1) * (magic * answer - 23)
=(42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
=41* (7* 42 - 23) (magic)
= 41* (294-23) (multiplication)
```


Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

```
    (answer - 1) * (magic * answer - 23)
=(42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
=41* (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271
(subtraction)
```


Unfolding Definitions

Assume the following definitions to be in scope:

```
answer = 42
magic = 7
```

Expression evaluation will unfold (or expand) definitions:

```
Prelude> (answer - 1) * (magic * answer - 23)
11111
```

```
    (answer - 1) * (magic * answer - 23)
=(42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
=41* (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41*271 (subtraction)
= 11111 (multiplication)
```


How did I find those numbers?

Easy!

$$
\begin{aligned}
& \text { Prelude> }[\mathrm{n} \mid \mathrm{n}<-[1 . .400], 11111 \text { `mod` } \mathrm{n}=0 \text {] } \\
& {[1,41,271]}
\end{aligned}
$$

This is a list comprehension:

- return all n
- where n is taken from then list [1 . . 400]
- and a result is returned only if n divides 11111 .

Conditional Expressions

Prelude> if 11111 'mod‘ $41=0$ then 11111 'div' 41 else 5

271
The pattern is:
if condition then expressionl else expression 2

- If the condition evaluates to True, the conditional expression evaluates to the value of expression 1 .
- If the condition evaluates to False, the conditional expression evaluates to the value of expression 2 .

Conditional Expressions

Prelude> if 11111 'mod‘ $41=0$ then 11111 'div' 41 else 5

271
The pattern is:
if condition then expressionl else expression 2

- If the condition evaluates to True, the conditional expression evaluates to the value of expression 1 .
- If the condition evaluates to False, the conditional expression evaluates to the value of expression 2 .

Therefore: "if _ then _ else" is strict in the condition.

Conditional Expressions

Prelude> if 11111 'mod‘ $41=0$ then 11111 'div'41 else 5

271
The pattern is:
if condition then expression 1 else expression 2

- If the condition evaluates to True, the conditional expression evaluates to the value of expression 1 .
- If the condition evaluates to False, the conditional expression evaluates to the value of expression 2 .

Therefore: "if _ then _ else" is strict in the condition.
In C: (condition ? expression $1:$ expression 2)

Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

 fact 3

Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

 fact 3
 = if 3 == 0 then 1 else 3 * fact (3-1)

Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

 fact 3
 = if 3 == 0 then 1 else 3 * fact (3-1)
$=$ if False then 1 else 3 * fact (3-1)

Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

 fact 3
 = if 3 == 0 then 1 else 3 * fact (3-1)
$=$ if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)

Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

 fact 3
 = if 3 == 0 then 1 else 3 * fact (3-1)
$=$ if False then 1 else 3 * fact (3-1)
$=3$ * fact (3-1)
$=3$ * if $(3-1)=0$ then 1 else (3-1) * fact ($(3-1)-1)$

Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
    fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3* if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n= if n == 0 then 1 else n * fact (n-1)
    fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3* if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n= if n == 0 then 1 else n * fact (n-1)
    fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3* if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
    fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
    fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
    fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3* if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact }n=if n==0 then 1 else n * fact (n-1
```

```
    fact 3
```

 fact 3
 = if 3 == 0 then 1 else 3 * fact (3-1)
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * fact (3-1)
= 3* if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3* if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3* if 2 == 0 then 1 else 2 * fact (2-1)
= 3* if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)

```
= 3 * 2 * 1 * fact (1-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
    fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3*2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3*2
```


Expanding Function Definitions

```
fact :: Integer -> Integer
fact n = if n == 0 then 1 else n * fact (n-1)
```

```
fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
= 6
```


Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```


Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

fact 3

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

 fact 3
 $=3 * \operatorname{fact}(3-1)$

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
```

(fact n)
(determining which fact rule matches)

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
```

(fact n)
(determining which fact rule matches) (fact n)

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
```

(fact n)
(determining which fact rule matches) (fact n) (determining which fact rule matches)

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
= 3 * (2 * (1 * fact (1-1))) (fact n)
```


Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
= 3 * (2 * (1 * fact (1-1)))
= 3 * (2 * (1 * fact 0))
```

(fact n)
(determining which fact rule matches) (fact n) (determining which fact rule matches) (fact n)
(determining which fact rule matches)

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
= 3 * (2 * (1 * fact (1-1)))
= 3 * (2 * (1 * fact 0))
= 3 * (2 * (1 * 1))
```

(fact n)
(determining which fact rule matches) (fact n) (determining which fact rule matches) (fact n)
(determining which fact rule matches) (fact 0)

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
= 3 * (2 * (1 * fact (1-1)))
= 3 * (2 * (1 * fact 0))
= 3 * (2* (1 * 1))
= 3 * (2 * 1)
```

(fact n)
(determining which fact rule matches) (fact n) (determining which fact rule matches) (fact n)
(determining which fact rule matches) (fact 0)
(multiplication)

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
= 3 * (2 * (1 * fact (1-1)))
= 3 * (2 * (1 * fact 0))
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3*2
```

(fact n)
(determining which fact rule matches) (fact n)
(determining which fact rule matches)
(fact n)
(determining which fact rule matches)
(fact 0)
(multiplication)
(multiplication)

Matching Function Definitions

```
fact :: Integer -> Integer
fact 0 = 1
fact n = n * fact (n-1)
```

```
    fact 3
= 3 * fact (3-1)
= 3 * fact 2
= 3 * (2 * fact (2-1))
= 3 * (2 * fact 1)
= 3 * (2 * (1 * fact (1-1)))
= 3 * (2 * (1 * fact 0))
= 3 * (2 * (1 * 1))
= 3 * (2 * 1)
= 3*2
= 6
```

(fact n)
(determining which fact rule matches) (fact n)
(determining which fact rule matches)
(fact n)
(determining which fact rule matches)
(fact 0)
(multiplication)
(multiplication)
(multiplication)

Lists

- List display: between square brackets explicitly listing all elements, separated by commas:

$$
[1,4,9,16,25]
$$

Lists

- List display: between square brackets explicitly listing all elements, separated by commas:

$$
[1,4,9,16,25]
$$

- Enumeration lists: denoted by ellipsis ". ." inside square brackets; defined by beginning (and end, if applicable):

$$
\begin{aligned}
{[1 \ldots .10] } & =[1,2,3,4,5,6,7,8,9,10] \\
{[1,3 \ldots 10] } & =[1,3,5,7,9] \\
{[1,3 \ldots 1] } & =[1,3,5,7,9,11] \\
{[11,9 \ldots 1] } & =[11,9,7,5,3,1] \\
{[11 \ldots 1] } & =[] \\
{[1 \ldots] } & =[1,2,3,4,5,6,7,8,9,10, \ldots] \\
{[1,3 \ldots] } & =[1,3,5,7,9,11, \ldots]
\end{aligned}
$$

List Construction

List Construction

Display and enumeration lists are syntactic sugar

List Construction

Display and enumeration lists are syntactic sugar: A list is

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
x: x s-r e a d: \text { "x cons xes". }
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$$
3:[]
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$$
\begin{equation*}
3:[] \quad= \tag{3}
\end{equation*}
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$$
\begin{aligned}
& 3:[] \\
& 2:[3]
\end{aligned}=
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$$
\begin{array}{l:lr}
3:[] & = & {[3]} \\
2:[3] & = & {[2,3]}
\end{array}
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$$
\begin{array}{l:lll}
3:[] & = & {[3]} \\
2:[3] & = & {[2,3]} \\
1:[2,3] & &
\end{array}
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$$
\begin{array}{rllr}
3:[] & = & {[3]} \\
2:[3] & = & {[2,3]} \\
1:[2,3] & = & {[1,2,3]}
\end{array}
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [],
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$3:[]$	$=$	$[3]$	
$2:[3]$	$=$	$[2,3]$	
$1:$	$[2,3]$	$=$	$[1,2,3]$

As an infix operator, ":" associates to the right

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$3:[]$	$=$	$[3]$	
$2:[3]$	$=$	$[2,3]$	
$1:$	$[2,3]$	$=$	$[1,2,3]$

As an infix operator, ":" associates to the right:

$$
x: y: y s=x:(y: y s)
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

| $3:[]$ | $=$ | $[3]$ |
| :--- | :--- | :--- | ---: |
| $2:[3]$ | $=$ | $[2,3]$ |
| $1:[2,3]$ | $=$ | $[1,2,3]$ |

As an infix operator, ":" associates to the right:

$$
x: y: y s=x:(y: y s)
$$

Example:
$1: 2$: [3,4]

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

$$
\begin{array}{rllr}
3:[] & = & {[3]} \\
2:[3] & = & {[2,3]} \\
1:[2,3] & = & {[1,2,3]}
\end{array}
$$

As an infix operator, ":" associates to the right:

$$
x: y: y s=x:(y: y s)
$$

Example:
$1: 2:[3,4]=1:(2:[3,4])$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

| $3:[]$ | $=$ | $[3]$ |
| :--- | :--- | :--- | ---: |
| $2:[3]$ | $=$ | $[2,3]$ |
| $1:[2,3]$ | $=$ | $[1,2,3]$ |

As an infix operator, ":" associates to the right:

$$
x: y: y s=x:(y: y s)
$$

Example:

$$
1: 2:[3,4]=1:(2:[3,4])=1:[2,3,4]
$$

List Construction

Display and enumeration lists are syntactic sugar: A list is

- either the empty list: [] ,
- or non-empty, and constructed from a head x and a tail xs (read: "xes")

$$
\mathrm{x} \text { : xs — read: "x cons xes". }
$$

" \because " is used as infix list constructor:

| $3:[]$ | $=$ | $[3]$ |
| :--- | :--- | :--- | ---: |
| $2:[3]$ | $=$ | $[2,3]$ |
| $1:[2,3]$ | $=$ | $[1,2,3]$ |

As an infix operator, ":" associates to the right:

$$
x: y: y s=x:(y: y s)
$$

Example:

$$
1: 2:[3,4]=1:(2:[3,4])=1:[2,3,4]=[1,2,3,4]
$$

Cons is Not Associative

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

Cons is Not Associative

The convention that " $:$ " associates to the right allows to save parentheses in certain cirtcumstances.

However, ":" is not associative:

Cons is Not Associative

The convention that " $:$ " associates to the right allows to save parentheses in certain cirtcumstances.

However, ":" is not associative:

- A list of integers:

1 : (2 : $[3,4]$)

Cons is Not Associative

The convention that " $:$ " associates to the right allows to save parentheses in certain cirtcumstances.

However, ":" is not associative:

- A list of integers:

1 : (2 : $[3,4])=1$: 2 : $[3,4]$

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, "." is not associative:

- A list of integers:

$$
1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]
$$

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, ":" is not associative:

- A list of integers:
$1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]$
- (1 : 2) : [3,4]

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, ":" is not associative:

- A list of integers:
$1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]$
- (1 : 2) : [3,4] is nonsense

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, "." is not associative:

- A list of integers:
$1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]$
- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!

Cons is Not Associative

The convention that " $:$ " associates to the right allows to save parentheses in certain cirtcumstances.

However, "." is not associative:

- A list of integers:
$1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]$
- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:

$$
[2]:[[3,4,5],[6,7]]
$$

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, "." is not associative:

- A list of integers:
$1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]$
- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:
[2] : $[3,4,5],[6,7]]=[[2],[3,4,5],[6,7]]$

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, " \because " is not associative:

- A list of integers:
$1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]$
- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:
[2] : $[3,4,5],[6,7]]=[[2],[3,4,5],[6,7]]$
- Another list of lists of integers: (1 : [2]) : [[3,4,5], [6,7]]

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, " \because " is not associative:

- A list of integers:
$1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]$
- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:
[2] : $[3,4,5],[6,7]]=[[2],[3,4,5],[6,7]]$
- Another list of lists of integers: (1 : [2]) : [[3,4,5], [6,7]] = [[1, 2], [3,4,5],[6,7]]

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, " \because " is not associative:

- A list of integers:

$$
1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]
$$

- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:
[2] : $[3,4,5],[6,7]]=[[2],[3,4,5],[6,7]]$
- Another list of lists of integers:
(1 : [2]) : [[3, 4,5], [6,7]] = [[1, 2], [3,4,5], [6,7]]
- 1 : ([2] : [[3,4,5], [6,7]])

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, "." is not associative:

- A list of integers:

$$
1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]
$$

- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:
[2] : [[3, 4,5], [6,7]] = [[2], [3,4,5], [6, 7]]
- Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1, 2], [3,4,5], [6, 7]]
- 1 : ([2] : [[3, 4,5], [6,7]]) is nonsense again!

Cons is Not Associative

The convention that ":" associates to the right allows to save parentheses in certain cirtcumstances.

However, "." is not associative:

- A list of integers:

$$
1:(2:[3,4])=1: 2:[3,4]=[1,2,3,4]
$$

- (1 : 2) : [3, 4] is nonsense, since 2 is not a list!
- A list of lists of integers:
[2] : [[3, 4,5], [6,7]] = [[2], [3,4,5], [6, 7]]
- Another list of lists of integers: (1 : [2]) : [[3, 4,5], [6,7]] = [[1, 2], [3,4,5], [6,7]]
- 1 : ([2] : [[3, 4, 5], [6,7]]) is nonsense again!

Reason: 1 and [2] cannot be members of the same list (type error).

List Comprehensions

General shape:
[term | generator $\{$, generator_or_constraint \}]

List Comprehensions

General shape:

$$
\left[\text { term | generator }\{, \text { generator_or_constraint }\}^{*}\right]
$$

Examples:
[$n * n \mid n \leftarrow[1 . .5]$]

List Comprehensions

General shape:

$$
\left[\text { term } \mid \text { generator }\{, \text { generator_or_constraint }\}^{*}\right]
$$

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$

List Comprehensions

General shape:

```
[ term| generator {, generator_or_constraint } *]
```

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$
[$n * n \mid n \leftarrow[1 . .10]$, even $n]$

List Comprehensions

General shape:

```
[ term| generator {, generator_or_constraint } *]
```

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$
$[n * n \mid n \leftarrow[1 . .10]$, even $n]=[4,16,36,64,100]$

List Comprehensions

General shape:

```
[ term| generator {, generator_or_constraint } * ]
```

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$
$[n * n \mid n \leftarrow[1 . .10]$, even $n]=[4,16,36,64,100]$
$[m * n \mid m \leftarrow[1,3,5], n \leftarrow[2,4,6]]$

List Comprehensions

General shape:

```
[ term| generator {, generator_or_constraint } * ]
```

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$
$[n * n \mid n \leftarrow[1 . .10]$, even $n]=[4,16,36,64,100]$
$[m * n \mid m \leftarrow[1,3,5], n \leftarrow[2,4,6]]=[2,4,6,6,12,18,10,20,30]$

List Comprehensions

General shape:

$$
\left[\text { term } \mid \text { generator }\{, \text { generator_or_constraint }\}^{*}\right]
$$

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$
$[n * n \mid n \leftarrow[1 . .10]$, even $n]=[4,16,36,64,100]$
$[m * n \mid m \leftarrow[1,3,5], n \leftarrow[2,4,6]]=[2,4,6,6,12,18,10,20,30]$
Note:

- The left generator "generates slower".

List Comprehensions

General shape:

$$
\left[\text { term } \mid \text { generator }\{, \text { generator_or_constraint }\}^{*}\right]
$$

Examples:
$[n * n \mid n \leftarrow[1 . .5]]=[1,4,9,16,25]$
[$n * n \mid n \leftarrow[1 . .10]$, even $n]=[4,16,36,64,100]$
$[m * n \mid m \leftarrow[1,3,5], n \leftarrow[2,4,6]]=[2,4,6,6,12,18,10,20,30]$

Note:

- The left generator "generates slower".
- Haskell code fragments will frequently be presented like above in a form that is more readable than plain typewriter text — in that case, the "comes from" arrow "<-" in generators turns into " $\leftarrow "$

The Type Language

Haskell has a full-fledged type language, with

- Simple predefined datatypes: Bool, Char, Integer, ...
- Predefined type constructors: lists, tuples, functions, ...
- Type synonyms
- User-defined datatypes and type constructors
- Type variables - to express parametric polymorphism
- ...

Simple Predefined Datatypes

Bool
Char
Integer
Int
Float
Double
Complex Float
Complex Double
truth values
"Unicode" characters
integers
"machine integers"
real floating point
real floating point
complex floating point
complex floating point

False, True
(in GHC: ISO-10646)
arbitrary precision
≥ 32 bits
single precision
double precision
single precision
double precision

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit = 100

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit = 100
Then:

- [1, 2, 3, answer] :: ???

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit = 100
Then:

- [1, 2, 3, answer] :: [Integer]

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit :: Int
limit = 100
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: ???

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit :: Int
limit = 100
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit :: Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: ???

List Types

If t is a type, then the list type [t] is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit :: Int
limit = 100
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: ???

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit :: Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: ???

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: ???

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]
- [["first", "line"], ["second", "line"]] :: ???

List Types

If t is a type, then the list type $[t]$ is the type of lists with elements of type t.
answer :: Integer
answer = 42
limit : : Int
limit $=100$
Then:

- [1, 2, 3, answer] :: [Integer]
- [1 .. limit] :: [Int]
- [[1 .. limit] , [2 .. limit]] :: [[Int]]
- ['h', 'e', 'l', 'l', 'o'] :: [Char]
- "hello" :: [Char]
- ["hello", "world"] :: [[Char]]
- [["first", "line"], ["second", "line"]] :: [[[Char]]]

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: ???

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: ???

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ???

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
-("???", (limit, answer)) :: ???

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) : : ([Char], (Int, Integer))

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) : : ([Char], (Int, Integer))
- ("???", 'X') :: ???

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) : : ([Char], (Int, Integer))
-("???", 'X') :: ([Char], Char)

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) : : ([Char], (Int, Integer))
-("???", 'X') :: ([Char], Char)
- (limit, ("???", 'X')) :: ???

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) : : ([Char], (Int, Integer))
-("???", 'X') :: ([Char], Char)
- (limit, ("???", 'X')) :: (Int, ([Char], Char))

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
-("???", (limit, answer)) :: ([Char], (Int, Integer))
-("???", 'X') :: ([Char], Char)
- (limit, ("???", 'x')) :: (Int, ([Char], Char))
- (True, [("X",limit),("Y",5)]) :: ???

Product Types (Pairs)

If t and u are types, then the product type (t, u) is the type of pairs with first component of type t and second component of type u (mathematically: $t \times u$).

Examples:

- (answer, limit) :: (Integer, Int)
- (limit, answer) :: (Int, Integer)
-("???", answer) :: ([Char], Integer)
- ("???", (limit, answer)) : : ([Char], (Int, Integer))
-("???", 'X') :: ([Char], Char)
- (limit, ("???", 'x')) :: (Int, ([Char], Char))
- (True, [("X",limit),("Y",5)]) :: (Bool, [([Char], Int)])

Tuple Types

If $n \neq 1$ is a natural number and t_{1}, \ldots, t_{n} are types, then the tuple type $\left(t_{1}, \ldots, t_{n}\right)$ is the type of n-tuples with the i th component of type t_{i}.

Examples:

- (answer, 'c', limit) :: (Integer, Char, Int)
- (answer, 'c', limit, "all") :: (Integer, Char, Int, [Char])
- () : : ()
- there is exactly one zero-tuple.

The type () of zero-tuples is also called the unit type.

Simple Type Synonyms

If t is a type not containing any type variables, and Name is an identifier with a capital first letter, then
type Name $=t$
defines Name as a type synonym for t, i.e., Name can now be used interchangeably with t.

Examples:

```
type String = [Char] -- predefined
type Point = (Double, Double) -- (1.5, 2.7)
type Triangle = (Point, Point, Point)
type CharEntity = (Char, String) -- ('\tilde{114', "&uuml;")}
type Dictionary = [(String,String)] -- [("day","jour")]
```


Type Variables and Polymorphic Types

- Identifiers with lower-case first letter can be used as type variables.
- Type variables can be used like other types in the construction of types, e.g.:
[(a, b)]
(Bool, (a, Int))
[(String, [(key, val)])]
- A type containing at least one type variable is called polymorphic
- Polymorphic types can be instantiated by instantiating type variables with types, e.g.:

$$
\begin{array}{lll}
{[(a, b)]} & \Rightarrow & {[(\text { Char }, b)]} \\
{[(a, b)]} & \Rightarrow & {[(\text { Char }, \text { Int })]} \\
{[(a, b)]} & \Rightarrow & {[(a,[(\text { String }, \text { Int })])]} \\
{[(a, b)]} & \Rightarrow & {[(a,[(\text { String }, c)])]}
\end{array}
$$

Typing of List Construction

- The empty list can be used at any list type: [] : : [a]
- If an element $x:: a$ and a list $x s::$ [a] are given, then (x : x) : : [a]

Examples:

2
[]
[2] = 2 : []
$[[3,4,5], \quad[6,7]]$
[2] : [[3, 4,5], [6,7]]
1 : ([2] : [[3, 4, 5], [6, 7]])
: : Int
:: [Int]
: : [Int]
: : [[Int]]
: : [[Int]]

- - cannot be typed!

Function Types and Function Application

If t and u are types, then the function type $t->u$ is the type of all functions accepting arguments of type t and producing results of type u (mathematically: $t \rightarrow u$).

Then:

- If a function $f:: a->b$ and an argument $x:: a$ are given, then we have (f x) : : b.
- If a function $f:: a->b$ is given and we know that (f x) : : b, then the argument x is used at type a.
- If an argument $x:: a$ is given and we know that $(f x):: b$, then the function f is used at type a $->$ b.

Type Inference Examples

fst : : (a,b) -> a
fst $(x, y)=x$
fst ('c', False)

Type Inference Examples

fst : : (a,b) -> a
fst $(x, y)=x$
fst ('c', False)
:: Char

Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
:: Char
["hello", fst (x, 17)]
```


Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
["hello", fst (x, 17)] }=>\quadx :: Strin
```


Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
["hello", fst (x, 17)] }=>\quadx :: Strin
f p = limit + fst p
```


Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
["hello", fst (x, 17)] }=>\quadx :: Strin
f p = limit + fst p }\quad=>\quad\textrm{p}:: (Int,a
```


Type Inference Examples

$$
\begin{aligned}
& \text { fst : : (a,b) -> a } \\
& \text { fst }(x, y)=x \\
& \text { fst ('c', False) } \\
& \text { ["hello", fst (x, 17)] } \Rightarrow \quad x \quad:: \text { String } \\
& \text { f } \mathrm{p}=\text { limit }+ \text { fst } p \quad \Rightarrow \quad \mathrm{p}:: \text { (Int,a) } \\
& \text { f : : (Int, a) -> Int }
\end{aligned}
$$

Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
["hello", fst (x, 17)] }=>\quadx :: Strin
f p = limit + fst p }\quad=>\quadp:: (Int,a
    f :: (Int,a) -> Int
g h = fst (h "") : [limit]
```


Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
["hello", fst (x, 17)] }=>\quadx :: Strin
f p = limit + fst p }\quad=>\quadp:: (Int,a
    f :: (Int,a) -> Int
g h = fst (h "") : [limit]
    # h :: String -> (Int,a)
```


Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
g h = fst (h "") : [limit]
```


Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
g h = fst (h "") : [limit]
```

Then:
g h1

Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
g h = fst (h "") : [limit]
```


Then:

g h1
= fst (h1 "") : [limit]

Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
g h = fst (h "") : [limit]
```


Then:

g h1
= fst (h1 "") : [limit]
= fst (length "", r ' : "") : [limit]

Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
g h = fst (h "") : [limit]
```


Then:

g h1
= fst (h1 "") : [limit]
= fst (length "", ' r : "") : [limit]
= length "" : [limit]

Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
g h = fst (h "") : [limit]
```


Then:

g h1
= fst (h1 "") : [limit]
= fst (length "", ' ' : "") : [limit]
= length "" : [limit]
= 0 : [limit]

Let's Play the Evaluation Game Again - 1

```
h1 :: String -> (Int, String)
h1 str = (length str, ' ' : str)
g h = fst (h "") : [limit]
```


Then:

g h1
= fst (h1 "") : [limit]
= fst (length "", ' r : "") : [limit]
= length "" : [limit]
= 0 : [limit]
$=[0,100]$

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```


Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```

Then:
g h2

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```

Then:
g h2
= fst (h2 "") : [limit]

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```

Then:
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```

Then:
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```


Then:

g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]
= ...

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```

Then:
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]
= ...
= 2015 : [limit]

Let's Play the Evaluation Game Again - 2

```
h2 :: String -> (Int, Char)
h2 str = (sum (map ord (notOccCaps str)), head str)
notOccCaps :: String -> String
notOccCaps str = filter (`notElem` str) ['A' .. 'Z']
g h = fst (h "") : [limit]
```

Then:
g h2
= fst (h2 "") : [limit]
= fst (sum (map ord (notOccCaps "")), head "") : [limit]
= sum (map ord (notOccCaps "")) : [limit]
= ...
= 2015 : [limit]
$=[2015,100]$

Higher-Order Functions

$$
g h=f s t(h \quad " "): \quad \text { [limit] }
$$

Higher-Order Functions

g h = fst (h "") : [limit]
Functional Programming: Functions are first-class citizens

Higher-Order Functions

g h = fst (h "") : [limit]
Functional Programming: Functions are first-class citizens

- Functions can be arguments of other functions: g h2

Higher-Order Functions

g h = fst (h "") : [limit]
Functional Programming: Functions are first-class citizens

- Functions can be arguments of other functions: gh2
- Functions can be components of data structures: (7,h1), [h1, h2]

Higher-Order Functions

g h = fst (h "") : [limit]
Functional Programming: Functions are first-class citizens

- Functions can be arguments of other functions: gh2
- Functions can be components of data structures: (7,h1), [h1, h2]
- Functions can be results of function application: succ . succ

Higher-Order Functions

ghefst (h "") : [limit]
Functional Programming: Functions are first-class citizens

- Functions can be arguments of other functions: gh2
- Functions can be components of data structures: (7,h1), [h1, h2]
- Functions can be results of function application: succ . succ

A first-order function accepts only non-functional values as arguments.
A higher-order function expects functions as arguments.

Higher-Order Functions

ghefst (h "") : [limit]
Functional Programming: Functions are first-class citizens

- Functions can be arguments of other functions: gh2
- Functions can be components of data structures: (7,h1), [h1, h2]
- Functions can be results of function application: succ . succ

A first-order function accepts only non-functional values as arguments.
A higher-order function expects functions as arguments.
g is a second-order function: it expects first-order functions like h1, h2 as arguments.

Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
["hello", fst (x, 17)] }=>\quadx :: Strin
f p = limit + fst p }\quad=>\quadp:: (Int,a
    f :: (Int,a) -> Int
g h = fst (h "") : [limit]
    # h :: String -> (Int,a)
```


Type Inference Examples

```
fst :: (a,b) -> a
fst (x,y) = x
fst ('c', False)
["hello", fst (x, 17)] }=>\quadx :: Strin
f p = limit + fst p }\quad=>\quad\textrm{p}:: (Int,a
    f :: (Int,a) -> Int
g h = fst (h "") : [limit]
    # h :: String -> (Int,a)
    g :: (String -> (Int,a)) -> [Int]
```


Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

- Multi-argument functions in Haskell are typically defined as curried function, i.e., "they accept their arguments one at a time":

```
cylVol r h = (pi :: Double) * r * r * h
```


Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

- Multi-argument functions in Haskell are typically defined as curried function, i.e., "they accept their arguments one at a time":
cylVol r h = (pi : : Double) * r * r * h
Since the right-hand side, r, and h obviously all have type Double, we have;
(cylVol r) :: ???

Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

- Multi-argument functions in Haskell are typically defined as curried function, i.e., "they accept their arguments one at a time":
cylVol r h = (pi : : Double) * r * r * h
Since the right-hand side, r, and h obviously all have type Double, we have;
(cylVol r) :: Double -> Double

Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

- Multi-argument functions in Haskell are typically defined as curried function, i.e., "they accept their arguments one at a time":

```
cylVol r h = (pi :: Double) * r * r * h
```

Since the right-hand side, r, and h obviously all have type Double, we have;

```
(cylVol r) :: Double -> Double
cylVol :: ???
```


Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

- Multi-argument functions in Haskell are typically defined as curried function, i.e., "they accept their arguments one at a time":

```
cylVol r h = (pi :: Double) * r * r * h
```

Since the right-hand side, r, and h obviously all have type Double, we have;

```
(cylVol r) :: Double -> Double
cylVol :: Double -> (Double -> Double)
```


Curried Functions

- Function application associates to the left, i.e.,

$$
f x y=(f x) y
$$

- Multi-argument functions in Haskell are typically defined as curried function, i.e., "they accept their arguments one at a time":

```
cylVol r h = (pi :: Double) * r * r * h
```

Since the right-hand side, r, and h obviously all have type Double, we have;

```
(cylVol r) :: Double -> Double
cylVol :: Double -> (Double -> Double)
```

- Function type construction associates to the right, i.e.,

$$
\mathrm{a}->\mathrm{b}->\mathrm{c}=\mathrm{a}->(\mathrm{b}->\mathrm{c})
$$

"Partial Application"

Let values with the following types be given:

$$
\begin{aligned}
& f:: a \rightarrow b \rightarrow c \\
& x:: a \\
& y:: b
\end{aligned}
$$

"Partial Application"

Let values with the following types be given:
$f:: a \rightarrow b \rightarrow c$
$x:: a$
$y:: b$
The type of f is the function type $a \rightarrow(b \rightarrow c)$

"Partial Application"

Let values with the following types be given:
$f:: a \rightarrow b \rightarrow c$
$x:: a$
$y:: b$
The type of f is the function type $a \rightarrow(b \rightarrow c)$, with

- argument type a,
- result type $b \rightarrow c$.

"Partial Application"

Let values with the following types be given:
$f:: a \rightarrow b \rightarrow c$
$x:: a$
$y:: b$
The type of f is the function type $a \rightarrow(b \rightarrow c)$, with

- argument type a,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:

"Partial Application"

Let values with the following types be given:
$f:: a \rightarrow b \rightarrow c$
$x:: a$
$y:: b$
The type of f is the function type $a \rightarrow(b \rightarrow c)$, with

- argument type a,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:
$(f x):: b \rightarrow c$

"Partial Application"

Let values with the following types be given:
$f:: a \rightarrow b \rightarrow c$
$x:: a$
$y:: b$
The type of f is the function type $a \rightarrow(b \rightarrow c)$, with

- argument type a,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:
$(f x):: b \rightarrow c$
The application of a "two-argument function" to a single argument is a "one-argument function"

"Partial Application"

Let values with the following types be given:
$f:: a \rightarrow b \rightarrow c$
$x:: a$
$y:: b$
The type of f is the function type $a \rightarrow(b \rightarrow c)$, with

- argument type a,
- result type $b \rightarrow c$.

Therefore, we can apply f to x and obtain:
$(f x):: b \rightarrow c$
The application of a "two-argument function" to a single argument is a "one-agument function", which can then be applied to a second argument:
$(f x) y:: c=f x y$

Partial Application - Example

$$
\begin{aligned}
& g::(\text { String } \rightarrow(\text { Int , a })) \rightarrow[\text { Int }] \\
& g h=\text { fst }(h \text { "" }):[\text { limit }]
\end{aligned}
$$

Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
g h = fst (h "") : [ limit]
knstr = (n*(length str + 1), unwords (replicate n str ) )
```


Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
g h = fst (h "") : [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
knstr = (n* ( length str + 1), unwords (replicate n str ) )
```


Partial Application - Example

$g::($ String $\rightarrow($ Int, a) $) \rightarrow[$ Int]
$g h=$ fst $(h ")$: [limit]
$k::$ Int \rightarrow String \rightarrow (Int, String)
$k n s t r=(n *($ length str +1$)$, unwords $($ replicate n str $))$
$g(k 3)$

Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
g h = fst (h "") : [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k n str = ( n * ( length str + 1), unwords (replicate n str ))
g(k 3)
= fst (k 3 "") : [ limit]
```


Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
gh= fst (h ""): [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k n str = ( n * ( length str + 1), unwords (replicate n str ))
g(k 3)
= fst (k 3 "") : [ limit]
= fst (3 * ( length "" + 1), unwords (replicate 3 "")) : [ limit ]
```


Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
g h = fst (h "") : [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k n str = ( n* ( length str + 1), unwords (replicate n str ))
g(k 3)
= fst (k 3 "") : [ limit]
= fst (3 * ( length "" + 1), unwords (replicate 3 "")) : [ limit ]
= (3 * ( length "" + 1) ) : [ limit]
```


Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
gh= fst (h ""): [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k n str = ( n * ( length str + 1), unwords (replicate n str ))
g(k 3)
= fst (k 3 "") : [ limit]
= fst (3 * ( length "" + 1), unwords (replicate 3 "")) : [ limit ]
= (3 * ( length "" + 1) ) : [ limit]
=(3*(0 + 1)) : [ limit]
```


Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
gh= fst (h ""): [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k n str = ( n * (length str + 1), unwords (replicate 3 str ) )
g(k 3)
= fst (k 3 "") : [ limit]
= fst (3 * (length "" + 1), unwords (replicate n "")) : [ limit ]
= (3 * ( length "" + 1) ) : [ limit]
=(3* (0 + 1)) : [ limit]
=(3*1) : [ limit]
```


Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
gh= fst (h ""): [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k n str = ( n * ( length str + 1), unwords (replicate n str ))
g(k 3)
= fst (k 3 "") : [ limit]
= fst (3 * ( length "" + 1), unwords (replicate 3 "")) : [ limit ]
= (3 * ( length "" + 1) ) : [ limit]
=(3* (0 + 1)) : [ limit]
=(3*1) : [ limit]
= 3: [ limit]
```


Partial Application - Example

```
g::(String -> (Int, a)) }->\mathrm{ [ Int]
gh= fst (h ""): [ limit]
k :: Int }->\mathrm{ String }->\mathrm{ (Int, String)
k n str = ( n * ( length str + 1), unwords (replicate n str ))
g(k 3)
= fst (k 3 "") : [ limit]
= fst (3 * ( length "" + 1), unwords (replicate 3 "")) : [ limit ]
= (3 * ( length "" + 1) ) : [ limit]
=(3* (0 + 1)) : [ limit]
=(3*1) : [ limit]
= 3 : [ limit]
= [3, 100]
```


Operations on Functions

```
id :: a -> a -- identity function
id x = x
(.) :: (b -> c) -> (a -> b) -> (a -> c) - - function composition
(f . g) x = f (g x)
flip :: (a -> b -> c) -> (b -> a -> c) -- argument swapping
flip f x y = f y x
curry :: ((a,b) -> c) -> (a -> b -> c) -- currying
curry g x y = g (x,y)
uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f (x,y) = f x y
```

Exercise (necessary!): Copy only the definitions to a sheet of paper, and then infer the types yourself!

Operator Sections

- Infix operators are turned into functions by surrounding them with parentheses:

$$
(+) 23=2+3
$$

- This is necessary in type declarations:

$$
\begin{aligned}
& (+):: \text { Int }->\text { Int }->\text { Int } \quad-\text { not the "natural" type of }(+) \\
& (:) \quad:: a \operatorname{la}->\text { [a] } \\
& (++)::[a]->[a]->[a]
\end{aligned}
$$

- It is also possible to supply only one argument (which has to be an atomic expression):

$(2+) 3$	=	2	+ 3			3	2
$(8,3 /) 2.5$	$=$	8.3	/ 2.5	$=$		2.5)	8.3
(7 : $)$ []		7	: []			[])	
(2^17) :) (16:[])		7)	16			(16: [])

Turning Functions into Infix Operators

Surrounding a function name by backquotes turns it into an infix operator.
Frequently used examples (not the "natural" types throughout):

```
div, mod, max, min :: Int -> Int -> Int
elem :: Int -> [Int] -> Bool
12 'div` 7 = 1
12 `mod` 7 = 5
12 'max` 7 = 12
12 `min` 7 = 7
12 `elem` [1 .. 10] = False
```


Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:
null $\quad::[a] \rightarrow$ Bool

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{array}{ll}
\text { null } & ::[a] \rightarrow \text { Bool } \\
\text { null }[] & =
\end{array}
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{aligned}
& \text { null }::[a] \rightarrow \text { Bool } \\
& \text { null }[] \quad= \\
& \text { null }(x: x s)=
\end{aligned}
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{aligned}
& \text { null } \quad::[a] \rightarrow \text { Bool } \\
& \text { null }[] \quad=\text { True } \\
& \text { null }(x: x s)=
\end{aligned}
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{aligned}
& \text { null } \quad::[a] \rightarrow \text { Bool } \\
& \text { null }[] \quad=\text { True } \\
& \text { null }(x: x s)=\text { False }
\end{aligned}
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{aligned}
& \text { null } \quad::[a] \rightarrow \text { Bool } \\
& \text { null }[] \quad=\text { True } \\
& \text { null }(x: x s)=\text { False }
\end{aligned}
$$

$$
\text { head } \quad::[a] \rightarrow a
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{aligned}
& \text { null } \quad::[a] \rightarrow \text { Bool } \\
& \text { null }[] \quad=\text { True } \\
& \text { null }(x: x s)=\text { False } \\
& \text { head } \quad::[a] \rightarrow a \\
& \text { head }(x: x s)=x
\end{aligned}
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{aligned}
& \text { null } \quad::[a] \rightarrow \text { Bool } \\
& \text { null }[] \quad=\text { True } \\
& \text { null }(x: x s)=\text { False } \\
& \text { head } \quad::[a] \rightarrow a \\
& \text { head }(x: x s)=x \\
& \text { tail } \quad::[a] \rightarrow[a]
\end{aligned}
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

$$
\begin{aligned}
& \text { null } \quad::[a] \rightarrow \text { Bool } \\
& \text { null }[] \quad=\text { True } \\
& \text { null }(x: x s)=\text { False } \\
& \text { head } \quad::[a] \rightarrow a \\
& \text { head }(x: x s)=x \\
& \text { tail }::[a] \rightarrow[a] \\
& \text { tail }(x: x s)=x s
\end{aligned}
$$

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern matching:

```
null :: [a] }->\mathrm{ Bool
null [] = True
null ( }x:xs\mathrm{ ) = False
head :: [a] }->\mathrm{ a
head (x:xs) = x
tail :: [a] }->\mathrm{ [a]
tail (x:xs) = xs
```

(head and tail are partial functions - both are undefined on the empty list.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

$$
\begin{aligned}
& \text { length } \\
& ::[a] \rightarrow I n t \\
& \text { length [] }=0 \\
& \text { length }(x: x s)= \\
& \text { (+) :: [a] } \rightarrow[a] \rightarrow[a] \\
& \text { [] } \\
& \text { + } y s= \\
& \text { (} x: x s)+y s= \\
& \begin{array}{ll}
\text { concat } & ::[[a]] \rightarrow[a] \\
\text { concat }[] \quad= \\
\text { concat }(x s: x s s) & =
\end{array} \\
& \text { sum [] = } \\
& \operatorname{sum}(x: x s)= \\
& \text { product [] = } \\
& \text { product }(x: x s)= \\
& x \text { 'elem' [] = } \\
& x \text { 'elem' (} y \text { : ys) }=
\end{aligned}
$$

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

```
length ::[a]->Int concat ::[[a]] }->[a
length [] = 0
length (x:xs) = 1+ length xs concat (xs:xss) = xs + concat xss
(+) ::[a]->[a]->[a]
[] + ys = ys
(x:xs) + ys = x:(xs + ys)
product [] =
product (x:xs) =
x 'elem' [] =
x 'elem` ( y : ys) =
```

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

```
length ::[a]->Int concat ::[[a]] }->[a
length [] = 0
length (x:xs) = 1+ length xs concat (xs:xss) = xs + concat xss
(+) ::[a]->[a] }->[a
[] + ys = ys
(x:xs) + ys = x:(xs + ys)
product [] =
product (x:xs) =
x 'elem' [] =
x 'elem' ( y : ys) =
```

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

```
length ::[a]->Int concat :: [[a]]->[a]
length [] = 0
length (x:xs) = 1+ length xs concat (xs:xss) = xs + concat xss
(+) :: [a] }->\mathrm{ [a] }->\mathrm{ [a]
[] + ys = ys
(x:xs) + ys = x :(xs + ys)
sum [] =0
sum (x:xs) = x + sum xs
product [] =
product (x : xs) =
x 'elem' [] =
x `elem` ( y : ys) =
```

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

```
length ::[a]->Int concat :: [[a]]->[a]
length [] = 0
length (x:xs) = 1+ length xs concat (xs : xss ) = xs + concat xss
(+) :: [a] -> [a] -> [a]
[] + ys = ys
(x:xs) + ys = x :(xs + ys)
sum [] =0
sum (x:xs) = x + sum xs
product [] = 0
product (x : xs) =
x 'elem' [] =
x `elem` ( y : ys) =
```

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

```
length ::[a]->Int concat :: [[a]] }->\mathrm{ [a]
length [] = 0
length (x:xs) = 1+ length xs concat (xs : xss ) = xs + concat xss
(+) :: [a] -> [a] -> [a]
[] + ys = ys
(x:xs) # ys = x :(xs + ys)
sum [] =0
sum (x:xs) = x + sum xs
product [] = 0
product (x : xs) = x * product xs
x 'elem' [] =
x `elem` ( y : ys) =
```

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

```
length ::[a]->Int concat :: [[a]] }->\mathrm{ [a]
length [] = 0
length (x:xs) = 1+ length xs concat (xs:xss) = xs + concat xss
(+) :: [a] }->\mathrm{ [a] }->\mathrm{ [a]
[] + ys = ys
(x:xs) # ys = x :(xs + ys)
sum [] =0
sum (x:xs) = x + sum xs
product [] = 0
product (x : xs) = x * product xs
x 'elem' [] = False
x 'elem' ( y : ys) =
```

(All these functions are in the standard prelude.)

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural induction:

```
length :: [a]->Int concat ::[[a]] }->[a
length [] = 0
length (x:xs) = 1+ length xs concat (xs:xss) = xs + concat xss
(+) ::[a]->[a] }->[a
[] + ys = ys
(x:xs) + ys = x:(xs + ys)
product [] = 0
product (x : xs) = x * product xs
x 'elem' [] = False
x 'elem' ( }y:ys)=x\equivy|x 'elem` ys
```

(All these functions are in the standard prelude.)

Guarded Definitions

$\operatorname{sign} x \left\lvert\, \begin{aligned} & x>0=1 \\ & x=0=0 \\ & x<0=-1\end{aligned}\right.$

Guarded Definitions

$$
\begin{array}{l|l}
\text { sign } x & \begin{array}{l}
x>0=1 \\
x=0=0 \\
x<0=-1
\end{array} \\
\text { choose :: Ord } a \Rightarrow(a, b) \rightarrow(a, b) \rightarrow b \\
\text { choose }(x, v) & (y, w) \\
\mid x>y=v \\
\mid x<y=w \\
\mid \text { otherwise }=\text { error "I cannot decide!" }
\end{array}
$$

Guarded Definitions

$$
\begin{array}{l|l}
\text { sign } x & \begin{array}{l}
x>0=1 \\
x=0=0 \\
x<0=-1
\end{array} \\
\text { choose :: Ord } a \Rightarrow(a, b) \rightarrow(a, b) \rightarrow b \\
\text { choose }(x, v) & (y, w) \\
\mid x>y=v \\
\mid x<y=w \\
\mid \text { otherwise }=\text { error "I cannot decide!" }
\end{array}
$$

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x:$ take_while $p x s$
take_while $p x s=[]$

Guarded Definitions

$$
\begin{array}{l|l}
\text { sign } x & \begin{array}{l}
x>0=1 \\
x=0=0 \\
x<0=-1
\end{array} \\
\text { choose :: Ord } a \Rightarrow(a, b) \rightarrow(a, b) \rightarrow b \\
\text { choose }(x, v) & (y, w) \\
\mid x>y=v \\
\mid x<y=w \\
\mid \text { otherwise }=\text { error "I cannot decide!" }
\end{array}
$$

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$
take_while $p x s$ = []
take_while (< 5) [1, 2, 3]

Guarded Definitions

$\operatorname{sign} x \left\lvert\, \begin{aligned} & x>0=1 \\ & x=0=0 \\ & x<0=-1\end{aligned}\right.$
choose :: Ord $a \Rightarrow(a, b) \rightarrow(a, b) \rightarrow b$
choose $(x, v)(y, w)$
$\mid x>y=v$
$\mid x<y=w$
| otherwise = error "I cannot decide!"
If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$
take_while $p x s$ = []
take_while (< 5) [1, 2, 3]
= take_while (< 5) (1:2:3:[])

Guarded Definitions

$\operatorname{sign} x \left\lvert\, \begin{aligned} & x>0=1 \\ & x=0=0 \\ & x<0=-1\end{aligned}\right.$
choose :: Ord $a \Rightarrow(a, b) \rightarrow(a, b) \rightarrow b$
choose $(x, v)(y, w)$
$\mid x>y=v$
$\mid x<y=w$
| otherwise = error "I cannot decide!"
If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$
take_while $p x s$ = []
take_while (< 5) [1, 2, 3]
$=$ take_while (< 5) (1:2:3:[])
= 1: take_while $(<5)(2: 3:[])$

Guarded Definitions

$$
\begin{array}{l|l}
\text { sign } x & \begin{array}{l}
x>0=1 \\
x=0=0 \\
x<0=-1
\end{array} \\
\text { choose :: Ord } a \Rightarrow(a, b) \rightarrow(a, b) \rightarrow b \\
\text { choose }(x, v) & (y, w) \\
\mid x>y=v \\
\mid x<y=w \\
\mid \text { otherwise }=\text { error "I cannot decide!" }
\end{array}
$$

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x:$ take_while $p x s$
take_while $p x s=[]$
take_while (<5) [1, 2, 3]
$=$ take_while $(<5)(1: 2: 3:[])$
= 1: take_while (<5) (2:3:[])
= $1: 2$: take_while $(<5)(3:[])$

Guarded Definitions

$$
\begin{array}{l|l}
\text { sign } x & \begin{array}{l}
x>0=1 \\
\\
x==0=0 \\
x<0=-1
\end{array} \\
\text { choose }:: \text { Ord } a=(a, b) \rightarrow(a, b) \rightarrow b \\
\text { choose }(x, v)(y, w) \\
\mid x>y=v \\
\mid x<y=w \\
\mid \text { otherwise }=\text { error "I cannot decide!" }
\end{array}
$$

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$
take_while p xs = []
take_while (< 5) [1, 2, 3]
$=$ take_while $(<5)(1: 2: 3:[])$
= 1: take_while (< 5) (2:3:[])
= $1: 2:$ take_while (< 5) (3: [])
= $1: 2: 3:$ take_while (< 5) []

Guarded Definitions

$$
\begin{array}{l|l}
\text { sign } x & \begin{array}{l}
x>0=1 \\
\\
x==0=0 \\
x<0=-1
\end{array} \\
\text { choose }:: \text { Ord } a=(a, b) \rightarrow(a, b) \rightarrow b \\
\text { choose }(x, v)(y, w) \\
\mid x>y=v \\
\mid x<y=w \\
\mid \text { otherwise }=\text { error "I cannot decide!" }
\end{array}
$$

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$
take_while p xs $=[]$
take_while (< 5) [1, 2, 3]
$=$ take_while (< 5) (1:2:3:[])
= 1: take_while (< 5) (2:3:[])
= 1:2: take_while (< 5) (3: [])
= 1:2:3: take_while (<5) []
= $1: 2: 3$: []

Guarded Definitions

$$
\begin{array}{l|l}
\text { sign } x & \begin{array}{l}
x>0=1 \\
x==0=0 \\
\\
x<0=-1
\end{array} \\
\text { choose }:: \text { Ord } a=(a, b) \rightarrow(a, b) \rightarrow b \\
\text { choose }(x, v)(y, w) \\
\mid x>y=v \\
\mid x<y=w \\
\mid x \text { otherwise }=\text { error "I cannot decide!" }
\end{array}
$$

If no guard succeeds, the next pattern is tried:

$$
\begin{aligned}
\text { take_while } p(x: x s) \mid p x & =x: \text { take_while } p x s \\
\text { take_while } p \times s & =[]
\end{aligned}
$$

$$
\text { take_while }(<5)[1,2,3]
$$

$$
=\text { take_while }(<5)(1: 2: 3:[])
$$

$$
=1: \text { take_while }(<5)(2: 3:[])
$$

$$
\text { = } 1: 2: \text { take_while }(<5)(3:[])
$$

$$
\text { = } 1: 2: 3: \text { take_while }(<5) \text { [] }
$$

= 1:2:3: []

$$
=[1,2,3]
$$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x:$ take_while $p x s$
take_while $p x s$ = []

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$ take_while $p x s$ = []
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$ take_while $p x s$ = []
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
$=$ take_while $(<5)(1: 2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$ take_while $p x s$ = []
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
$=$ take_while $(<5)(1: 2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1:$ take_while $(<5)(2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x:$ take_while $p x s$ take_while $p x s$ = []
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
$=$ take_while $(<5)(1: 2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1:$ take_while $(<5)(2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2:$ take_while $(<5)(3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x$: take_while $p x s$ take_while $p x s$ = []
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
$=$ take_while $(<5)(1: 2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1:$ take_while $(<5)(2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2:$ take_while $(<5)(3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2: 3:$ take_while $(<5)(2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
take_while $p(x: x s) \mid p x=x:$ take_while $p x s$ take_while $p x s$ = []
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
$=$ take_while $(<5)(1: 2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1:$ take_while $(<5)(2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2:$ take_while $(<5)(3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2: 3:$ take_while $(<5)(2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2: 3: 2:$ take_while $(<5)(3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:
$\begin{aligned} \text { take_while } p(x: x s) \mid p x & =x \text { : take_while } p \text { xs } \\ \text { take_while } p \text { xs } & =[]\end{aligned}$
take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
$=$ take_while $(<5)(1: 2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1:$ take_while $(<5)(2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2:$ take_while $(<5)(3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2: 3:$ take_while $(<5)(2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
= $1: 2: 3: 2:$ take_while $(<5)(3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
= $1: 2: 3: 2: 3:$ take_while $(<5)(4: 3: 4: 5: 4: 3: 4: 5: 6:[])$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:

```
take_while p (x:xs) | p x = x : take_while p xs
take_while p xs = []
```

take_while (< 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
$=$ take_while $(<5)(1: 2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1:$ take_while $(<5)(2: 3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2:$ take_while $(<5)(3: 2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2: 3:$ take_while $(<5)(2: 3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
= $1: 2: 3: 2:$ take_while $(<5)(3: 4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
$=1: 2: 3: 2: 3:$ take_while (<5) $(4: 3: 4: 5: 4: 3: 4: 5: 6:[])$
= $1: 2: 3: 2: 3: 4:$ take_while $(<5)(3: 4: 5: 4: 3: 4: 5: 6:[])$

Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:

```
take_while p (x:xs) | p x = x : take_while p xs
take_while pxs = []
take_while( < 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take_while(<5)(1:2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:take_while (<5)(2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:take_while(<5)(3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:take_while(<5)(2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:take_while(< 5) (3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:take_while(<5)(4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:take_while (<5)(3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:take_while(<5)(4:5:4:3:4:5:6:[])
```


Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:

```
take_while p(x:xs)| px = x : take_while p xs
take_while pxs = []
take_while ( < 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take_while(<5)(1:2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:take_while (<5)(2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:take_while(<5)(3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:take_while(<5)(2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:take_while(< 5) (3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:take_while (<5) (4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:take_while (<5)(3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:take_while(<5)(4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:4:take_while(<5)(5:4:3:4:5:6:[])
```


Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:

```
take_while p (x:xs) | p x = x : take_while p xs
take_while p xs = []
take_while( < 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take_while(<5)(1:2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:take_while (<5)(2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:take_while(<5)(3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:take_while (<5)(2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:take_while(< 5) (3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:take_while (<5) (4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:take_while (<5)(3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:take_while(<5)(4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:4:take_while(<5)(5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:4:[]
```


Guarded Definitions - Fall-Through

If no guard succeeds, the next pattern is tried:

```
take_while p (x:xs) | p x = x : take_while p xs
take_while p xs = []
take_while( < 5) [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 3, 4, 5, 6]
= take_while(<5)(1:2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:take_while (<5)(2:3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:take_while(<5)(3:2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:take_while(<5)(2:3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:take_while(< < ) (3:4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:take_while (<5) (4:3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:take_while (<5)(3:4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:take_while(<5)(4:5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:4:take_while(<5)(5:4:3:4:5:6:[])
= 1:2:3:2:3:4:3:4:[]
= [1, 2, 3, 2, 3, 4, 3, 4]
```


case Expressions

$$
\begin{gathered}
\text { sign } x=\text { case compare x } 0 \text { of } \\
\text { GT }->1 \\
\text { EQ }->0 \\
\text { LT }->-1
\end{gathered}
$$

case Expressions

$$
\begin{gathered}
\text { sign } x=\text { case compare x } 0 \text { of } \\
\text { GT }->1 \\
\text { EQ }->0 \\
\text { LT }->-1
\end{gathered}
$$

The prelude datatype Ordering has three elements
data Ordering $=L T|E Q| G T$

case Expressions

$$
\begin{gathered}
\text { sign } x=\text { case compare x } 0 \text { of } \\
\text { GT }->1 \\
\text { EQ }->0 \\
\text { LT }->-1
\end{gathered}
$$

The prelude datatype Ordering has three elements and is used mostly as result type of the prelude function compare:
data Ordering $=L T|E Q| G T$
compare :: Ord $a \Rightarrow a \rightarrow a \rightarrow$ Ordering

case Expressions

$$
\begin{gathered}
\text { sign } x=\text { case compare x } 0 \text { of } \\
\text { GT }->1 \\
\text { EQ }->0 \\
\text { LT }->-1
\end{gathered}
$$

The prelude datatype Ordering has three elements and is used mostly as result type of the prelude function compare:
data Ordering $=L T|E Q| G T$
compare :: Ord $a \Rightarrow a \rightarrow a \rightarrow$ Ordering
Another example:
choose $(x, v)(y, w)=$ case compare $x y$ of
$G T \rightarrow v$
$L T \rightarrow w$
$E Q \rightarrow$ error "I cannot decide!"
if ... then ... else ... and case Expressions
The type Bool can be considered as a two-element enumeration type: data Bool = False | True

if ... then ... else ... and case Expressions

The type Bool can be considered as a two-element enumeration type: data Bool = False | True

Conditional expressions are "syntactic sugar" for case expressions over Bool:

if condition
then expr1
else expr2
:---:
True \rightarrow expr1
False \rightarrow expr2

if ... then ... else ... and case Expressions

The type Bool can be considered as a two-element enumeration type: data Bool = False | True
Conditional expressions are "syntactic sugar" for case expressions over Bool:

if condition
then expr1
else expr2
:---:

Two ways of defining functions:

Pattern Matching

```
not True = False
not False = True
```

case

```
not b = case b of
    True }->\mathrm{ False
    False }->\mathrm{ True
```


case Expressions are "Anonymous" Pattern Matching

commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords ($x: x s$) $=x+$ case $x s$ of
[] \rightarrow []
_ \rightarrow "," : commaWords xs

case Expressions are "Anonymous" Pattern Matching

commaWords :: [String] \rightarrow String commaWords [] = [] commaWords ($x: x s$) $=x+$ case $x s$ of
[] \rightarrow []
_ \rightarrow ", " : commaWords xs
Every use of a case expression can be transformed into the use of an auxiliary function defined by pattern matching

case Expressions are "Anonymous" Pattern Matching

commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords ($x: x s$) $=x+$ case $x s$ of
[] \rightarrow []
_ \rightarrow ", " : commaWords xs
Every use of a case expression can be transformed into the use of an auxiliary function defined by pattern matching:
commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords $(x: x s)=x+$ commaWordsAux xs

case Expressions are "Anonymous" Pattern Matching

commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords ($x: x s$) $=x+$ case $x s$ of
[] \rightarrow []
_ \rightarrow ", " : commaWords xs
Every use of a case expression can be transformed into the use of an auxiliary function defined by pattern matching:
commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords $(x: x s)=x+$ commaWordsAux xs
commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

where Clauses

where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition

where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition, e.g.:

```
commaWords :: [ String] }->\mathrm{ String
commaWords [] = []
commaWords (x :xs) = x + commaWordsAux xs
    where
    commaWordsAux [] = []
    commaWordsAux xs = ", " : commaWords xs
```


where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition, e.g.:
commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords ($x: x s$) $=x+$ commaWordsAux xs
where

$$
\begin{aligned}
& \text { commaWordsAux [] = [] } \\
& \text { commaWordsAux xs = ", " : commaWords xs }
\end{aligned}
$$

where clauses are visible only within their enclosing clause, here "commaWords $(x: x s)=. . . "$

where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition, e.g.:
commaWords :: [String] \rightarrow String
commaWords [] = []
commaWords ($x: x s$) $=x+$ commaWordsAux xs
where

```
    commaWordsAux [] = []
    commaWordsAux xs = ", " : commaWords xs
```

where clauses are visible only within their enclosing clause, here "commaWords ($x: x s$) = ..."
where clauses are visible within all guards:
$\begin{aligned} \mathrm{f} x \mathrm{y} & \left\lvert\, \begin{array}{l}\mathrm{y}>\mathrm{z}=\ldots \\ \mathrm{y}=\mathrm{z}=\ldots \\ \mathrm{y}<\mathrm{z}=\ldots \\ \text { where } \mathrm{z}=\mathrm{x} * \mathrm{x}\end{array}\right.\end{aligned}$

let Expressions

Local definitions can also be part of expressions:

$$
\begin{array}{r}
\text { f } \mathrm{k} \mathrm{n}= \\
\text { let } \mathrm{m}=\mathrm{k} \text { 'mod' } \mathrm{n} \\
\text { in if } \mathrm{m}==0 \\
\text { then } \mathrm{n} \\
\text { else f } \mathrm{n} \mathrm{~m}
\end{array}
$$

let Expressions

Local definitions can also be part of expressions:

$$
\begin{aligned}
& \mathrm{f} \mathrm{k} \mathrm{n}=\text { let } \mathrm{m}=\mathrm{k} \text { `mod` } \mathrm{n} \\
& \text { in if } m=0 \\
& \text { then } n \\
& \text { else } \mathrm{f} \mathrm{n} \mathrm{~m} \\
& \text { h } x y=\text { let } x 2=x \text { * } x \\
& \mathrm{y} 2=\mathrm{y} \text { * } \mathrm{y} \\
& \text { in sqrt (x2 + y2) }
\end{aligned}
$$

let Expressions

Local definitions can also be part of expressions:

$$
\begin{aligned}
& \text { f } k n=\text { let } m=k \quad \text { } \bmod { }^{\prime} n \\
& \text { in if } m=0 \\
& \text { then } n \\
& \text { else } f \mathrm{n} \text { m } \\
& \mathrm{h} x \mathrm{y}=\text { let } \mathrm{x} 2=\mathrm{x} * \mathrm{x} \\
& y^{2}=y * y \\
& \text { in sqrt (x2 } \left.+y^{2}\right)
\end{aligned}
$$

Definitions can use pattern bindings:

$$
\begin{aligned}
\text { g } \mathrm{k} \mathrm{n}= & \text { let }(\mathrm{d}, \mathrm{~m})=\text { divMod } \mathrm{k} \mathrm{n} \\
& \text { in if } \mathrm{d}==0 \\
& \text { then }[\mathrm{m}] \\
& \text { else } 9 \mathrm{~d} \mathrm{n}++[\mathrm{m}]
\end{aligned}
$$

let Expressions

Local definitions can also be part of expressions:

$$
\begin{aligned}
& \text { f } k n=\text { let } m=k \quad \text { } \bmod { }^{\prime} n \\
& \text { in if } m=0 \\
& \text { then } n \\
& \text { else } f \mathrm{n} \text { m } \\
& h x y=\text { let } x 2=x * x \\
& y^{2}=y * y \\
& \text { in sqrt }(x 2+y 2)
\end{aligned}
$$

Definitions can use pattern bindings:

$$
\begin{aligned}
g \mathrm{k} \mathrm{n}= & \text { let }(\mathrm{d}, \mathrm{~m})=\text { divMod } \mathrm{k} \mathrm{n} \\
& \text { in if } \mathrm{d}==0 \\
& \text { then }[\mathrm{m}] \\
& \text { else } \mathrm{g} \text { d } \mathrm{n}++[\mathrm{m}]
\end{aligned}
$$

Guards, let and where bindings, and case cases all are layout sensitive!
let or where?

let or where?

- let bindings in expression is an expression

let or where?

- let bindings in expression is an expression
- fname patterns guardedRHSs where bindings
is a clause that is part of a definition

let or where?

- let bindings in expression is an expression
- fname patterns guardedRHSs where bindings
is a clause that is part of a definition
- (where clauses can also modify case cases)

let or where?

- let bindings in expression is an expression
- fname patterns guardedRHSs where bindings
is a clause that is part of a definition
- (where clauses can also modify case cases)

Frequently, the choice between let and where is a matter of style:

- where clauses result in a top-down presentation
- let expressions lend themselves also to bottom-up presentations

Some Prelude Functions - Elementary List Access

```
```

head

```
```

head
head (x:_)
head (x:_)
last
last
last [x]
last [x]
last (_:xs)
last (_:xs)
tail
tail
tail (_:xs)
tail (_:xs)
init
init
init [x]
init [x]
init (x:xs)
init (x:xs)
null
null
null []
null []
null (_:_)

```
null (_:_)
```

```
:: [a] -> a
```

:: [a] -> a
= x
= x
:: [a] -> [a]
:: [a] -> [a]
= xs
= xs
:: [a] -> a
:: [a] -> a
= x
= x
= last xs
= last xs
:: [a] -> [a]
:: [a] -> [a]
= []
= []
= x : init xs
= x : init xs
:: [a] -> Bool
:: [a] -> Bool
= True
= True
= False

```
    = False
```


Some Prelude Functions - List Indexing

```
length
    :: [a] -> Int
    = foldl' (\n _ -> n + 1) 0
(!!)
    :: [b] -> Int -> b
(x:_) !! 0 = x
(_:xs) !! n | n>0 = xs !! (n-1)
(_:_) !! _ = error "PreludeList.!!: negative index"
[] !! _ = error "PreludeList.!!: index too large"
```


Some Prelude Functions - Positional List Splitting

```
take
take 0 _
take - []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ -
drop
drop 0 xs
drop - []
drop \overline{n}}(_:xs) | n>0 = drop (n-1) xs
drop _ _
splitAt
splitAt 0 xs
splitAt _ []
splitAt \overline{n}(x:xs) | n>0 = (x:xs', xs')
    :: Int -> [a] -> [a]
    = error "take: negative argument"
    :: Int -> [a] -> [a]
    = xs
    where (xs',xs") = splitAt (n-1) xs
splitAt _ _ = error "splitAt: negative argument"
```


Some Prelude Functions - Concatenation, Iteration

```
(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)
concat :: [[a]] -> [a]
concat = foldr (++) []
iterate
:: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
repeat
    :: a -> [a]
repeat x = xs where xs = x:xs
{- repeat x = x : repeat x -} -- for understanding
replicate
    :: Int -> a -> [a]
replicate n x
    = take n (repeat x)
cycle
cycle xs
:: [a] -> [a]
    = xs' where xs' = xs ++ xs'
```

Separation of Concerns: Generation and Consumption

Separation of Concerns: Generation and Consumption

replicate 3 '!'

Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
- replicate
```


Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
= take 3 ('!' : repeat '!')
    -- replicate
-- repeat
```


Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
-- replicate
-- repeat
- - take (iii)
```


Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
```

- - replicate
-- repeat
- - take (iii)
- - subtraction

Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
```

- - replicate
-- repeat
- - take (iii)
- - subtraction
-- repeat

Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
= '!' : '!' : take (2 - 1) (repeat '!')
```

- - replicate
-- repeat
- - take (iii)
- - subtraction
- - repeat
- - take (iii)

Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
= '!' : '!' : take (2 - 1) (repeat '!')
= '!' : '!' : take 1 (repeat '!')
```

-- replicate

- - repeat
- - take (iii)
- - subtraction
- - repeat
- - take (iii)
- - subtraction

Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!')
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
= '!' : '!' : take (2 - 1) (repeat '!')
= '!' : '!' : take 1 (repeat '!')
= '!' : '!' : take 1 ('!' : repeat '!')
```

-- replicate
-- repeat

- - take (iii)
-- subtraction
-- repeat
-- take (iii)
-- subtraction
-- repeat

Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
= '!' : '!' : take (2 - 1) (repeat '!')
= '!' : '!' : take 1 (repeat '!')
= '!' : '!' : take 1 ('!' : repeat '!') - - repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') -- take (iii)
```


Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
= '!' : '!' : take (2 - 1) (repeat '!')
= '!' : '!' : take 1 (repeat '!')
= '!' : '!' : take 1 ('!' : repeat '!') - - repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') -- take (iii)
= '!' : '!' : '!' : take 0 (repeat '!')
-- repeat
-- take (iii)
- - subtraction
-- repeat
-- take (iii)
-- subtraction
- - subtraction
```


Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
= '!' : '!' : take (2 - 1) (repeat '!')
= '!' : '!' : take 1 (repeat '!')
= '!' : '!' : take 1 ('!' : repeat '!')
= '!' : '!' : '!' : take (1 - 1) (repeat '!') - - take (iii)
= '!' : '!' : '!' : take 0 (repeat '!')
= '!' : '!' : '!' : []
-- repeat
-- take (iii)
- - subtraction
-- repeat
- - take (iii)
- - subtraction
-- repeat
-- subtraction
- - take (i)
```


Separation of Concerns: Generation and Consumption

```
replicate 3 '!'
= take 3 (repeat '!') -- replicate
= take 3 ('!' : repeat '!')
= '!' : take (3 - 1) (repeat '!')
= '!' : take 2 (repeat '!')
= '!' : take 2 ('!' : repeat '!')
= '!' : '!' : take (2 - 1) (repeat '!')
= '!' : '!' : take 1 (repeat '!')
= '!' : '!' : take 1 ('!' : repeat '!') -- repeat
= '!' : '!' : '!' : take (1 - 1) (repeat '!') - - take (iii)
= '!' : '!' : '!' : take 0 (repeat '!')
= '!' : '!' : '!' : []
= "!!!"
```

-- replicate
-- repeat

- - take (iii)
-- subtraction
-- repeat
- - take (iii)
-- subtraction
-- repeat
-- subtraction
-- take (i)

What We Have Seen So Far

What We Have Seen So Far

- Functional programming:

What We Have Seen So Far

- Functional programming: Higher-order functions

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems:

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables)

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules:

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"
- Argument passing:

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- Powerful datatypes with simple interface:

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- Powerful datatypes with simple interface: Integer, lists, lists of lists of ...

What We Have Seen So Far

- Functional programming: Higher-order functions, functions as arguments and results
- Type systems: type constants and type constructors, parametric polymorphism (type variables), type inference
- Operator precedence rules: juxtaposition as operator, "associate to the left/right"
- Argument passing: not by value or reference, but by name
- Powerful datatypes with simple interface: Integer, lists, lists of lists of ...
- Non-local control (evaluation on demand): modularity (e.g., generate / prune)

Some Prelude Functions - List Splitting with Predicates

```
lakeWhile rem : (a -> Bool) -> [a] -> [a]
dropWhile
                            :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
    p x = dropWhile p xs'
        otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
    p x llet (ys,zs) = span p xs' in (x:ys,zs)
break p = span (not . p)
```


as-Patterns

$$
\begin{aligned}
& \text { dropWhile } \\
& \text { dropWhile p [] }:=(a->\text { Bool) } \\
& \text { drop [] } \\
& \text { dropWile p xs@(x: }
\end{aligned}
$$

as-Patterns

$$
\begin{aligned}
& \text { dropWhile } \\
& \text { dropWhile p [] } \quad: \quad(a->\text { Bool) } \\
& \text { dro [a] } \\
& \text { dropWhile p xs@(x: } \left.x s^{\prime}\right) \\
& \qquad \begin{array}{ll}
\text { p x } & =\text { dropWhile } p s^{\prime} \\
\text { otherwise } & =x s
\end{array}
\end{aligned}
$$

Consider matching of the third clause against dropWhile (<5) [1,2,3]:

as-Patterns

Consider matching of the third clause against dropWhile (<5) [1,2,3]:

- $p=$
- $x S=$
- $x=$
- $x s^{\prime}=$

as-Patterns

Consider matching of the third clause against dropWhile $(<5)[1,2,3]$:

- $p=(<5)$
- $x S=$
- $x=$
- $x s^{\prime}=$

as-Patterns

$$
\begin{aligned}
& \text { dropWhile } \\
& \text { dropWhile p [] }:=(a->\text { Bool) } \\
& \text { dro [] } \\
& \text { dropWhile p xs@(x:xs') } \\
& \qquad \begin{array}{ll}
\text { p x } & =\text { dropWhile p xs' } \\
\text { otherwise } & =x s
\end{array}
\end{aligned}
$$

Consider matching of the third clause against dropWhile $(<5)[1,2,3]$:

- $p=(<5)$
- $x s=[1,2,3]$
- $x=$
- $x s^{\prime}=$

as-Patterns

$$
\begin{aligned}
& \text { dropWhile } \\
& \text { dropWhile p [] }:=(a->\text { Bool) } \\
& \text { dro [] } \\
& \text { dropWhile p xs@(x:xs') } \\
& \qquad \begin{array}{ll}
\text { p x } & =\text { dropWhile p xs' } \\
\text { otherwise } & =x s
\end{array}
\end{aligned}
$$

Consider matching of the third clause against dropWhile $(<5)[1,2,3]$:

- $p=(<5)$
- $x s=[1,2,3]$
- $x=1$
- $x s^{\prime}=$

as-Patterns

$$
\begin{aligned}
& \text { dropWhile :: (a -> Bool) -> [a] -> [a] } \\
& \text { dropWhile p [] }=\text { [] } \\
& \text { dropWhile p xs@(x:xs') } \\
& \begin{aligned}
\mathrm{p} x & =\text { dropWhile } \mathrm{p} x \mathrm{~s}^{\prime} \\
\text { otherwise } & =\mathrm{xs}
\end{aligned}
\end{aligned}
$$

Consider matching of the third clause against dropWhile (<5) [1,2,3]:

- $p=(<5)$
- $x s=[1,2,3]$
- $x=1$
- $x s^{\prime}=[2,3]$

as-Patterns

$$
\begin{aligned}
& \text { dropWhile :: (a -> Bool) -> [a] -> [a] } \\
& \text { dropWhile p [] }=\text { [] } \\
& \text { dropWhile p xs@(x:xs') } \\
& \begin{aligned}
\mathrm{p} x & =\text { dropWhile } \mathrm{p} x \mathrm{~s}^{\prime} \\
\text { otherwise } & =\mathrm{xs}
\end{aligned}
\end{aligned}
$$

Consider matching of the third clause against dropWhile (<5) [1,2,3]:

- $p=(<5)$
- $x s=[1,2,3]$
- $x=1$
- $x s^{\prime}=[2,3]$
- $p x=(<5) 1=1<5=$ True

as-Patterns

```
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
    p x llodropWhile p xs'
```

Consider matching of the third clause against dropWhile (<5) [1,2,3]:

- $p=(<5)$
- $x s=[1,2,3]$
- $x=1$
- $x s^{\prime}=[2,3]$
- $p x=(<5) 1=1<5=$ True

Therefore: dropWhile $(<5)[1,2,3]=$

as-Patterns

```
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
    p x llodropWhile p xs'
```

Consider matching of the third clause against dropWhile (<5) [1,2,3]:

- $p=(<5)$
- $x s=[1,2,3]$
- $x=1$
- $x s^{\prime}=[2,3]$
- $p x=(<5) 1=1<5=$ True

Therefore: dropWhile $(<5)[1,2,3]=$ dropWhile $(<5)[2,3]$

as-Patterns - 2

$$
\begin{aligned}
& \text { dropWhile } \\
& \text { dropWhile p [] } \quad: \quad(a->\text { Bool) } \\
& \text { dropWhile p xs@(x: } \\
& \text { dros }) \\
& \left\lvert\, \begin{array}{ll}
\text { p x } & =\text { dropWhile } p s^{\prime} \\
\text { otherwise } & =x s
\end{array}\right.
\end{aligned}
$$

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

as-Patterns - 2

Consider matching of the third clause against dropWhile (<5) [5,4,3]:

- $p=$
- $x S=$
- $x=$
- $x s^{\prime}=$

as-Patterns - 2

Consider matching of the third clause against dropWhile (<5) [5,4,3]:

- $p=(<5)$
- $x S=$
- $x=$
- $x s^{\prime}=$

as-Patterns - 2

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

- $p=(<5)$
- $x s=[5,4,3]$
- $x=$
- $x s^{\prime}=$

as-Patterns - 2

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

- $p=(<5)$
- $x s=[5,4,3]$
- $x=5$
- $x s^{\prime}=$

as-Patterns - 2

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

- $p=(<5)$
- $x s=[5,4,3]$
- $x=5$
- $x s^{\prime}=[4,3]$

as-Patterns - 2

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

- $p=(<5)$
- $x s=[5,4,3]$
- $x=5$
- $x s^{\prime}=[4,3]$
- $p x=(<5) 5=5<5=$ False

as-Patterns - 2

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

- $p=(<5)$
- $x s=[5,4,3]$
- $x=5$
- $x s^{\prime}=[4,3]$
- $p x=(<5) 5=5<5=$ False

Therefore: dropWhile (<5) [5,4,3] =

as-Patterns - 2

```
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
    p x llodropWhile p xs'
```

Consider matching of the third clause against dropWhile $(<5)[5,4,3]$:

- $p=(<5)$
- $x s=[5,4,3]$
- $x=5$
- $x s^{\prime}=[4,3]$
- $p x=(<5) 5=5<5=$ False

Therefore: dropWhile (<5) $[5,4,3]=[5,4,3]$

Some Prelude Functions - List Splitting with Predicates

```
lakeWhile rem : (a -> Bool) -> [a] -> [a]
dropWhile
                            :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
    p x = dropWhile p xs'
        otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
    p x llet (ys,zs) = span p xs' in (x:ys,zs)
break p = span (not . p)
```


Some Prelude Functions - Text Processing

```
lines :: String -> [String]
lines "" = []
lines s
    = let (l, s') = break ('\n'==) s
    in l : case s' of [] -> []
                                (_:s") -> lines s"
```


unlines : : [String] -> String
unlines [] = []
unlines (l:ls) $=1++$ ' ${ }^{n}$ ' : unlines ls
unwords :: [String] -> String
unwords []
unwords [w] = w
unwords (w:ws) = w ++ ' ' : unwords ws

map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
```


map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
    where rest = filter p xs
```


map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
    where rest = filter p xs
```

These functions could also be defined via list comprehension:
map

$$
\mathrm{f} x \mathrm{x}=[\mathrm{f} \mathrm{x} \mid \mathrm{x}<-\mathrm{xS}]
$$

map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
    where rest = filter p xs
```

These functions could also be defined via list comprehension:
$\mathrm{f} x \mathrm{X}=[\mathrm{f} \mathrm{x} \mid \mathrm{x}<-\mathrm{xS}]$
filter p xs $=[\quad x \mid x<-x s, p x]$

map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
    where rest = filter p xs
```

These functions could also be defined via list comprehension:

```
map
    f xS = [ f x | x <- xS ]
filter p xs = [ x | x <- xs, p x ]
```


Examples:

$\operatorname{map}(7 *)[1 \ldots 6]=[7,14,21,28,35,42]$

map and filter

```
map :: (a -> b) -> ([a] -> [b])
map f [] = []
map f (x:xs) = f x : map f xs
filter :: (a -> Bool) -> ([a] -> [a])
filter p [] = []
filter p (x : xs) = if p x then x : rest else rest
    where rest = filter p xs
```

These functions could also be defined via list comprehension:

```
map
    f xS = [ f x | x <- xS ]
filter p xs = [ x | x <- xs, p x ]
```


Examples:

```
map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]
filter even [1 .. 6] = [2, 4, 6]
```


foldr1

foldr1

foldr1 $(\otimes) \quad\left[\begin{array}{llllll}x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]$
foldr1
foldr1 :: (a $->a \operatorname{a}->a)->[a]->a$
foldr1 $(\otimes)[\mathrm{x}] \quad=\mathrm{x}$
foldr1 $(\otimes)(x: x s)=x \otimes(f o l d r 1(\otimes) \quad x s)$

$$
\left.\begin{array}{l}
\text { foldrl }(\otimes) \quad\left[\begin{array}{lllll}
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right] \\
=x_{1} \otimes(\text { foldr1 }(\otimes)
\end{array}\left[\begin{array}{lllll}
x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right), ~ l
$$

foldr1
foldr1 :: (a $->a \operatorname{a}->a)->[a]->a$
foldr1 $(\otimes)[\mathrm{x}] \quad=\mathrm{x}$
foldr1 (\otimes) (x:xs) $=x \otimes($ foldr1 $(\otimes) \mathrm{xs})$

$$
\left.\left.\left.\begin{array}{l}
\text { foldr1 }(\theta) \quad\left[\begin{array}{llllll}
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right] \\
=x_{1} \otimes\left(\text { foldr1 }(\theta) \quad\left[\begin{array}{lllll}
x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right) \\
=x_{1} \otimes\left(x_{2} \otimes(\text { foldr1 }(\otimes)\right.
\end{array} \begin{array}{lllll}
x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right)\right) .
$$

foldr1
foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 (\otimes) [x] $=\mathrm{x}$
foldr1 (\otimes) (x:xs) $=x \otimes(f o l d r 1(\otimes)$ xs)
foldr1 $(\otimes) \quad\left[\begin{array}{lllll}x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]$
$=x_{1} \otimes\left(\right.$ foldr1 $\left.(\otimes)\left[\begin{array}{llll}x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(\right.\right.$ foldr1 $\left.\left.(\otimes)\left[\begin{array}{lll}x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(\right.\right.\right.$ foldr1 $\left.\left.(\otimes)\left[\begin{array}{lll}x_{4} & x_{5}\end{array}\right]\right)\right)$
foldr1
foldr1 : : (a $->a \operatorname{a}->a)->[a]->a$
foldr1 (\otimes) [x] $=\mathrm{x}$
foldrl $(\otimes)(x: x s)=x \otimes(f o l d r 1(\otimes) \quad x s)$
foldr1 $(\theta)\left[\begin{array}{llllll}x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]$
$=x_{1} \otimes\left(\right.$ foldr1 $\left.(\otimes)\left[\begin{array}{llll}x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(\right.\right.$ foldr1 $\left.\left.(\otimes)\left[\begin{array}{llll}x_{3} & x_{4}, & x_{5}\end{array}\right]\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(\right.\right.\right.$ foldr1 $\left.\left.\left.(\otimes) \quad\left[\begin{array}{lll}x_{4} & x_{5}\end{array}\right]\right)\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(\operatorname{foldr1}(\otimes)\left[x_{5}\right]\right)\right)\right)\right)$
foldr1
foldr1 :: (a $->a \operatorname{a}->a)->[a]->a$
foldr1 (\otimes) [x] $=\mathrm{x}$
foldr1 (\otimes) (x:xs) $=x \otimes(f o l d r 1(\otimes) \quad \mathrm{xs})$
foldr1 $(\theta) \quad\left[\begin{array}{lllll}x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]$
$=x_{1} \otimes\left(\right.$ foldr1 $\left.(\otimes)\left[\begin{array}{llll}x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(\right.\right.$ foldr1 $\left.\left.(\otimes)\left[\begin{array}{llll}x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(\right.\right.\right.$ foldr1 $\left.\left.\left.(\otimes) \quad\left[x_{4}, x_{5}\right]\right)\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(\operatorname{foldr1}(\otimes) \quad\left[x_{5}\right]\right)\right)\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes x_{5}\right)\right)\right)$

FP 20053.244
foldr

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr (} \otimes \text {) z [] }=\mathrm{z} \\
& \text { foldr (} \otimes \text {) } \mathrm{z} \text { (x:xs) }=\mathrm{x} \otimes \text { (foldr (} \otimes \text {) } \mathrm{z} \text { xs) }
\end{aligned}
$$

foldrX

```
foldrX ::(a->b->b)->b->[a]->b
foldrX (***) z [] = z
foldrX(***) z (x:xs) = x *** (foldrX(***) z xs)
```

FP 20053.246
foldr
foldr : : (a -> b -> b) -> b -> [a] -> b
foldr (\otimes) z [] $=$ z
foldr $(\otimes) \mathrm{z}(\mathrm{x}: \mathrm{xs})=\mathrm{x} \otimes($ (foldr$(\otimes) \mathrm{z} \mathrm{xs})$
foldr $(\theta) \quad \mathrm{z}\left[\begin{array}{lllll}x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]$
foldr
foldr : : (a -> b -> b) -> b -> [a] -> b
foldr (\otimes) z [] $=\mathrm{z}$
foldr (\otimes) z (x:xs) $=\mathrm{x} \otimes$ (foldr (\otimes) z xs)

$$
\left.\begin{array}{l}
\text { foldr }(\otimes) \quad \mathrm{z}\left[\begin{array}{lllll}
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right] \\
=x_{1} \otimes(\text { foldr }(\otimes) \\
\mathrm{z}
\end{array}\left[\begin{array}{lllll}
x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right), ~ l
$$

foldr
foldr : : (a -> b -> b) -> b -> [a] -> b
foldr (\otimes) z [] $=$ z
foldr $(\otimes) \mathrm{z}$ (x:xs) $=\mathrm{x} \otimes$ (foldr $(\otimes) \mathrm{z} \mathrm{xs})$

$$
\begin{aligned}
& \text { foldr }(\otimes) \quad z \quad\left[\begin{array}{lllll}
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right] \\
& =x_{1} \otimes\left(\text { foldr }(\otimes) \quad \mathrm{z}\left[\begin{array}{llll}
x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(\text { foldr }(\otimes) \quad z \quad\left[\begin{array}{lll}
x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right)\right)
\end{aligned}
$$

foldr
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr (\otimes) z [] $=\mathrm{z}$
foldr (\otimes) z (x:xs) $=\mathrm{x} \otimes$ (foldr (\otimes) z xs)

$$
\begin{aligned}
& \text { foldr }(\theta) \quad z \quad\left[\begin{array}{lllll}
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right] \\
& =x_{1} \otimes\left(\text { foldr }(\otimes) \quad \mathrm{z}\left[\begin{array}{llll}
x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(\text { foldr }(\otimes) \quad z \quad\left[\begin{array}{lll}
x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right)\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(\text { foldr }(\otimes) \quad z \quad\left[x_{4}, x_{5}\right]\right)\right)\right)
\end{aligned}
$$

foldr
foldr : : (a -> b -> b) -> b -> [a] -> b
foldr (\otimes) z [] $=\mathrm{z}$
foldr (\otimes) z (x:xs) $=\mathrm{x} \otimes$ (foldr (\otimes) z xs)
foldr $(\theta) \quad z \quad\left[\begin{array}{lllll}x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]$
$=x_{1} \otimes\left(\right.$ foldr $\left.(\otimes) \quad z\left[\begin{array}{llll}x_{2}, & x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(\right.\right.$ foldr $\left.\left.(\otimes) \quad z \quad\left[\begin{array}{lll}x_{3}, & x_{4}, & x_{5}\end{array}\right]\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(\right.\right.\right.$ foldr $\left.\left.(\otimes) \quad z\left[\begin{array}{lll}x_{4} & x_{5}\end{array}\right]\right)\right)$
$=x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(\right.\right.\right.\right.$ foldr $\left.\left.\left.\left.(\otimes) \quad z\left[x_{5}\right]\right)\right)\right)\right)$
foldr
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr (\otimes) z [] $=\mathrm{z}$
foldr (\otimes) z (x:xs) $=\mathrm{x} \otimes$ (foldr (\otimes) z xs)

$$
\begin{aligned}
& \text { foldr }(\theta) \quad z \quad\left[\begin{array}{lllll}
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right] \\
& =x_{1} \otimes\left(\text { foldr }(\otimes) \quad \mathrm{z}\left[\begin{array}{llll}
x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(\text { foldr }(\otimes) \quad z \quad\left[\begin{array}{lll}
x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right)\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(\text { foldr }(\otimes) \quad z \quad\left[x_{4}, x_{5}\right]\right)\right)\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(\text { foldr }(\otimes) \quad z \quad\left[x_{5}\right]\right)\right)\right)\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(x_{5} \otimes(f \circ l d r(\otimes) \quad z \quad[])\right)\right)\right)\right.
\end{aligned}
$$

foldr
foldr : : ($\mathrm{a}->\mathrm{b}->\mathrm{b}) \quad->\mathrm{b}->$ [a] $->\mathrm{b}$
foldr (\otimes) z [] $=\mathrm{z}$
foldr $(\otimes) \mathrm{z}$ (x:xs) $=\mathrm{x} \otimes($ foldr $(\otimes) \mathrm{z} \mathrm{xs})$

$$
\begin{aligned}
& \text { foldr }(\otimes) \quad \mathrm{z}\left[\begin{array}{lllll}
x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right] \\
& =x_{1} \otimes\left(\text { foldr }(\otimes) \quad \mathrm{z}\left[\begin{array}{llll}
x_{2}, & x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(\text { foldr }(\otimes) \quad z \quad\left[\begin{array}{lll}
x_{3}, & x_{4}, & x_{5}
\end{array}\right]\right)\right) \\
& =x_{1} \otimes\left(x _ { 2 } \otimes \left(x _ { 3 } \otimes \left(\text { foldr } (\otimes) \quad z \quad \left[\begin{array}{lll}
x_{4} & \left.\left.\left.\left.x_{5}\right]\right)\right)\right)
\end{array}\right.\right.\right.\right. \\
& =x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(\operatorname{foldr}(\otimes) \quad z \quad\left[x_{5}\right]\right)\right)\right)\right) \\
& =x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(x_{5} \otimes(\operatorname{foldr}(\otimes) \quad z \quad[])\right)\right)\right)\right. \\
& =x_{1} \otimes\left(x_{2} \otimes\left(x_{3} \otimes\left(x_{4} \otimes\left(x_{5} \otimes z\right)\right)\right)\right)
\end{aligned}
$$

List Folding

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
foldr1 
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
foldl1
    :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
```


Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$

Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$
Expanding this definition:
4 * (limit + 1)

Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$
Expanding this definition:
4 * (limit +1$)$
$=4 *\left(\left(10^{\wedge} 2\right)+1\right)$

Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$
Expanding this definition:
4 * (limit +1$)$
$=4 *\left(\left(10^{\wedge} 2\right)+1\right)$
= ...

Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$
Expanding this definition:
4 * (limit +1$)$
$=4 *\left(\left(10^{\wedge} 2\right)+1\right)$
= ...

Another definition:

$$
\text { concat }=\text { foldr }(+)^{2}[]
$$

Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$
Expanding this definition:
4 * (limit +1$)$
$=4 *\left(\left(10^{\wedge} 2\right)+1\right)$
= ...

Another definition:
concat $=$ foldr (+) []
Expanding this definition:
concat [[1,2,3], [4,5]]

Unfolding Definitions

A simple definition:
limit $=10^{\wedge} 2$
Expanding this definition:
4 * (limit +1$)$
$=4 *\left(\left(10^{\wedge} 2\right)+1\right)$
= ...

Another definition:
concat $=$ foldr (+) []
Expanding this definition:

```
concat [[1,2,3],[4,5]]
    =(foldr (++) [])[[1,2,3],[4,5]]
    = ...
```


Enumeration Type Definitions

```
data Bool = False | True deriving (Eq, Ord, Read, Show)
data Ordering = LT|EQ|GT deriving (Eq, Ord, Read, Show)
```

data Suit $=$ Diamonds \mid Hearts \mid Spades \mid Clubs deriving (Eq, Ord)

Pattern matching:

```
not False = True
not True = False
```

lexicalCombineOrdering :: Ordering \rightarrow Ordering \rightarrow Ordering
lexicalCombineOrdering $L T_{-}=L T$
lexicalCombineOrdering $E Q x=x$
lexicalCombineOrdering GT _ = GT

Simple data Type Definitions

data Point = Pt Int Int deriving (Eq) -- screen coordinates
data Transport $=$ Feet
| Bike
| Train Int -- price in cent
This defines at the same time data constructors:
Pt :: Int \rightarrow Int \rightarrow Point
Feet :: Transport
Bike :: Transport
Train :: Int \rightarrow Transport
Pattern matching:
addPt (Pt x1 y1) (Pt x2 y2) $=$ Pt $(x 1+x 2)(y 1+y 2)$
cost Feet $=0$
cost Bike $=0$
$\operatorname{cost}($ Train Int $)=\operatorname{Int}$

Simple Polymorphic data Type Definitions

The prelude type constructors Maybe, Either, Complex are defined as follows: data Maybe $a=$ Nothing | Just a deriving (Eq, Ord, Read, Show) data Either $a b=$ Left $a \mid$ Right b
data Complex $r=r:+r$ deriving (Eq, Read, Show)
This defines at the same time data constructors:
Nothing :: Maybe a
Just :: a \rightarrow Maybe a

Left : : a \rightarrow Either $a b$
Right $:: b \rightarrow$ Either $a b$
(:+) ::r $\rightarrow r \rightarrow$ Complex r

