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What Kinds of Programming Languages are There?

Imperative — “telling themachinewhatto do”

Declarative — “telling themachinewhatto achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++,Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme,LISP

Logic

Prolog
Mercury



FP 2005 1.3 5

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury



FP 2005 1.4 6

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury



FP 2005 1.5 7

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury



FP 2005 1.6 8

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury



FP 2005 1.7 9

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury



FP 2005 1.8 10

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury



FP20051.9 11

Programming Language Paradigms

Imperative Programming Languages
Statementorientedlanguages

Everystatementchangesthemachinestate

Object-oriented languages
Organisingthestateinto objects with individualstateandbehaviour

Messagepassingparadigm(insteadof subprogramcall)

Rule-Based (Logical) Programming Languages
Specifyrule thatspecifiesproblemsolution(Prolog,BNF Parsing)

Otherexamples:Decisionprocedures,Grammarrules(BNF)

Programmingconsistsof specifyingtheattributesof theanswer

Functional (Applicative) Programming Languages
Goalis to understandthefunctionthatproducestheanswer

Functioncompositionis majoroperation

Programmingconsistsof building thefunctionthatcomputestheanswer
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Historical Development of Programming Languages

Emphasis has changed:

– from making life easier for the computer

– to making it easier for the programmer.

Easier for the programmer means:

– Use languages that facilitate writing error-free programs
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Historical Development of Programming Languages

Emphasishaschanged:

– from makinglife easierfor thecomputer

– to makingit easierfor theprogrammer.

Easier for the programmer means:

– Uselanguagesthatfacilitatewriting error-free programs

– Uselanguagesthatfacilitatewriting programsthatareeasy to maintain

Goal of languagedevelopment:

– Developersconcentrateondesign(or evenjust specification)

– Programmingis trivial or handledby computer

(executablespecificationlanguages,rapid prototyping)
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Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang
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Haskell
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Haskell

• functional
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Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

• statically strongly typed — all typeerrorscaughtat compile-time

• type classes— safeoverloading

• Standardisedlanguageversion:Haskell 98

• Severalcompilersandinterpretersavailable

• Comprehensivewebsite: http://haskell.org/
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Important Points

• Execution of Haskell programs is expression evaluation

— (for the time being)

• Defining functions in Haskell is more like defining functions in mathematics
than like defining procedures in C or classes and methods in Java

• One Haskell function may be defined by several “equations” — the first that
matches is used

• Lists are an easy-to-use datastructure with lots of language and library support
— therefore, lists are heavily used in beginners’ material.

In many cases, advanced Haskell programmers will use other datastructures,
for example Sets, or FiniteMaps instead of association lists.
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Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their
prompt and print (after the first ENTER) the value resulting from evaluation of
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

  4*(5+6)-2
  = (addition)
  4*11-2
  (multiplication)
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prompt and print (after the first ENTER) the value resulting from evaluation of
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SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: ( const 5) undefined = 5

– Checking a list for emptyness is strict: null undefined = undefined

– List construction is non-strict: null ( undefined : undefined ) = False

– Standard arithmetic operatorsare strict in both arguments:
0 ∗ undefined = undefined
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Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111



FP 2005 2.50 78

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

  (answer - 1) * (magic * answer - 23)



FP 2005 2.51 79

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

  (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)



FP 2005 2.52 80

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

  (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)



FP 2005 2.53 81

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

  (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
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Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

  (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
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Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

  (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271 (subtraction)
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Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

  (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271 (subtraction)
= 11111 (multiplication)
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How did I find those numbers?

Easy!

Prelude> [ n | n <- [1 .. 400] , 11111 ‘mod‘ n == 0 ]
[1,41,271]

This is a list comprehension:

• return all n

• where n is taken from then list [1 .. 400]

• and a result is returned only if n divides 11111.
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Conditional Expressions

Prelude> if 11111 ‘mod‘ 41 == 0 then 11111 ‘div‘ 41 else 5
271

The pattern is:

if condition then expression1 else expression2

– If the condition evaluates to True, the conditional expression evaluates to the
value of expression1.

– If the condition evaluates to False, the conditional expression evaluates to the
value of expression2.
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Prelude> if 11111 ‘mod‘ 41 == 0 then 11111 ‘div‘ 41 else 5
271

The pattern is:

if condition then expression1 else expression2

– If the condition evaluates to True, the conditional expression evaluates to the
value of expression1.

– If the condition evaluates to False, the conditional expression evaluates to the
value of expression2.

Therefore: “if _ then _ else” is strict in the condition.
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Conditional Expressions

Prelude> if 11111 ‘mod‘ 41 == 0 then 11111 ‘div‘ 41 else 5
271

The pattern is:

if condition then expression1 else expression2

– If the condition evaluates to True, the conditional expression evaluates to the
value of expression1.

– If the condition evaluates to False, the conditional expression evaluates to the
value of expression2.

Therefore: “if _ then _ else” is strict in the condition.

In C: ( condition ? expression1: expression2 )
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)



FP 2005 2.69 97

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
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Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

  fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
= 6
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * (2 * (1 * fact (1-1)))
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * (2 * (1 * fact (1-1)))
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1)))
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * (1 * fact (1-1)))
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1)))
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)
= 3 * 2 (multiplication)
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Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

  fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)
= 3 * 2 (multiplication)
= 6 (multiplication)
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Lists

• List display:between square brackets explicitly listing all elements, separated
by commas:

[1,4,9,16,25]
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Lists

• List display:between square brackets explicitly listing all elements, separated
by commas:

[1,4,9,16,25]

• Enumeration lists: denoted by ellipsis “.. ” inside square brackets; defined
by beginning (and end, if applicable):

[1 .. 10] = [1,2,3,4,5,6,7,8,9,10]

[1,3 .. 10] = [1,3,5,7,9]

[1,3 .. 11] = [1,3,5,7,9,11]

[11,9 .. 1] = [11,9,7,5,3,1]

[11 .. 1] = []

[1 .. ] = [1,2,3,4,5,6,7,8,9,10, …] -- infinite list

[1,3 .. ] = [1,3,5,7,9,11, …] -- infinite list
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List Construction
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List Construction

Display and enumeration lists are syntactic sugar
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List Construction

Display and enumeration lists are syntactic sugar: A list is
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List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty
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List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs
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List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)
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List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x cons xes”.
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : []
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3]
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3]
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : ( y : ys )
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : ( y : ys )

Example:

1 : 2 : [3,4]
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : ( y : ys )

Example:

1 : 2 : [3,4]  =  1 : (2 : [3, 4])
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : ( y : ys )

Example:

1 : 2 : [3,4]  =  1 : (2 : [3, 4])  =  1 : [2 , 3, 4]
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List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : ( y : ys )

Example:

1 : 2 : [3,4]  =  1 : (2 : [3, 4])  =  1 : [2 , 3, 4]  =  [1, 2, 3, 4]
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Cons is Not Associative
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4])
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4]
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4]
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]]
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]



FP 2005 2.126 154

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]]
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

• 1 : ([2] : [[3,4,5], [6,7]])
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

• 1 : ([2] : [[3,4,5], [6,7]]) is nonsense again!
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Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

• 1 : ([2] : [[3,4,5], [6,7]]) is nonsense again!
Reason:1 and [2] cannot be members of the same list (type error).
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ]
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ] = [1,4 ,9 ,16 ,25]
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ] = [1,4 ,9 ,16 ,25]

[ n ∗ n | n ← [1 .. 10] , even n ]
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ] = [1,4 ,9 ,16 ,25]

[ n ∗ n | n ← [1 .. 10] , even n ] = [4 ,16 ,36 ,64 ,100]
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ] = [1,4 ,9 ,16 ,25]

[ n ∗ n | n ← [1 .. 10] , even n ] = [4 ,16 ,36 ,64 ,100]

[ m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6] ]
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ] = [1,4 ,9 ,16 ,25]

[ n ∗ n | n ← [1 .. 10] , even n ] = [4 ,16 ,36 ,64 ,100]

[ m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6] ] = [2 ,4 ,6 ,6 ,12 ,18 ,10 ,20 ,30]
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ] = [1,4 ,9 ,16 ,25]

[ n ∗ n | n ← [1 .. 10] , even n ] = [4 ,16 ,36 ,64 ,100]

[ m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6] ] = [2 ,4 ,6 ,6 ,12 ,18 ,10 ,20 ,30]

Note:

– The left generator “generates slower”.
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List Comprehensions

General shape:

[ term | generator {, generator_or_constraint ∗} ]

Examples:

[ n ∗ n | n ← [1 .. 5] ] = [1,4 ,9 ,16 ,25]

[ n ∗ n | n ← [1 .. 10] , even n ] = [4 ,16 ,36 ,64 ,100]

[ m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6] ] = [2 ,4 ,6 ,6 ,12 ,18 ,10 ,20 ,30]

Note:

– The left generator “generates slower”.

– Haskell code fragments will frequently be presented like above in a form that
is more readable than plain typewriter text — in that case, the “comes from”
arrow “<-” in generators turns into “←”
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The Type Language

Haskell hasa full-fledgedtype language, with

• Simplepredefineddatatypes:Bool,Char,Integer, …

• Predefinedtype constructors: lists,tuples,functions,…

• Typesynonyms

• User-defineddatatypesandtypeconstructors

• Typevariables— to expressparametric polymorphism

• …
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Simple Predefined Datatypes

Bool truthvalues False,True

Char “Unicode” characters (in GHC:ISO-10646)

Integer integers arbitrary precision

Int “machineintegers” ≥ 32bits

Float realfloatingpoint singleprecision

Double realfloatingpoint doubleprecision

Complex Float complex floatingpoint singleprecision

Complex Double complex floatingpoint doubleprecision
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: ???
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: ???
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: ???
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: ???
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: [Char]
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: [Char]

• "hello" :: ???
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: [Char]

• "hello" :: [Char]
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: [Char]

• "hello" :: [Char]

• [ "hello", "world" ] :: ???
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: [Char]

• "hello" :: [Char]

• [ "hello", "world" ] :: [[Char]]
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: [Char]

• "hello" :: [Char]

• [ "hello", "world" ] :: [[Char]]

• [["first", "line"], ["second", "line"]] :: ???
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List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [ 1, 2, 3, answer] :: [Integer]

• [ 1 .. limit ] :: [Int]

• [ [ 1 .. limit ] , [ 2 .. limit ] ] :: [[Int]]

• [ ’h’, ’e’, ’l’, ’l’, ’o’ ] :: [Char]

• "hello" :: [Char]

• [ "hello", "world" ] :: [[Char]]

• [["first", "line"], ["second", "line"]] :: [[[Char]]]
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: ???
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: ???
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ???
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ???
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ???
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: ???
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: (Int, ([Char], Char))
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: (Int, ([Char], Char))

• (True, [("X",limit),("Y",5)]) :: ???
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Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: (Int, ([Char], Char))

• (True, [("X",limit),("Y",5)]) :: (Bool, [([Char], Int)])
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Tuple Types

If n −−/ 1 is a natural number and t1 , … , tn are types, then the tuple type
( t1 , … , tn) is the type of n-tuples with the ith component of type
ti.

Examples:

• (answer, ’c’, limit) :: (Integer, Char, Int)

• (answer, ’c’, limit, "all") :: (Integer, Char, Int, [Char])

• () :: ()

— there is exactly one zero-tuple.

The type () of zero-tuples is also called the unit type.
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Simple Type Synonyms

If t is a type not containing any type variables, and Name is an identifier
with a capital first letter, then

type Name = t

defines Name as a type synonym for t, i.e., Name can now be used
interchangeably with t.

Examples:

type String = [Char] − − predefined

type Point = (Double, Double) − − (1.5, 2.7)

type Triangle = (Point, Point, Point)

type CharEntity = (Char, String) − − (’Ã¼’, "&uuml;")

type Dictionary = [(String,String)] − − [("day","jour")]
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Type Variables and Polymorphic Types

• Identifiers with lower-case first letter can be used as type variables.

• Type variables can be used like other types in the construction of types, e.g.:

[(a,b)]

(Bool, (a, Int))

[ ( String, [(key, val)] ) ]

• A type containing at least one type variable is called polymorphic

• Polymorphic types can be instantiated by instantiating type variables with
types, e.g.:

[(a,b)] ⇒ [(Char,b)]

[(a,b)] ⇒ [(Char,Int)]

[(a,b)] ⇒ [(a,[(String,Int)])]

[(a,b)] ⇒ [(a,[(String,c)])]
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Typing of List Construction

• The empty list can be used at any list type: [] :: [a]

• If an element x :: a and a list xs :: [a] are given, then

(x : xs) :: [a]

Examples:

2 :: Int

[] :: [Int]

[2] = 2 : [] :: [Int]

[[3,4,5], [6,7]] :: [[Int]]

[2] : [[3,4,5], [6,7]] :: [[Int]]

1 : ([2] : [[3,4,5], [6,7]]) − − cannot be typed!
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Function Types and Function Application

If t and u are types, then the function type t->u is the type of all
functions accepting arguments of type t and producing results of type u
(mathematically: t → u).

Then:

• If a function f :: a -> b and an argument x :: a are given, then we
have (f x) :: b.

• If a function f :: a -> b is given and we know that (f x) :: b, then
the argument x is used at type a.

• If an argument x :: a is given and we know that (f x) :: b, then the
function f is used at type a -> b.
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False)
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)]
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)



FP 2005 3.46 214

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)
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Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]
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Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1
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Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]
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Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]
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Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

= length "" : [limit]
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Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

= length "" : [limit]

= 0 : [limit]
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Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

= length "" : [limit]

= 0 : [limit]

= [0, 100]
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

= …
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

= …

= 2015 : [limit]
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Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

= …

= 2015 : [limit]

= [2015, 100]
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Higher-Order Functions

g h = fst (h "") : [limit]
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Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens
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Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2
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Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]
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Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]

• Functions can be results of function application: succ . succ
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Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]

• Functions can be results of function application: succ . succ

A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.
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Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]

• Functions can be results of function application: succ . succ

A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.

g is a second-order function: it expects first-order functions like h1, h2
as arguments.
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)
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Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)

g :: (String -> (Int,a)) -> [Int]
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Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y
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Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h
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Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: ???
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Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double
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Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double

cylVol :: ???
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Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double

cylVol :: Double -> (Double -> Double)
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Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double

cylVol :: Double -> (Double -> Double)

• Function type construction associates to the right, i.e.,

a -> b -> c = a -> (b -> c)
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“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b
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“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → ( b → c )
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“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → ( b → c ), with

• argument type a,

• result type b → c.
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“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → ( b → c ), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:
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“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → ( b → c ), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:

( f x ) : : b → c
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“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → ( b → c ), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:

( f x ) : : b → c

The application of a “two-argument function” to a single argument is a
“one-argument function”
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“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → ( b → c ), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:

( f x ) : : b → c

The application of a “two-argument function” to a single argument is a
“one-argument function”, which can then be applied to a second argument:

( f x ) y : : c = f x y
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )

g ( k 3 )
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )

g ( k 3 )
= fst ( k 3 "") : [ limit ]
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )

g ( k 3 )
= fst ( k 3 "") : [ limit ]
= fst (3 ∗ ( length "" + 1) , unwords ( replicate 3 "") ) : [ limit ]
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )

g ( k 3 )
= fst ( k 3 "") : [ limit ]
= fst (3 ∗ ( length "" + 1) , unwords ( replicate 3 "") ) : [ limit ]
= (3 ∗ ( length "" + 1) ) : [ limit ]
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )

g ( k 3 )
= fst ( k 3 "") : [ limit ]
= fst (3 ∗ ( length "" + 1) , unwords ( replicate 3 "") ) : [ limit ]
= (3 ∗ ( length "" + 1) ) : [ limit ]
= (3 ∗ (0 + 1) ) : [ limit ]
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate 3 str ) )

g ( k 3 )
= fst ( k 3 "") : [ limit ]
= fst (3 ∗ ( length "" + 1) , unwords ( replicate n "") ) : [ limit ]
= (3 ∗ ( length "" + 1) ) : [ limit ]
= (3 ∗ (0 + 1) ) : [ limit ]
= (3 ∗ 1) : [ limit ]
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )

g ( k 3 )
= fst ( k 3 "") : [ limit ]
= fst (3 ∗ ( length "" + 1) , unwords ( replicate 3 "") ) : [ limit ]
= (3 ∗ ( length "" + 1) ) : [ limit ]
= (3 ∗ (0 + 1) ) : [ limit ]
= (3 ∗ 1) : [ limit ]
= 3 : [ limit ]
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Partial Application — Example

g : : ( String → ( Int , a ) ) → [ Int ]
g h = fst ( h "") : [ limit ]

k : : Int → String → ( Int , String )
k n str = ( n ∗ ( length str + 1) , unwords ( replicate n str ) )

g ( k 3 )
= fst ( k 3 "") : [ limit ]
= fst (3 ∗ ( length "" + 1) , unwords ( replicate 3 "") ) : [ limit ]
= (3 ∗ ( length "" + 1) ) : [ limit ]
= (3 ∗ (0 + 1) ) : [ limit ]
= (3 ∗ 1) : [ limit ]
= 3 : [ limit ]
= [3 , 100]
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Operations on Functions

id :: a -> a − − identity function
id x = x

(.) :: (b -> c) -> (a -> b) -> (a -> c) − − function composition
(f . g) x = f (g x)

flip :: (a -> b -> c) -> (b -> a -> c) − − argument swapping
flip f x y = f y x

curry :: ((a,b) -> c) -> (a -> b -> c) − − currying
curry g x y = g (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f (x,y) = f x y

Exercise (necessary!): Copy only the definitions to a sheet of paper, and then
infer the types yourself!
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Operator Sections

• Infix operators are turned into functions by surrounding them with
parentheses:

(+) 2 3 = 2 + 3

• This is necessary in type declarations:

(+) :: Int -> Int -> Int − − not the “natural” type of (+)
(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

• It is also possible to supply only one argument (which has to be an atomic
expression):

(2 +) 3 = 2 + 3 = (+ 3 ) 2

(8,3 /) 2.5 = 8.3 / 2.5 = (/ 2.5) 8.3

(7 :) [] = 7 : [] = (: [] ) 7

((2^17) :) (16:[]) = (2^17) : 16 : [] = (: (16:[])) (2^17)
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Turning Functions into Infix Operators

Surrounding a function name by backquotes turns it into an infix operator.

Frequently used examples (not the “natural” types throughout):

div, mod, max, min :: Int -> Int -> Int

elem :: Int -> [Int] -> Bool

12 ‘div‘ 7 = 1

12 ‘mod‘ 7 = 5

12 ‘max‘ 7 = 12

12 ‘min‘ 7 = 7

12 ‘elem‘ [1 .. 10] = False
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] =
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] =
null ( x : xs ) =
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] = True
null ( x : xs ) =
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] = True
null ( x : xs ) = False
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] = True
null ( x : xs ) = False

head : : [ a ] → a
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] = True
null ( x : xs ) = False

head : : [ a ] → a

head ( x : xs ) = x
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] = True
null ( x : xs ) = False

head : : [ a ] → a

head ( x : xs ) = x

tail : : [ a ] → [ a ]
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] = True
null ( x : xs ) = False

head : : [ a ] → a

head ( x : xs ) = x

tail : : [ a ] → [ a ]
tail ( x : xs ) = xs
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Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [ a ] → Bool

null [ ] = True
null ( x : xs ) = False

head : : [ a ] → a

head ( x : xs ) = x

tail : : [ a ] → [ a ]
tail ( x : xs ) = xs

(head and tail are partial functions — both are undefined on the empty list.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

( ++ ) : : [ a ] → [ a ] → [ a ]

( ‘elem‘ ) : : Int → [ Int ] → Bool

concat : : [ [ a ] ] → [ a ]

product : : [ Integer ] → Integer

sum : : [ Integer ] → Integer
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] =
length ( x : xs ) =

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys =
( x : xs ) ++ ys =

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] =
concat ( xs : xss ) =

sum [ ] =
sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) =

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys =
( x : xs ) ++ ys =

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] =
concat ( xs : xss ) =

sum [ ] =
sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys =
( x : xs ) ++ ys =

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] =
concat ( xs : xss ) =

sum [ ] =
sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys =

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] =
concat ( xs : xss ) =

sum [ ] =
sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] =
concat ( xs : xss ) =

sum [ ] =
sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) =

sum [ ] =
sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum [ ] =
sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum [ ] = 0

sum ( x : xs ) =

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum [ ] = 0

sum ( x : xs ) = x + sum xs

product [ ] =
product ( x : xs ) =

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum [ ] = 0

sum ( x : xs ) = x + sum xs

product [ ] = 0

product ( x : xs ) =

(All these functions are in the standard prelude.)



FP 2005 3.122 290

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] =
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum [ ] = 0

sum ( x : xs ) = x + sum xs

product [ ] = 0

product ( x : xs ) = x ∗ product xs

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] = False
x ‘elem‘ ( y : ys ) =

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum [ ] = 0

sum ( x : xs ) = x + sum xs

product [ ] = 0

product ( x : xs ) = x ∗ product xs

(All these functions are in the standard prelude.)
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Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [ a ] → Int

length [ ] = 0

length ( x : xs ) = 1 + length xs

( ++ ) : : [ a ] → [ a ] → [ a ]
[ ] ++ ys = ys
( x : xs ) ++ ys = x : ( xs ++ ys )

x ‘elem‘ [ ] = False
x ‘elem‘ ( y : ys ) = x ≡ y || x ‘elem‘ ys

concat : : [ [ a ] ] → [ a ]
concat [ ] = [ ]
concat ( xs : xss ) = xs ++ concat xss

sum [ ] = 0

sum ( x : xs ) = x + sum xs

product [ ] = 0

product ( x : xs ) = x ∗ product xs

(All these functions are in the standard prelude.)
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 ]
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 ]
= take_while ( < 5) (1 : 2 : 3 : [ ] )
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 ]
= take_while ( < 5) (1 : 2 : 3 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : [ ] )



FP 2005 3.131 299

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 ]
= take_while ( < 5) (1 : 2 : 3 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : [ ] )
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 ]
= take_while ( < 5) (1 : 2 : 3 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) [ ]
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 ]
= take_while ( < 5) (1 : 2 : 3 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) [ ]
= 1 : 2 : 3 : [ ]
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Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ ( a , b ) → ( a , b ) → b
choose ( x , v ) ( y , w )

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 ]
= take_while ( < 5) (1 : 2 : 3 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) [ ]
= 1 : 2 : 3 : [ ]
= [1, 2 , 3 ]
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]



FP 2005 3.137 305

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )



FP 2005 3.140 308

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : take_while ( < 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : take_while ( < 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : take_while ( < 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : take_while ( < 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : take_while ( < 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : take_while ( < 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : take_while ( < 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : take_while ( < 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : take_while ( < 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while ( < 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : take_while ( < 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : take_while ( < 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : take_while ( < 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while ( < 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : take_while ( < 5) (5 : 4 : 3 : 4 : 5 : 6 : [ ] )
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Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : take_while ( < 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : take_while ( < 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : take_while ( < 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while ( < 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : take_while ( < 5) (5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : [ ]



FP 2005 3.147 315

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p ( x : xs ) | p x = x : take_while p xs
take_while p xs = [ ]

take_while ( < 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while ( < 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : take_while ( < 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : take_while ( < 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : take_while ( < 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : take_while ( < 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : take_while ( < 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : take_while ( < 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while ( < 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : take_while ( < 5) (5 : 4 : 3 : 4 : 5 : 6 : [ ] )
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : [ ]
= [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 ]
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case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1
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GT -> 1
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LT -> -1

The prelude datatype Ordering has three elements and is used mostly as result
type of the prelude function compare:

data Ordering = LT | EQ | GT
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case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

The prelude datatype Ordering has three elements and is used mostly as result
type of the prelude function compare:

data Ordering = LT | EQ | GT

compare : : Ord a ⇒ a → a → Ordering
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case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

The prelude datatype Ordering has three elements and is used mostly as result
type of the prelude function compare:

data Ordering = LT | EQ | GT

compare : : Ord a ⇒ a → a → Ordering

Another example:

choose ( x , v ) ( y , w ) = case compare x y of
GT → v
LT → w
EQ → error "I cannot decide!"
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if … then … else … and case Expressions

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True
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if … then … else … and case Expressions

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are “syntactic sugar” for case expressions over Bool:

if condition

then expr1

else expr2

≡ case condition of
True → expr1

False → expr2
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if … then … else … and case Expressions

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are “syntactic sugar” for case expressions over Bool:

if condition

then expr1

else expr2

≡ case condition of
True → expr1

False → expr2

Two ways of defining functions:

Pattern Matching

not True = False
not False = True

case

not b = case b of
True → False
False → True
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case Expressions are “Anonymous” Pattern Matching

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ case xs of

[ ] → [ ]
_ → ", " : commaWords xs
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case Expressions are “Anonymous” Pattern Matching

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ case xs of

[ ] → [ ]
_ → ", " : commaWords xs

Every use of a case expression can be transformed into the use of an auxiliary
function defined by pattern matching
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case Expressions are “Anonymous” Pattern Matching

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ case xs of

[ ] → [ ]
_ → ", " : commaWords xs

Every use of a case expression can be transformed into the use of an auxiliary
function defined by pattern matching:

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ commaWordsAux xs
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case Expressions are “Anonymous” Pattern Matching

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ case xs of

[ ] → [ ]
_ → ", " : commaWords xs

Every use of a case expression can be transformed into the use of an auxiliary
function defined by pattern matching:

commaWords : : [ String ] → String
commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ commaWordsAux xs

commaWordsAux [ ] = [ ]
commaWordsAux xs = ", " : commaWords xs
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where Clauses
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where Clauses

If an auxiliary definition is used only locally, it should be inside a local
definition
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where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition,
e.g.:

commaWords : : [ String ] → String

commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ commaWordsAux xs

where
commaWordsAux [ ] = [ ]
commaWordsAux xs = ", " : commaWords xs
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where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition,
e.g.:

commaWords : : [ String ] → String

commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ commaWordsAux xs

where
commaWordsAux [ ] = [ ]
commaWordsAux xs = ", " : commaWords xs

where clauses are visible only within their enclosing clause, here “commaWords
( x : xs ) = …”
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where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition,
e.g.:

commaWords : : [ String ] → String

commaWords [ ] = [ ]
commaWords ( x : xs ) = x ++ commaWordsAux xs

where
commaWordsAux [ ] = [ ]
commaWordsAux xs = ", " : commaWords xs

where clauses are visible only within their enclosing clause, here “commaWords
( x : xs ) = …”

where clauses are visible within all guards:

f x y | y > z = …

| y == z = …

| y < z = …

where z = x * x
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let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m
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let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)
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let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)

Definitions can use pattern bindings:

g k n = let (d,m) = divMod k n
in if d == 0

then [m]
else g d n ++ [m]
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let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)

Definitions can use pattern bindings:

g k n = let (d,m) = divMod k n
in if d == 0

then [m]
else g d n ++ [m]

Guards, let and where bindings, and case cases all are layout sensitive!
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let or where?
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let or where?

• let bindings in expression

is an expression
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• let bindings in expression

is an expression

• fname patterns guardedRHSs where bindings

is a clause that is part of a definition
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let or where?

• let bindings in expression

is an expression

• fname patterns guardedRHSs where bindings

is a clause that is part of a definition

• (where clauses can also modify case cases)
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let or where?

• let bindings in expression

is an expression

• fname patterns guardedRHSs where bindings

is a clause that is part of a definition

• (where clauses can also modify case cases)

Frequently, the choice between let and where is a matter of style:

• where clauses result in a top-down presentation

• let expressions lend themselves also to bottom-up presentations
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SomePreludeFunctions— Elementary List Access

head :: [a] -> a
head (x:_) = x

last :: [a] -> a
last [x] = x
last (_:xs) = last xs

tail :: [a] -> [a]
tail (_:xs) = xs

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False
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SomePreludeFunctions— List Indexing

length :: [a] -> Int
length = foldl’ (\n _ -> n + 1) 0

(!!) :: [b] -> Int -> b
(x:_) !! 0 = x
(_:xs) !! n | n>0 = xs !! (n-1)
(_:_) !! _ = error "PreludeList.!!: negative index"
[] !! _ = error "PreludeList.!!: index too large"
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SomePreludeFunctions— Positional List Splitting

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ _ = error "take: negative argument"

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _ = error "drop: negative argument"

splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs) | n>0 = (x:xs’,xs”)

where (xs’,xs”) = splitAt (n-1) xs
splitAt _ _ = error "splitAt: negative argument"
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SomePreludeFunctions— Concatenation,Iteration

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

concat :: [[a]] -> [a]
concat = foldr (++) []

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs
{− repeat x = x : repeat x −} − − for understanding

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle xs = xs’ where xs’ = xs ++ xs’
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Separation of Concerns: Generation and Consumption
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’



FP 2005 3.179 347

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : ’!’ : [] − − take (i)
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Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : ’!’ : [] − − take (i)
= "!!!"



FP 2005 3.191 359

What We Have Seen So Far
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What We Have Seen So Far

• Functional programming:
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What We Have Seen So Far

• Functional programming: Higher-order functions
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results
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• Type systems:
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• Type systems: type constants and type constructors
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables)
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules:
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing:
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypes with simple interface:
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypes with simple interface: Integer , lists, lists of lists of …
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What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypes with simple interface: Integer , lists, lists of lists of …

• Non-local control (evaluation on demand): modularity (e.g., generate
/ prune)
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SomePreludeFunctions— List Splitting with Predicates

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = let (ys,zs) = span p xs’ in (x:ys,zs)
| otherwise = ([],xs)

break p = span (not . p)
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p =

• xs =

• x =

• xs’ =
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p = ( < 5)

• xs =

• x =

• xs’ =
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p = ( < 5)

• xs = [1,2 ,3 ]

• x =

• xs’ =
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p = ( < 5)

• xs = [1,2 ,3 ]

• x = 1

• xs’ =
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p = ( < 5)

• xs = [1,2 ,3 ]

• x = 1

• xs’ = [2 ,3 ]
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p = ( < 5)

• xs = [1,2 ,3 ]

• x = 1

• xs’ = [2 ,3 ]

• p x = ( < 5) 1 = 1 < 5 = True
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p = ( < 5)

• xs = [1,2 ,3 ]

• x = 1

• xs’ = [2 ,3 ]

• p x = ( < 5) 1 = 1 < 5 = True

Therefore: dropWhile ( < 5) [1,2 ,3 ] =
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as-Patterns

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [1,2 ,3 ]:

• p = ( < 5)

• xs = [1,2 ,3 ]

• x = 1

• xs’ = [2 ,3 ]

• p x = ( < 5) 1 = 1 < 5 = True

Therefore: dropWhile ( < 5) [1,2 ,3 ] = dropWhile ( < 5) [2 ,3 ]
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:



FP 2005 3.221 389

as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p =

• xs =

• x =

• xs’ =
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p = ( < 5)

• xs =

• x =

• xs’ =
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p = ( < 5)

• xs = [5 ,4 ,3 ]

• x =

• xs’ =
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p = ( < 5)

• xs = [5 ,4 ,3 ]

• x = 5

• xs’ =
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p = ( < 5)

• xs = [5 ,4 ,3 ]

• x = 5

• xs’ = [4 ,3 ]
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p = ( < 5)

• xs = [5 ,4 ,3 ]

• x = 5

• xs’ = [4 ,3 ]

• p x = ( < 5) 5 = 5 < 5 = False
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p = ( < 5)

• xs = [5 ,4 ,3 ]

• x = 5

• xs’ = [4 ,3 ]

• p x = ( < 5) 5 = 5 < 5 = False

Therefore: dropWhile ( < 5) [5 ,4 ,3 ] =
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as-Patterns— 2

dropWhile        :: (a -> Bool) -> [a] -> [a]
dropWhile p []    = []
dropWhile p xs@(x:xs’)
      | p x       = dropWhile p xs’
      | otherwise = xs

Consider matching of the third clause against dropWhile ( < 5) [5 ,4 ,3 ]:

• p = ( < 5)

• xs = [5 ,4 ,3 ]

• x = 5

• xs’ = [4 ,3 ]

• p x = ( < 5) 5 = 5 < 5 = False

Therefore: dropWhile ( < 5) [5 ,4 ,3 ] = [5 ,4 ,3 ]
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SomePreludeFunctions— List Splitting with Predicates

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = let (ys,zs) = span p xs’ in (x:ys,zs)
| otherwise = ([],xs)

break p = span (not . p)



FP 2005 3.230 398

SomePreludeFunctions— Text Processing

lines :: String -> [String]
lines "" = []
lines s = let (l,s’) = break (’\n’==) s

in l : case s’ of [] -> []
(_:s”) -> lines s”

words :: String -> [String]
words s = case dropWhile isSpace s of

"" -> []
s’ -> w : words s”

where (w,s”) = break isSpace s’

unlines :: [String] -> String
unlines [] = []
unlines (l:ls) = l ++ ’\n’ : unlines ls

unwords :: [String] -> String
unwords [] = ""
unwords [w] = w
unwords (w:ws) = w ++ ’ ’ : unwords ws
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map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs
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map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs
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map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [ f x | x <- xs ]
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map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [ f x | x <- xs ]

filter p xs = [ x | x <- xs, p x ]
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map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [ f x | x <- xs ]

filter p xs = [ x | x <- xs, p x ]

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]
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map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [ f x | x <- xs ]

filter p xs = [ x | x <- xs, p x ]

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]

filter even [1 .. 6] = [2, 4, 6]
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foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)



FP 2005 3.238 406

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)

foldr1 ( ⊗ ) [x1, x2, x3, x4, x5 ]
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foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)

foldr1 ( ⊗ ) [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr1 ( ⊗ ) [x2, x3, x4, x5 ])
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foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)

foldr1 ( ⊗ ) [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr1 ( ⊗ ) [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr1 ( ⊗ ) [x3, x4, x5 ]))
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foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)

foldr1 ( ⊗ ) [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr1 ( ⊗ ) [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr1 ( ⊗ ) [x3, x4, x5 ]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr1 ( ⊗ ) [x4, x5 ])))
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foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)

foldr1 ( ⊗ ) [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr1 ( ⊗ ) [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr1 ( ⊗ ) [x3, x4, x5 ]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr1 ( ⊗ ) [x4, x5 ])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr1 ( ⊗ ) [x5 ]))))
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foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 ( ⊗ ) [x] = x

foldr1 ( ⊗ ) (x:xs) = x ⊗ (foldr1 ( ⊗ ) xs)

foldr1 ( ⊗ ) [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr1 ( ⊗ ) [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr1 ( ⊗ ) [x3, x4, x5 ]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr1 ( ⊗ ) [x4, x5 ])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr1 ( ⊗ ) [x5 ]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ x5 )))
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)
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foldrX

foldrX : : ( a → b → b ) → b → [ a ] → b

foldrX ( ∗∗∗ ) z [ ] = z

foldrX ( ∗∗∗ ) z ( x : xs ) = x ∗∗∗ ( foldrX ( ∗∗∗ ) z xs )
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [x1, x2, x3, x4, x5 ]
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr ( ⊗ ) z [x2, x3, x4, x5 ])
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr ( ⊗ ) z [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr ( ⊗ ) z [x3, x4, x5 ]))
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr ( ⊗ ) z [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr ( ⊗ ) z [x3, x4, x5 ]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr ( ⊗ ) z [x4, x5 ])))
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr ( ⊗ ) z [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr ( ⊗ ) z [x3, x4, x5 ]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr ( ⊗ ) z [x4, x5 ])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr ( ⊗ ) z [x5 ]))))



FP 2005 3.251 419

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr ( ⊗ ) z [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr ( ⊗ ) z [x3, x4, x5 ]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr ( ⊗ ) z [x4, x5 ])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr ( ⊗ ) z [x5 ]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ (foldr ( ⊗ ) z [])))))
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foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr ( ⊗ ) z [] = z

foldr ( ⊗ ) z (x:xs) = x ⊗ (foldr ( ⊗ ) z xs)

foldr ( ⊗ ) z [x1, x2, x3, x4, x5 ]

= x1 ⊗ (foldr ( ⊗ ) z [x2, x3, x4, x5 ])

= x1 ⊗ (x2 ⊗ (foldr ( ⊗ ) z [x3, x4, x5 ]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr ( ⊗ ) z [x4, x5 ])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr ( ⊗ ) z [x5 ]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ (foldr ( ⊗ ) z [])))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ z))))
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List Folding

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
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Unfolding Definitions

A simple definition:

limit = 10 ^ 2
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Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 ∗ ( limit + 1)
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Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
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Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …
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Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

Another definition:

concat = foldr ( ++ ) [ ]
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Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

Another definition:

concat = foldr ( ++ ) [ ]

Expanding this definition:

concat [ [1,2 ,3 ] , [4 ,5] ]
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Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

Another definition:

concat = foldr ( ++ ) [ ]

Expanding this definition:

concat [ [1,2 ,3 ] , [4 ,5] ]
= ( foldr ( ++ ) [ ] ) [ [1,2 ,3 ] , [4 ,5] ]
= …
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Enumeration Type Definitions

data Bool = False | True deriving ( Eq , Ord , Read , Show )
data Ordering = LT | EQ | GT deriving ( Eq , Ord , Read , Show )

data Suit = Diamonds | Hearts | Spades | Clubs deriving ( Eq , Ord )

Pattern matching:

not False = True
not True = False

lexicalCombineOrdering : : Ordering → Ordering → Ordering

lexicalCombineOrdering LT _ = LT

lexicalCombineOrdering EQ x = x

lexicalCombineOrdering GT _ = GT
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Simple data Type Definitions

data Point = Pt Int Int deriving ( Eq ) −− screen coordinates

data Transport = Feet
| Bike
| Train Int −− price in cent

This defines at the same time data constructors:

Pt : : Int → Int → Point

Feet : : Transport

Bike : : Transport

Train : : Int → Transport

Pattern matching:

addPt ( Pt x1 y1) ( Pt x2 y2 ) = Pt ( x1 + x2 ) ( y1 + y2 )

cost Feet = 0

cost Bike = 0

cost ( Train Int ) = Int
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Simple Polymorphic data Type Definitions

The prelude type constructors Maybe, Either , Complex are defined as follows:

data Maybe a = Nothing | Just a deriving ( Eq , Ord , Read , Show )
data Either a b = Left a | Right b

data Complex r = r :+ r deriving ( Eq , Read , Show )

This defines at the same time data constructors:

Nothing : : Maybe a

Just : : a → Maybe a

Left : : a → Either a b

Right : : b → Either a b

( :+ ) : : r → r → Complex r


