
FP 2005 1.1 3

Functional Programming

WOLFRAM KAHL

kahl@mcmaster.ca

Department of Computing and Software
McMaster University

FP20051.2 4

What Kinds of Programming Languages are There?

Imperative — “telling themachinewhatto do”

Declarative — “telling themachinewhatto achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++,Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme,LISP

Logic

Prolog
Mercury

FP 2005 1.3 5

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury

FP 2005 1.4 6

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury

FP 2005 1.5 7

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury

FP 2005 1.6 8

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury

FP 2005 1.7 9

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury

FP 2005 1.8 10

What Kinds of Programming Languages are There?

Imperative — “telling the machine what to do”

Declarative — “telling the machine what to achieve”

Programming Languages

Imperative

C, Pascal
FORTRAN
COBOL
Modula-2

Object-oriented

C++, Oberon-2
Java, Smalltalk

Declarative

Functional

Haskell, OCaml
ML, Scheme, LISP

Logic

Prolog
Mercury

FP20051.9 11

Programming Language Paradigms

Imperative Programming Languages
Statementorientedlanguages

Everystatementchangesthemachinestate

Object-oriented languages
Organisingthestateinto objects with individualstateandbehaviour

Messagepassingparadigm(insteadof subprogramcall)

Rule-Based (Logical) Programming Languages
Specifyrule thatspecifiesproblemsolution(Prolog,BNF Parsing)

Otherexamples:Decisionprocedures,Grammarrules(BNF)

Programmingconsistsof specifyingtheattributesof theanswer

Functional (Applicative) Programming Languages
Goalis to understandthefunctionthatproducestheanswer

Functioncompositionis majoroperation

Programmingconsistsof building thefunctionthatcomputestheanswer

FP 2005 1.10 12

Historical Development of Programming Languages

FP 2005 1.11 13

Historical Development of Programming Languages

Emphasis has changed:

FP20051.12 14

Historical Development of Programming Languages

Emphasishaschanged:

– from makinglife easierfor thecomputer

FP20051.13 15

Historical Development of Programming Languages

Emphasishaschanged:

– from makinglife easierfor thecomputer

– to makingit easierfor theprogrammer.

FP 2005 1.14 16

Historical Development of Programming Languages

Emphasis has changed:

– from making life easier for the computer

– to making it easier for the programmer.

Easier for the programmer means:

FP 2005 1.15 17

Historical Development of Programming Languages

Emphasis has changed:

– from making life easier for the computer

– to making it easier for the programmer.

Easier for the programmer means:

– Use languages that facilitate writing error-free programs

FP 2005 1.16 18

Historical Development of Programming Languages

Emphasis has changed:

– from making life easier for the computer

– to making it easier for the programmer.

Easier for the programmer means:

– Use languages that facilitate writing error-free programs

– Use languages that facilitate writing programs that are easy to maintain

FP 2005 1.17 19

Historical Development of Programming Languages

Emphasis has changed:

– from making life easier for the computer

– to making it easier for the programmer.

Easier for the programmer means:

– Use languages that facilitate writing error-free programs

– Use languages that facilitate writing programs that are easy to maintain

Goal of language development:

FP20051.18 20

Historical Development of Programming Languages

Emphasishaschanged:

– from makinglife easierfor thecomputer

– to makingit easierfor theprogrammer.

Easier for the programmer means:

– Uselanguagesthatfacilitatewriting error-free programs

– Uselanguagesthatfacilitatewriting programsthatareeasy to maintain

Goal of languagedevelopment:

– Developersconcentrateondesign(or evenjust specification)

– Programmingis trivial or handledby computer

(executablespecificationlanguages,rapid prototyping)

FP 2005 1.19 21

Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang

FP 2005 1.20 22

Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang

FP 2005 1.21 23

Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang

FP 2005 1.22 24

Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang

FP 2005 1.23 25

Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang

FP 2005 1.24 26

Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang

FP 2005 1.25 27

Important Functional Programming Languages

Functional Programming Languages

pure, statically typed

Haskell Clean

impure

statically typed

Standard ML
OCaml

dynamically typed

LISP, Scheme
APL, J
Erlang

FP 2005 2.1 29

Haskell

FP20052.2 30

Haskell

• functional

FP20052.3 31

Haskell

• functional — programsarefunctiondefinitions

FP20052.4 32

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

FP20052.5 33

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)

FP20052.6 34

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

FP20052.7 35

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)

FP20052.8 36

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

FP20052.9 37

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

• statically strongly typed

FP20052.10 38

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

• statically strongly typed — all typeerrorscaughtat compile-time

FP20052.11 39

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

• statically strongly typed — all typeerrorscaughtat compile-time

• type classes— safeoverloading

FP20052.12 40

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

• statically strongly typed — all typeerrorscaughtat compile-time

• type classes— safeoverloading

• Standardisedlanguageversion:Haskell 98

FP20052.13 41

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

• statically strongly typed — all typeerrorscaughtat compile-time

• type classes— safeoverloading

• Standardisedlanguageversion:Haskell 98

• Severalcompilersandinterpretersavailable

FP20052.14 42

Haskell

• functional — programsarefunctiondefinitions; functionsare“first-class
citizens”

• pure (referentiallytransparent)— “no side-effects”

• non-strict (lazy)— argumentsareevaluatedonly whenneeded

• statically strongly typed — all typeerrorscaughtat compile-time

• type classes— safeoverloading

• Standardisedlanguageversion:Haskell 98

• Severalcompilersandinterpretersavailable

• Comprehensivewebsite: http://haskell.org/

FP 2005 2.15 43

Important Points

FP 2005 2.16 44

Important Points

• Execution of Haskell programs

FP 2005 2.17 45

Important Points

• Execution of Haskell programs is expression evaluation

FP 2005 2.18 46

Important Points

• Execution of Haskell programs is expression evaluation

— (for the time being)

FP20052.19 47

Important Points

• Executionof Haskell programsis expression evaluation

— (for the time being)

• Definingfunctionsin Haskell

FP20052.20 48

Important Points

• Executionof Haskell programsis expressionevaluation

— (for the time being)

• Definingfunctionsin Haskell is morelikedefining functions in
mathematics

FP20052.21 49

Important Points

• Executionof Haskell programsis expressionevaluation

— (for the time being)

• Definingfunctionsin Haskell ismorelikedefining functions in mathematics
thanlikedefiningproceduresin C or classesandmethodsin Java

FP 2005 2.22 50

Important Points

• Execution of Haskell programs is expressionevaluation

— (for the time being)

• Defining functions in Haskell is more like defining functions in mathematics
than like defining procedures in C or classes and methods in Java

• One Haskell function may be defined by several “equations”

FP 2005 2.23 51

Important Points

• Execution of Haskell programs is expressionevaluation

— (for the time being)

• Defining functions in Haskell is more like defining functions in mathematics
than like defining procedures in C or classes and methods in Java

• One Haskell function may be defined by several “equations” — the first that
matchesis used

FP 2005 2.24 52

Important Points

• Execution of Haskell programs is expression evaluation

— (for the time being)

• Defining functions in Haskell is more like defining functions in mathematics
than like defining procedures in C or classes and methods in Java

• One Haskell function may be defined by several “equations” — the first that
matches is used

• Lists are an easy-to-use datastructure with lots of language and library
support

FP 2005 2.25 53

Important Points

• Execution of Haskell programs is expression evaluation

— (for the time being)

• Defining functions in Haskell is more like defining functions in mathematics
than like defining procedures in C or classes and methods in Java

• One Haskell function may be defined by several “equations” — the first that
matches is used

• Lists are an easy-to-use datastructure with lots of language and library support
— therefore, lists are heavily used in beginners’ material.

FP 2005 2.26 54

Important Points

• Execution of Haskell programs is expression evaluation

— (for the time being)

• Defining functions in Haskell is more like defining functions in mathematics
than like defining procedures in C or classes and methods in Java

• One Haskell function may be defined by several “equations” — the first that
matches is used

• Lists are an easy-to-use datastructure with lots of language and library support
— therefore, lists are heavily used in beginners’ material.

In many cases, advanced Haskell programmers will use other datastructures,
for example Sets, or FiniteMaps instead of association lists.

FP 2005 2.27 55

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their
prompt and print (after the first ENTER) the value resulting from evaluation of
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

 4*(5+6)-2
 = (addition)
 4*11-2
 (multiplication)

FP 2005 2.28 56

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their
prompt and print (after the first ENTER) the value resulting from evaluation of
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

 4*(5+6)-2 [subtraction & mult. impossible]
 = (addition)
 4*11-2
 (multiplication)

FP 2005 2.29 57

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their
prompt and print (after the first ENTER) the value resulting from evaluation of
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

 4*(5+6)-2 [subtraction & mult. impossible]
= (addition)
 4*11-2
 (multiplication)

FP 2005 2.30 58

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their
prompt and print (after the first ENTER) the value resulting from evaluation of
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

 4*(5+6)-2 [subtraction & mult. impossible]
= (addition)
 4*11-2 [subtraction impossible]
 (multiplication)

FP 2005 2.31 59

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their
prompt and print (after the first ENTER) the value resulting from evaluation of
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

 4*(5+6)-2 [subtraction & mult. impossible]
= (addition)
 4*11-2 [subtraction impossible]
= (multiplication)
 44-2

FP 2005 2.32 60

Simple Expression Evaluation

The Haskell interpreters hugs, ghci, and hi accept any expression at their
prompt and print (after the first ENTER) the value resulting from evaluation of
that expression.

Prelude> 4*(5+6)-2

42

Expression evaluation proceeds by applying rules to subexpressions:

 4*(5+6)-2 [subtraction & mult. impossible]
= (addition)
 4*11-2 [subtraction impossible]
= (multiplication)
 44-2
= (subtraction)
 42

FP 2005 2.33 61

SimpleExpressionEvaluation — Explanation

FP 2005 2.34 62

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

FP 2005 2.35 63

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number
of arguments,

FP 2005 2.36 64

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed

FP 2005 2.37 65

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

FP 2005 2.38 66

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument

FP 2005 2.39 67

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

FP 2005 2.40 68

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

FP 2005 2.41 69

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict:

FP 2005 2.42 70

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: (const 5) undefined = 5

FP 2005 2.43 71

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: (const 5) undefined = 5

– Checking a list for emptyness is strict:

FP 2005 2.44 72

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: (const 5) undefined = 5

– Checking a list for emptyness is strict: null undefined = undefined

FP 2005 2.45 73

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: (const 5) undefined = 5

– Checking a list for emptyness is strict: null undefined = undefined

– List construction is non-strict:

FP 2005 2.46 74

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: (const 5) undefined = 5

– Checking a list for emptyness is strict: null undefined = undefined

– List construction is non-strict: null (undefined : undefined) = False

FP 2005 2.47 75

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: (const 5) undefined = 5

– Checking a list for emptyness is strict: null undefined = undefined

– List construction is non-strict: null (undefined : undefined) = False

– Standard arithmetic operatorsare strict in both arguments:

FP 2005 2.48 76

SimpleExpressionEvaluation — Explanation

• Arguments to a fuction or operation are evaluatedonly whenneeded.

• If for obtaining a result from an application of a function f to a number of
arguments, the value of the argument at position i is always needed. then f is
called strict in its i-th argument

• Therefore: If f is strict in its i-th argument, then the i-th argument has to be
evaluated whenever a result is needed from f .

• Simpler: A one-argument function f is strict iff f undefined = undefined.

– Constant functions are non-strict: (const 5) undefined = 5

– Checking a list for emptyness is strict: null undefined = undefined

– List construction is non-strict: null (undefined : undefined) = False

– Standard arithmetic operatorsare strict in both arguments:
0 ∗ undefined = undefined

FP 2005 2.49 77

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

FP 2005 2.50 78

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)

FP 2005 2.51 79

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)

FP 2005 2.52 80

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)

FP 2005 2.53 81

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)

FP 2005 2.54 82

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)

FP 2005 2.55 83

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271 (subtraction)

FP 2005 2.56 84

Unfolding Definitions

Assume the following definitions to be in scope:

answer = 42

magic = 7

Expression evaluation will unfold (or expand) definitions:

Prelude> (answer - 1) * (magic * answer - 23)
11111

 (answer - 1) * (magic * answer - 23)
= (42 - 1) * (magic * 42 - 23) (answer)
= 41 * (magic * 42 - 23) (subtraction)
= 41 * (7 * 42 - 23) (magic)
= 41 * (294 - 23) (multiplication)
= 41 * 271 (subtraction)
= 11111 (multiplication)

FP 2005 2.57 85

How did I find those numbers?

Easy!

Prelude> [n | n <- [1 .. 400] , 11111 ‘mod‘ n == 0]
[1,41,271]

This is a list comprehension:

• return all n

• where n is taken from then list [1 .. 400]

• and a result is returned only if n divides 11111.

FP 2005 2.58 86

Conditional Expressions

Prelude> if 11111 ‘mod‘ 41 == 0 then 11111 ‘div‘ 41 else 5
271

The pattern is:

if condition then expression1 else expression2

– If the condition evaluates to True, the conditional expression evaluates to the
value of expression1.

– If the condition evaluates to False, the conditional expression evaluates to the
value of expression2.

FP 2005 2.59 87

Conditional Expressions

Prelude> if 11111 ‘mod‘ 41 == 0 then 11111 ‘div‘ 41 else 5
271

The pattern is:

if condition then expression1 else expression2

– If the condition evaluates to True, the conditional expression evaluates to the
value of expression1.

– If the condition evaluates to False, the conditional expression evaluates to the
value of expression2.

Therefore: “if _ then _ else” is strict in the condition.

FP 2005 2.60 88

Conditional Expressions

Prelude> if 11111 ‘mod‘ 41 == 0 then 11111 ‘div‘ 41 else 5
271

The pattern is:

if condition then expression1 else expression2

– If the condition evaluates to True, the conditional expression evaluates to the
value of expression1.

– If the condition evaluates to False, the conditional expression evaluates to the
value of expression2.

Therefore: “if _ then _ else” is strict in the condition.

In C: (condition ? expression1: expression2)

FP 2005 2.61 89

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

FP 2005 2.62 90

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3

FP 2005 2.63 91

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)

FP 2005 2.64 92

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)

FP 2005 2.65 93

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)

FP 2005 2.66 94

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)

FP 2005 2.67 95

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)

FP 2005 2.68 96

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)

FP 2005 2.69 97

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)

FP 2005 2.70 98

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)

FP 2005 2.71 99

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)

FP 2005 2.72 100

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)

FP 2005 2.73 101

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)

FP 2005 2.74 102

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)

FP 2005 2.75 103

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)

FP 2005 2.76 104

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)

FP 2005 2.77 105

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1

FP 2005 2.78 106

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1

FP 2005 2.79 107

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2

FP 2005 2.80 108

Expanding Function Definitions

fact :: Integer -> Integer

fact n = if n == 0 then 1 else n * fact (n-1)

 fact 3
= if 3 == 0 then 1 else 3 * fact (3-1)
= if False then 1 else 3 * fact (3-1)
= 3 * fact (3-1)
= 3 * if (3-1) == 0 then 1 else (3-1) * fact ((3-1)-1)
= 3 * if 2 == 0 then 1 else 2 * fact (2-1)
= 3 * if False then 1 else 2 * fact (2-1)
= 3 * 2 * fact (2-1)
= 3 * 2 * if (2-1) == 0 then 1 else (2-1) * fact ((2-1)-1)
= 3 * 2 * if 1 == 0 then 1 else 1 * fact (1-1)
= 3 * 2 * if False then 1 else 1 * fact (1-1)
= 3 * 2 * 1 * fact (1-1)
= 3 * 2 * 1 * if (1-1) == 0 then 1 else (1-1) * fact ((1-1)-1)
= 3 * 2 * 1 * if 0 == 0 then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * if True then 1 else 0 * fact (0-1)
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
= 6

FP 2005 2.81 109

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

FP 2005 2.82 110

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * (2 * (1 * fact (1-1)))

FP 2005 2.83 111

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * (2 * (1 * fact (1-1)))

FP 2005 2.84 112

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1)))

FP 2005 2.85 113

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * (1 * fact (1-1)))

FP 2005 2.86 114

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1)))

FP 2005 2.87 115

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)

FP 2005 2.88 116

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)

FP 2005 2.89 117

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)

FP 2005 2.90 118

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)

FP 2005 2.91 119

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)
= 3 * 2 (multiplication)

FP 2005 2.92 120

Matching Function Definitions

fact :: Integer -> Integer

fact 0 = 1

fact n = n * fact (n-1)

 fact 3

= 3 * fact (3-1) (fact n)
= 3 * fact 2 (determining which fact rule matches)
= 3 * (2 * fact (2-1)) (fact n)
= 3 * (2 * fact 1) (determining which fact rule matches)
= 3 * (2 * (1 * fact (1-1))) (fact n)
= 3 * (2 * (1 * fact 0)) (determining which fact rule matches)
= 3 * (2 * (1 * 1)) (fact 0)
= 3 * (2 * 1) (multiplication)
= 3 * 2 (multiplication)
= 6 (multiplication)

FP 2005 2.93 121

Lists

• List display:between square brackets explicitly listing all elements, separated
by commas:

[1,4,9,16,25]

FP 2005 2.94 122

Lists

• List display:between square brackets explicitly listing all elements, separated
by commas:

[1,4,9,16,25]

• Enumeration lists: denoted by ellipsis “.. ” inside square brackets; defined
by beginning (and end, if applicable):

[1 .. 10] = [1,2,3,4,5,6,7,8,9,10]

[1,3 .. 10] = [1,3,5,7,9]

[1,3 .. 11] = [1,3,5,7,9,11]

[11,9 .. 1] = [11,9,7,5,3,1]

[11 .. 1] = []

[1 ..] = [1,2,3,4,5,6,7,8,9,10, …] -- infinite list

[1,3 ..] = [1,3,5,7,9,11, …] -- infinite list

FP 2005 2.95 123

List Construction

FP 2005 2.96 124

List Construction

Display and enumeration lists are syntactic sugar

FP 2005 2.97 125

List Construction

Display and enumeration lists are syntactic sugar: A list is

FP 2005 2.98 126

List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty

FP 2005 2.99 127

List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs

FP 2005 2.100 128

List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

FP 2005 2.101 129

List Construction

Display and enumeration lists are syntactic sugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x cons xes”.

FP 2005 2.102 130

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:

FP 2005 2.103 131

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : []

FP 2005 2.104 132

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

FP 2005 2.105 133

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3]

FP 2005 2.106 134

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

FP 2005 2.107 135

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3]

FP 2005 2.108 136

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

FP 2005 2.109 137

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright

FP 2005 2.110 138

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : (y : ys)

FP 2005 2.111 139

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : (y : ys)

Example:

1 : 2 : [3,4]

FP 2005 2.112 140

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : (y : ys)

Example:

1 : 2 : [3,4] = 1 : (2 : [3, 4])

FP 2005 2.113 141

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : (y : ys)

Example:

1 : 2 : [3,4] = 1 : (2 : [3, 4]) = 1 : [2 , 3, 4]

FP 2005 2.114 142

List Construction

Display and enumeration lists are syntacticsugar: A list is

– either the empty list: [],

– or non-empty, and constructed from a head x and a tail xs (read: “xes”)

x : xs — read: “x consxes”.

“:” is used as infix list constructor:
3 : [] = [3]

2 : [3] = [2, 3]

1 : [2, 3] = [1, 2, 3]

As an infix operator, “:” associatesto theright:

x : y : ys = x : (y : ys)

Example:

1 : 2 : [3,4] = 1 : (2 : [3, 4]) = 1 : [2 , 3, 4] = [1, 2, 3, 4]

FP 2005 2.115 143

Cons is Not Associative

FP 2005 2.116 144

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

FP 2005 2.117 145

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

FP 2005 2.118 146

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4])

FP 2005 2.119 147

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4]

FP 2005 2.120 148

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

FP 2005 2.121 149

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4]

FP 2005 2.122 150

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense

FP 2005 2.123 151

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

FP 2005 2.124 152

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]]

FP 2005 2.125 153

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

FP 2005 2.126 154

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]]

FP 2005 2.127 155

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

FP 2005 2.128 156

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

• 1 : ([2] : [[3,4,5], [6,7]])

FP 2005 2.129 157

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

• 1 : ([2] : [[3,4,5], [6,7]]) is nonsense again!

FP 2005 2.130 158

Cons is Not Associative

The convention that “:” associates to the right allows to save parentheses in
certain cirtcumstances.

However, “:” is not associative:

• A list of integers:
1 : (2 : [3,4]) = 1 : 2 : [3,4] = [1, 2, 3, 4]

• (1 : 2) : [3,4] is nonsense, since 2 is not a list!

• A list of lists of integers:
[2] : [[3,4,5], [6,7]] = [[2],[3,4,5],[6,7]]

• Another list of lists of integers:
(1 : [2]) : [[3,4,5], [6,7]] = [[1,2],[3,4,5],[6,7]]

• 1 : ([2] : [[3,4,5], [6,7]]) is nonsense again!
Reason:1 and [2] cannot be members of the same list (type error).

FP 2005 2.131 159

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

FP 2005 2.132 160

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]]

FP 2005 2.133 161

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

FP 2005 2.134 162

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

[n ∗ n | n ← [1 .. 10] , even n]

FP 2005 2.135 163

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

[n ∗ n | n ← [1 .. 10] , even n] = [4 ,16 ,36 ,64 ,100]

FP 2005 2.136 164

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

[n ∗ n | n ← [1 .. 10] , even n] = [4 ,16 ,36 ,64 ,100]

[m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6]]

FP 2005 2.137 165

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

[n ∗ n | n ← [1 .. 10] , even n] = [4 ,16 ,36 ,64 ,100]

[m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6]] = [2 ,4 ,6 ,6 ,12 ,18 ,10 ,20 ,30]

FP 2005 2.138 166

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

[n ∗ n | n ← [1 .. 10] , even n] = [4 ,16 ,36 ,64 ,100]

[m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6]] = [2 ,4 ,6 ,6 ,12 ,18 ,10 ,20 ,30]

Note:

– The left generator “generates slower”.

FP 2005 2.139 167

List Comprehensions

General shape:

[term | generator {, generator_or_constraint ∗}]

Examples:

[n ∗ n | n ← [1 .. 5]] = [1,4 ,9 ,16 ,25]

[n ∗ n | n ← [1 .. 10] , even n] = [4 ,16 ,36 ,64 ,100]

[m ∗ n | m ← [1,3 ,5] , n ← [2 ,4 ,6]] = [2 ,4 ,6 ,6 ,12 ,18 ,10 ,20 ,30]

Note:

– The left generator “generates slower”.

– Haskell code fragments will frequently be presented like above in a form that
is more readable than plain typewriter text — in that case, the “comes from”
arrow “<-” in generators turns into “←”

FP20053.2 170

The Type Language

Haskell hasa full-fledgedtype language, with

• Simplepredefineddatatypes:Bool,Char,Integer, …

• Predefinedtype constructors: lists,tuples,functions,…

• Typesynonyms

• User-defineddatatypesandtypeconstructors

• Typevariables— to expressparametric polymorphism

• …

FP20053.3 171

Simple Predefined Datatypes

Bool truthvalues False,True

Char “Unicode” characters (in GHC:ISO-10646)

Integer integers arbitrary precision

Int “machineintegers” ≥ 32bits

Float realfloatingpoint singleprecision

Double realfloatingpoint doubleprecision

Complex Float complex floatingpoint singleprecision

Complex Double complex floatingpoint doubleprecision

FP 2005 3.4 172

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

FP 2005 3.5 173

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

FP 2005 3.6 174

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: ???

FP 2005 3.7 175

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

FP 2005 3.8 176

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: ???

FP 2005 3.9 177

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

FP 2005 3.10 178

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: ???

FP 2005 3.11 179

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

FP 2005 3.12 180

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: ???

FP 2005 3.13 181

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

FP 2005 3.14 182

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

• "hello" :: ???

FP 2005 3.15 183

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

• "hello" :: [Char]

FP 2005 3.16 184

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

• "hello" :: [Char]

• ["hello", "world"] :: ???

FP 2005 3.17 185

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

• "hello" :: [Char]

• ["hello", "world"] :: [[Char]]

FP 2005 3.18 186

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

• "hello" :: [Char]

• ["hello", "world"] :: [[Char]]

• [["first", "line"], ["second", "line"]] :: ???

FP 2005 3.19 187

List Types

If t is a type, then the list type [t] is the type of lists with elements of
type t.

answer :: Integer

answer = 42

limit :: Int

limit = 100

Then:

• [1, 2, 3, answer] :: [Integer]

• [1 .. limit] :: [Int]

• [[1 .. limit] , [2 .. limit]] :: [[Int]]

• [’h’, ’e’, ’l’, ’l’, ’o’] :: [Char]

• "hello" :: [Char]

• ["hello", "world"] :: [[Char]]

• [["first", "line"], ["second", "line"]] :: [[[Char]]]

FP 2005 3.20 188

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

FP 2005 3.21 189

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: ???

FP 2005 3.22 190

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

FP 2005 3.23 191

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: ???

FP 2005 3.24 192

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

FP 2005 3.25 193

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ???

FP 2005 3.26 194

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

FP 2005 3.27 195

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ???

FP 2005 3.28 196

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

FP 2005 3.29 197

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ???

FP 2005 3.30 198

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

FP 2005 3.31 199

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: ???

FP 2005 3.32 200

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: (Int, ([Char], Char))

FP 2005 3.33 201

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: (Int, ([Char], Char))

• (True, [("X",limit),("Y",5)]) :: ???

FP 2005 3.34 202

Product Types (Pairs)

If t and u are types, then the product type (t,u) is the type of
pairs with first component of type t and second component of type u
(mathematically: t× u).

Examples:

• (answer, limit) :: (Integer, Int)

• (limit, answer) :: (Int, Integer)

• ("???", answer) :: ([Char], Integer)

• ("???", (limit, answer)) :: ([Char], (Int, Integer))

• ("???", ’X’) :: ([Char], Char)

• (limit, ("???", ’X’)) :: (Int, ([Char], Char))

• (True, [("X",limit),("Y",5)]) :: (Bool, [([Char], Int)])

FP 2005 3.35 203

Tuple Types

If n −−/ 1 is a natural number and t1 , … , tn are types, then the tuple type
(t1 , … , tn) is the type of n-tuples with the ith component of type
ti.

Examples:

• (answer, ’c’, limit) :: (Integer, Char, Int)

• (answer, ’c’, limit, "all") :: (Integer, Char, Int, [Char])

• () :: ()

— there is exactly one zero-tuple.

The type () of zero-tuples is also called the unit type.

FP 2005 3.36 204

Simple Type Synonyms

If t is a type not containing any type variables, and Name is an identifier
with a capital first letter, then

type Name = t

defines Name as a type synonym for t, i.e., Name can now be used
interchangeably with t.

Examples:

type String = [Char] − − predefined

type Point = (Double, Double) − − (1.5, 2.7)

type Triangle = (Point, Point, Point)

type CharEntity = (Char, String) − − (’Ã¼’, "ü")

type Dictionary = [(String,String)] − − [("day","jour")]

FP 2005 3.37 205

Type Variables and Polymorphic Types

• Identifiers with lower-case first letter can be used as type variables.

• Type variables can be used like other types in the construction of types, e.g.:

[(a,b)]

(Bool, (a, Int))

[(String, [(key, val)])]

• A type containing at least one type variable is called polymorphic

• Polymorphic types can be instantiated by instantiating type variables with
types, e.g.:

[(a,b)] ⇒ [(Char,b)]

[(a,b)] ⇒ [(Char,Int)]

[(a,b)] ⇒ [(a,[(String,Int)])]

[(a,b)] ⇒ [(a,[(String,c)])]

FP 2005 3.38 206

Typing of List Construction

• The empty list can be used at any list type: [] :: [a]

• If an element x :: a and a list xs :: [a] are given, then

(x : xs) :: [a]

Examples:

2 :: Int

[] :: [Int]

[2] = 2 : [] :: [Int]

[[3,4,5], [6,7]] :: [[Int]]

[2] : [[3,4,5], [6,7]] :: [[Int]]

1 : ([2] : [[3,4,5], [6,7]]) − − cannot be typed!

FP 2005 3.39 207

Function Types and Function Application

If t and u are types, then the function type t->u is the type of all
functions accepting arguments of type t and producing results of type u
(mathematically: t → u).

Then:

• If a function f :: a -> b and an argument x :: a are given, then we
have (f x) :: b.

• If a function f :: a -> b is given and we know that (f x) :: b, then
the argument x is used at type a.

• If an argument x :: a is given and we know that (f x) :: b, then the
function f is used at type a -> b.

FP 2005 3.40 208

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False)

FP 2005 3.41 209

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

FP 2005 3.42 210

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)]

FP 2005 3.43 211

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

FP 2005 3.44 212

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p

FP 2005 3.45 213

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

FP 2005 3.46 214

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

FP 2005 3.47 215

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

FP 2005 3.48 216

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)

FP 2005 3.49 217

Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

FP 2005 3.50 218

Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

FP 2005 3.51 219

Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

FP 2005 3.52 220

Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

FP 2005 3.53 221

Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

= length "" : [limit]

FP 2005 3.54 222

Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

= length "" : [limit]

= 0 : [limit]

FP 2005 3.55 223

Let’ sPlay the Evaluation GameAgain — 1

h1 :: String -> (Int, String)

h1 str = (length str, ’ ’ : str)

g h = fst (h "") : [limit]

Then:

g h1

= fst (h1 "") : [limit]

= fst (length "", ’ ’ : "") : [limit]

= length "" : [limit]

= 0 : [limit]

= [0, 100]

FP 2005 3.56 224

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

FP 2005 3.57 225

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

FP 2005 3.58 226

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

FP 2005 3.59 227

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

FP 2005 3.60 228

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

FP 2005 3.61 229

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

= …

FP 2005 3.62 230

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

= …

= 2015 : [limit]

FP 2005 3.63 231

Let’ sPlay the Evaluation GameAgain — 2

h2 :: String -> (Int, Char)

h2 str = (sum (map ord (notOccCaps str)), head str)

notOccCaps :: String -> String

notOccCaps str = filter (‘notElem‘ str) [’A’ .. ’Z’]

g h = fst (h "") : [limit]

Then:

g h2

= fst (h2 "") : [limit]

= fst (sum (map ord (notOccCaps "")), head "") : [limit]

= sum (map ord (notOccCaps "")) : [limit]

= …

= 2015 : [limit]

= [2015, 100]

FP 2005 3.64 232

Higher-Order Functions

g h = fst (h "") : [limit]

FP 2005 3.65 233

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

FP 2005 3.66 234

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

FP 2005 3.67 235

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]

FP 2005 3.68 236

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]

• Functions can be results of function application: succ . succ

FP 2005 3.69 237

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]

• Functions can be results of function application: succ . succ

A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.

FP 2005 3.70 238

Higher-Order Functions

g h = fst (h "") : [limit]

Functional Programming: Functions are first-class citizens

• Functions can be arguments of other functions: g h2

• Functions can be components of data structures: (7,h1), [h1, h2]

• Functions can be results of function application: succ . succ

A first-order function accepts only non-functional values as arguments.

A higher-order function expects functions as arguments.

g is a second-order function: it expects first-order functions like h1, h2
as arguments.

FP 2005 3.71 239

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)

FP 2005 3.72 240

Type Inference Examples

fst :: (a,b) -> a

fst (x,y) = x

fst (’c’, False) :: Char

["hello", fst (x, 17)] ⇒ x :: String

f p = limit + fst p ⇒ p :: (Int,a)

f :: (Int,a) -> Int

g h = fst (h "") : [limit]

⇒ h :: String -> (Int,a)

g :: (String -> (Int,a)) -> [Int]

FP 2005 3.73 241

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

FP 2005 3.74 242

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

FP 2005 3.75 243

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: ???

FP 2005 3.76 244

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double

FP 2005 3.77 245

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double

cylVol :: ???

FP 2005 3.78 246

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double

cylVol :: Double -> (Double -> Double)

FP 2005 3.79 247

Curried Functions

• Function application associates to the left, i.e.,

f x y = (f x) y

• Multi-argument functions in Haskell are typically defined as curried function,
i.e., “they accept their arguments one at a time”:

cylVol r h = (pi :: Double) * r * r * h

Since the right-hand side, r, and h obviously all have type Double, we
have;

(cylVol r) :: Double -> Double

cylVol :: Double -> (Double -> Double)

• Function type construction associates to the right, i.e.,

a -> b -> c = a -> (b -> c)

FP 2005 3.80 248

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

FP 2005 3.81 249

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → (b → c)

FP 2005 3.82 250

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → (b → c), with

• argument type a,

• result type b → c.

FP 2005 3.83 251

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → (b → c), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:

FP 2005 3.84 252

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → (b → c), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:

(f x) : : b → c

FP 2005 3.85 253

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → (b → c), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:

(f x) : : b → c

The application of a “two-argument function” to a single argument is a
“one-argument function”

FP 2005 3.86 254

“Partial Application”

Let values with the following types be given:

f : : a → b → c

x : : a

y : : b

The type of f is the function type a → (b → c), with

• argument type a,

• result type b → c.

Therefore, we can apply f to x and obtain:

(f x) : : b → c

The application of a “two-argument function” to a single argument is a
“one-argument function”, which can then be applied to a second argument:

(f x) y : : c = f x y

FP 2005 3.87 255

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

FP 2005 3.88 256

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k n str = (n ∗ (length str + 1) , unwords (replicate n str))

FP 2005 3.89 257

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

FP 2005 3.90 258

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)

FP 2005 3.91 259

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)
= fst (k 3 "") : [limit]

FP 2005 3.92 260

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)
= fst (k 3 "") : [limit]
= fst (3 ∗ (length "" + 1) , unwords (replicate 3 "")) : [limit]

FP 2005 3.93 261

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)
= fst (k 3 "") : [limit]
= fst (3 ∗ (length "" + 1) , unwords (replicate 3 "")) : [limit]
= (3 ∗ (length "" + 1)) : [limit]

FP 2005 3.94 262

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)
= fst (k 3 "") : [limit]
= fst (3 ∗ (length "" + 1) , unwords (replicate 3 "")) : [limit]
= (3 ∗ (length "" + 1)) : [limit]
= (3 ∗ (0 + 1)) : [limit]

FP 2005 3.95 263

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate 3 str))

g (k 3)
= fst (k 3 "") : [limit]
= fst (3 ∗ (length "" + 1) , unwords (replicate n "")) : [limit]
= (3 ∗ (length "" + 1)) : [limit]
= (3 ∗ (0 + 1)) : [limit]
= (3 ∗ 1) : [limit]

FP 2005 3.96 264

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)
= fst (k 3 "") : [limit]
= fst (3 ∗ (length "" + 1) , unwords (replicate 3 "")) : [limit]
= (3 ∗ (length "" + 1)) : [limit]
= (3 ∗ (0 + 1)) : [limit]
= (3 ∗ 1) : [limit]
= 3 : [limit]

FP 2005 3.97 265

Partial Application — Example

g : : (String → (Int , a)) → [Int]
g h = fst (h "") : [limit]

k : : Int → String → (Int , String)
k n str = (n ∗ (length str + 1) , unwords (replicate n str))

g (k 3)
= fst (k 3 "") : [limit]
= fst (3 ∗ (length "" + 1) , unwords (replicate 3 "")) : [limit]
= (3 ∗ (length "" + 1)) : [limit]
= (3 ∗ (0 + 1)) : [limit]
= (3 ∗ 1) : [limit]
= 3 : [limit]
= [3 , 100]

FP 2005 3.98 266

Operations on Functions

id :: a -> a − − identity function
id x = x

(.) :: (b -> c) -> (a -> b) -> (a -> c) − − function composition
(f . g) x = f (g x)

flip :: (a -> b -> c) -> (b -> a -> c) − − argument swapping
flip f x y = f y x

curry :: ((a,b) -> c) -> (a -> b -> c) − − currying
curry g x y = g (x,y)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f (x,y) = f x y

Exercise (necessary!): Copy only the definitions to a sheet of paper, and then
infer the types yourself!

FP 2005 3.99 267

Operator Sections

• Infix operators are turned into functions by surrounding them with
parentheses:

(+) 2 3 = 2 + 3

• This is necessary in type declarations:

(+) :: Int -> Int -> Int − − not the “natural” type of (+)
(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

• It is also possible to supply only one argument (which has to be an atomic
expression):

(2 +) 3 = 2 + 3 = (+ 3) 2

(8,3 /) 2.5 = 8.3 / 2.5 = (/ 2.5) 8.3

(7 :) [] = 7 : [] = (: []) 7

((2^17) :) (16:[]) = (2^17) : 16 : [] = (: (16:[])) (2^17)

FP 2005 3.100 268

Turning Functions into Infix Operators

Surrounding a function name by backquotes turns it into an infix operator.

Frequently used examples (not the “natural” types throughout):

div, mod, max, min :: Int -> Int -> Int

elem :: Int -> [Int] -> Bool

12 ‘div‘ 7 = 1

12 ‘mod‘ 7 = 5

12 ‘max‘ 7 = 12

12 ‘min‘ 7 = 7

12 ‘elem‘ [1 .. 10] = False

FP 2005 3.101 269

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

FP 2005 3.102 270

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] =

FP 2005 3.103 271

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] =
null (x : xs) =

FP 2005 3.104 272

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) =

FP 2005 3.105 273

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) = False

FP 2005 3.106 274

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) = False

head : : [a] → a

FP 2005 3.107 275

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) = False

head : : [a] → a

head (x : xs) = x

FP 2005 3.108 276

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) = False

head : : [a] → a

head (x : xs) = x

tail : : [a] → [a]

FP 2005 3.109 277

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) = False

head : : [a] → a

head (x : xs) = x

tail : : [a] → [a]
tail (x : xs) = xs

FP 2005 3.110 278

Defining Functions Over Lists by Pattern Matching

Some functions taking lists as arguments can be defined directly via pattern
matching:

null : : [a] → Bool

null [] = True
null (x : xs) = False

head : : [a] → a

head (x : xs) = x

tail : : [a] → [a]
tail (x : xs) = xs

(head and tail are partial functions — both are undefined on the empty list.)

FP 2005 3.111 279

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

(++) : : [a] → [a] → [a]

(‘elem‘) : : Int → [Int] → Bool

concat : : [[a]] → [a]

product : : [Integer] → Integer

sum : : [Integer] → Integer

FP 2005 3.112 280

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] =
length (x : xs) =

(++) : : [a] → [a] → [a]
[] ++ ys =
(x : xs) ++ ys =

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] =
concat (xs : xss) =

sum [] =
sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.113 281

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) =

(++) : : [a] → [a] → [a]
[] ++ ys =
(x : xs) ++ ys =

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] =
concat (xs : xss) =

sum [] =
sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.114 282

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys =
(x : xs) ++ ys =

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] =
concat (xs : xss) =

sum [] =
sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.115 283

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys =

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] =
concat (xs : xss) =

sum [] =
sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.116 284

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] =
concat (xs : xss) =

sum [] =
sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.117 285

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) =

sum [] =
sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.118 286

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] =
sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.119 287

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] = 0

sum (x : xs) =

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.120 288

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] = 0

sum (x : xs) = x + sum xs

product [] =
product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.121 289

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] = 0

sum (x : xs) = x + sum xs

product [] = 0

product (x : xs) =

(All these functions are in the standard prelude.)

FP 2005 3.122 290

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] =
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] = 0

sum (x : xs) = x + sum xs

product [] = 0

product (x : xs) = x ∗ product xs

(All these functions are in the standard prelude.)

FP 2005 3.123 291

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] = False
x ‘elem‘ (y : ys) =

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] = 0

sum (x : xs) = x + sum xs

product [] = 0

product (x : xs) = x ∗ product xs

(All these functions are in the standard prelude.)

FP 2005 3.124 292

Defining Functions Over Lists by Structural Induction

Many functions taking lists as arguments can be defined via structural
induction:

length : : [a] → Int

length [] = 0

length (x : xs) = 1 + length xs

(++) : : [a] → [a] → [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

x ‘elem‘ [] = False
x ‘elem‘ (y : ys) = x ≡ y || x ‘elem‘ ys

concat : : [[a]] → [a]
concat [] = []
concat (xs : xss) = xs ++ concat xss

sum [] = 0

sum (x : xs) = x + sum xs

product [] = 0

product (x : xs) = x ∗ product xs

(All these functions are in the standard prelude.)

FP 2005 3.125 293

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

FP 2005 3.126 294

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

FP 2005 3.127 295

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

FP 2005 3.128 296

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3]

FP 2005 3.129 297

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3]
= take_while (< 5) (1 : 2 : 3 : [])

FP 2005 3.130 298

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3]
= take_while (< 5) (1 : 2 : 3 : [])
= 1 : take_while (< 5) (2 : 3 : [])

FP 2005 3.131 299

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3]
= take_while (< 5) (1 : 2 : 3 : [])
= 1 : take_while (< 5) (2 : 3 : [])
= 1 : 2 : take_while (< 5) (3 : [])

FP 2005 3.132 300

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3]
= take_while (< 5) (1 : 2 : 3 : [])
= 1 : take_while (< 5) (2 : 3 : [])
= 1 : 2 : take_while (< 5) (3 : [])
= 1 : 2 : 3 : take_while (< 5) []

FP 2005 3.133 301

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3]
= take_while (< 5) (1 : 2 : 3 : [])
= 1 : take_while (< 5) (2 : 3 : [])
= 1 : 2 : take_while (< 5) (3 : [])
= 1 : 2 : 3 : take_while (< 5) []
= 1 : 2 : 3 : []

FP 2005 3.134 302

Guarded Definitions

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = -1

choose : : Ord a ⇒ (a , b) → (a , b) → b
choose (x , v) (y , w)

| x > y = v
| x < y = w
| otherwise = error "I cannot decide!"

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3]
= take_while (< 5) (1 : 2 : 3 : [])
= 1 : take_while (< 5) (2 : 3 : [])
= 1 : 2 : take_while (< 5) (3 : [])
= 1 : 2 : 3 : take_while (< 5) []
= 1 : 2 : 3 : []
= [1, 2 , 3]

FP 2005 3.135 303

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

FP 2005 3.136 304

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]

FP 2005 3.137 305

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.138 306

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.139 307

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.140 308

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.141 309

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (< 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.142 310

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (< 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take_while (< 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.143 311

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (< 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take_while (< 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take_while (< 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.144 312

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (< 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take_while (< 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take_while (< 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while (< 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.145 313

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (< 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take_while (< 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take_while (< 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while (< 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : take_while (< 5) (5 : 4 : 3 : 4 : 5 : 6 : [])

FP 2005 3.146 314

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (< 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take_while (< 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take_while (< 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while (< 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : take_while (< 5) (5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : []

FP 2005 3.147 315

Guarded Definitions — Fall-Thr ough

If no guard succeeds, the next pattern is tried:

take_while p (x : xs) | p x = x : take_while p xs
take_while p xs = []

take_while (< 5) [1, 2 , 3 , 2 , 3 , 4 , 3 , 4 , 5 , 4 , 3 , 4 , 5 , 6]
= take_while (< 5) (1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : take_while (< 5) (2 : 3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : take_while (< 5) (3 : 2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : take_while (< 5) (2 : 3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : take_while (< 5) (3 : 4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : take_while (< 5) (4 : 3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : take_while (< 5) (3 : 4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : take_while (< 5) (4 : 5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : take_while (< 5) (5 : 4 : 3 : 4 : 5 : 6 : [])
= 1 : 2 : 3 : 2 : 3 : 4 : 3 : 4 : []
= [1, 2 , 3 , 2 , 3 , 4 , 3 , 4]

FP 2005 3.148 316

case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

FP 2005 3.149 317

case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

The prelude datatype Ordering has three elements and is used mostly as result
type of the prelude function compare:

data Ordering = LT | EQ | GT

FP 2005 3.150 318

case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

The prelude datatype Ordering has three elements and is used mostly as result
type of the prelude function compare:

data Ordering = LT | EQ | GT

compare : : Ord a ⇒ a → a → Ordering

FP 2005 3.151 319

case Expressions

sign x = case compare x 0 of
GT -> 1
EQ -> 0
LT -> -1

The prelude datatype Ordering has three elements and is used mostly as result
type of the prelude function compare:

data Ordering = LT | EQ | GT

compare : : Ord a ⇒ a → a → Ordering

Another example:

choose (x , v) (y , w) = case compare x y of
GT → v
LT → w
EQ → error "I cannot decide!"

FP 2005 3.152 320

if … then … else … and case Expressions

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True

FP 2005 3.153 321

if … then … else … and case Expressions

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are “syntactic sugar” for case expressions over Bool:

if condition

then expr1

else expr2

≡ case condition of
True → expr1

False → expr2

FP 2005 3.154 322

if … then … else … and case Expressions

The type Bool can be considered as a two-element enumeration type:

data Bool = False | True

Conditional expressions are “syntactic sugar” for case expressions over Bool:

if condition

then expr1

else expr2

≡ case condition of
True → expr1

False → expr2

Two ways of defining functions:

Pattern Matching

not True = False
not False = True

case

not b = case b of
True → False
False → True

FP 2005 3.155 323

case Expressions are “Anonymous” Pattern Matching

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ case xs of

[] → []
_ → ", " : commaWords xs

FP 2005 3.156 324

case Expressions are “Anonymous” Pattern Matching

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ case xs of

[] → []
_ → ", " : commaWords xs

Every use of a case expression can be transformed into the use of an auxiliary
function defined by pattern matching

FP 2005 3.157 325

case Expressions are “Anonymous” Pattern Matching

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ case xs of

[] → []
_ → ", " : commaWords xs

Every use of a case expression can be transformed into the use of an auxiliary
function defined by pattern matching:

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs

FP 2005 3.158 326

case Expressions are “Anonymous” Pattern Matching

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ case xs of

[] → []
_ → ", " : commaWords xs

Every use of a case expression can be transformed into the use of an auxiliary
function defined by pattern matching:

commaWords : : [String] → String
commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs

commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

FP 2005 3.159 327

where Clauses

FP 2005 3.160 328

where Clauses

If an auxiliary definition is used only locally, it should be inside a local
definition

FP 2005 3.161 329

where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition,
e.g.:

commaWords : : [String] → String

commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs

where
commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

FP 2005 3.162 330

where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition,
e.g.:

commaWords : : [String] → String

commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs

where
commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

where clauses are visible only within their enclosing clause, here “commaWords
(x : xs) = …”

FP 2005 3.163 331

where Clauses

If an auxiliary definition is used only locally, it should be inside a local definition,
e.g.:

commaWords : : [String] → String

commaWords [] = []
commaWords (x : xs) = x ++ commaWordsAux xs

where
commaWordsAux [] = []
commaWordsAux xs = ", " : commaWords xs

where clauses are visible only within their enclosing clause, here “commaWords
(x : xs) = …”

where clauses are visible within all guards:

f x y | y > z = …

| y == z = …

| y < z = …

where z = x * x

FP 2005 3.164 332

let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

FP 2005 3.165 333

let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)

FP 2005 3.166 334

let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)

Definitions can use pattern bindings:

g k n = let (d,m) = divMod k n
in if d == 0

then [m]
else g d n ++ [m]

FP 2005 3.167 335

let Expressions

Local definitions can also be part of expressions:

f k n = let m = k ‘mod‘ n
in if m == 0

then n
else f n m

h x y = let x2 = x * x
y2 = y * y

in sqrt (x2 + y2)

Definitions can use pattern bindings:

g k n = let (d,m) = divMod k n
in if d == 0

then [m]
else g d n ++ [m]

Guards, let and where bindings, and case cases all are layout sensitive!

FP 2005 3.168 336

let or where?

FP 2005 3.169 337

let or where?

• let bindings in expression

is an expression

FP 2005 3.170 338

let or where?

• let bindings in expression

is an expression

• fname patterns guardedRHSs where bindings

is a clause that is part of a definition

FP 2005 3.171 339

let or where?

• let bindings in expression

is an expression

• fname patterns guardedRHSs where bindings

is a clause that is part of a definition

• (where clauses can also modify case cases)

FP 2005 3.172 340

let or where?

• let bindings in expression

is an expression

• fname patterns guardedRHSs where bindings

is a clause that is part of a definition

• (where clauses can also modify case cases)

Frequently, the choice between let and where is a matter of style:

• where clauses result in a top-down presentation

• let expressions lend themselves also to bottom-up presentations

FP 2005 3.173 341

SomePreludeFunctions— Elementary List Access

head :: [a] -> a
head (x:_) = x

last :: [a] -> a
last [x] = x
last (_:xs) = last xs

tail :: [a] -> [a]
tail (_:xs) = xs

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs

null :: [a] -> Bool
null [] = True
null (_:_) = False

FP 2005 3.174 342

SomePreludeFunctions— List Indexing

length :: [a] -> Int
length = foldl’ (\n _ -> n + 1) 0

(!!) :: [b] -> Int -> b
(x:_) !! 0 = x
(_:xs) !! n | n>0 = xs !! (n-1)
(_:_) !! _ = error "PreludeList.!!: negative index"
[] !! _ = error "PreludeList.!!: index too large"

FP 2005 3.175 343

SomePreludeFunctions— Positional List Splitting

take :: Int -> [a] -> [a]
take 0 _ = []
take _ [] = []
take n (x:xs) | n>0 = x : take (n-1) xs
take _ _ = error "take: negative argument"

drop :: Int -> [a] -> [a]
drop 0 xs = xs
drop _ [] = []
drop n (_:xs) | n>0 = drop (n-1) xs
drop _ _ = error "drop: negative argument"

splitAt :: Int -> [a] -> ([a], [a])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt n (x:xs) | n>0 = (x:xs’,xs”)

where (xs’,xs”) = splitAt (n-1) xs
splitAt _ _ = error "splitAt: negative argument"

FP 2005 3.176 344

SomePreludeFunctions— Concatenation,Iteration

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

concat :: [[a]] -> [a]
concat = foldr (++) []

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

repeat :: a -> [a]
repeat x = xs where xs = x:xs
{− repeat x = x : repeat x −} − − for understanding

replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

cycle :: [a] -> [a]
cycle xs = xs’ where xs’ = xs ++ xs’

FP 2005 3.177 345

Separation of Concerns: Generation and Consumption

FP 2005 3.178 346

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

FP 2005 3.179 347

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

FP 2005 3.180 348

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

FP 2005 3.181 349

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)

FP 2005 3.182 350

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction

FP 2005 3.183 351

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

FP 2005 3.184 352

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)

FP 2005 3.185 353

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction

FP 2005 3.186 354

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

FP 2005 3.187 355

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)

FP 2005 3.188 356

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction

FP 2005 3.189 357

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : ’!’ : [] − − take (i)

FP 2005 3.190 358

Separation of Concerns: Generation and Consumption

replicate 3 ’!’

= take 3 (repeat ’!’) − − replicate

= take 3 (’!’ : repeat ’!’) − − repeat

= ’!’ : take (3 - 1) (repeat ’!’) − − take (iii)
= ’!’ : take 2 (repeat ’!’) − − subtraction
= ’!’ : take 2 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : take (2 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : take 1 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : take 1 (’!’ : repeat ’!’) − − repeat

= ’!’ : ’!’ : ’!’ : take (1 - 1) (repeat ’!’) − − take (iii)
= ’!’ : ’!’ : ’!’ : take 0 (repeat ’!’) − − subtraction
= ’!’ : ’!’ : ’!’ : [] − − take (i)
= "!!!"

FP 2005 3.191 359

What We Have Seen So Far

FP 2005 3.192 360

What We Have Seen So Far

• Functional programming:

FP 2005 3.193 361

What We Have Seen So Far

• Functional programming: Higher-order functions

FP 2005 3.194 362

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

FP 2005 3.195 363

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems:

FP 2005 3.196 364

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors

FP 2005 3.197 365

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism

FP 2005 3.198 366

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables)

FP 2005 3.199 367

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

FP 2005 3.200 368

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules:

FP 2005 3.201 369

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator

FP 2005 3.202 370

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

FP 2005 3.203 371

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing:

FP 2005 3.204 372

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference

FP 2005 3.205 373

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name

FP 2005 3.206 374

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypes with simple interface:

FP 2005 3.207 375

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypes with simple interface: Integer , lists, lists of lists of …

FP 2005 3.208 376

What We Have Seen So Far

• Functional programming: Higher-order functions, functions as arguments
and results

• Type systems: type constants and type constructors, parametric
polymorphism (type variables), type inference

• Operator precedence rules: juxtaposition as operator, “associate to
the left/right”

• Argument passing: not by value or reference, but by name

• Powerful datatypes with simple interface: Integer , lists, lists of lists of …

• Non-local control (evaluation on demand): modularity (e.g., generate
/ prune)

FP 2005 3.209 377

SomePreludeFunctions— List Splitting with Predicates

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = let (ys,zs) = span p xs’ in (x:ys,zs)
| otherwise = ([],xs)

break p = span (not . p)

FP 2005 3.210 378

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

FP 2005 3.211 379

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

FP 2005 3.212 380

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p =

• xs =

• x =

• xs’ =

FP 2005 3.213 381

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p = (< 5)

• xs =

• x =

• xs’ =

FP 2005 3.214 382

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p = (< 5)

• xs = [1,2 ,3]

• x =

• xs’ =

FP 2005 3.215 383

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p = (< 5)

• xs = [1,2 ,3]

• x = 1

• xs’ =

FP 2005 3.216 384

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p = (< 5)

• xs = [1,2 ,3]

• x = 1

• xs’ = [2 ,3]

FP 2005 3.217 385

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p = (< 5)

• xs = [1,2 ,3]

• x = 1

• xs’ = [2 ,3]

• p x = (< 5) 1 = 1 < 5 = True

FP 2005 3.218 386

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p = (< 5)

• xs = [1,2 ,3]

• x = 1

• xs’ = [2 ,3]

• p x = (< 5) 1 = 1 < 5 = True

Therefore: dropWhile (< 5) [1,2 ,3] =

FP 2005 3.219 387

as-Patterns

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [1,2 ,3]:

• p = (< 5)

• xs = [1,2 ,3]

• x = 1

• xs’ = [2 ,3]

• p x = (< 5) 1 = 1 < 5 = True

Therefore: dropWhile (< 5) [1,2 ,3] = dropWhile (< 5) [2 ,3]

FP 2005 3.220 388

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

FP 2005 3.221 389

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p =

• xs =

• x =

• xs’ =

FP 2005 3.222 390

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p = (< 5)

• xs =

• x =

• xs’ =

FP 2005 3.223 391

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p = (< 5)

• xs = [5 ,4 ,3]

• x =

• xs’ =

FP 2005 3.224 392

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p = (< 5)

• xs = [5 ,4 ,3]

• x = 5

• xs’ =

FP 2005 3.225 393

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p = (< 5)

• xs = [5 ,4 ,3]

• x = 5

• xs’ = [4 ,3]

FP 2005 3.226 394

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p = (< 5)

• xs = [5 ,4 ,3]

• x = 5

• xs’ = [4 ,3]

• p x = (< 5) 5 = 5 < 5 = False

FP 2005 3.227 395

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p = (< 5)

• xs = [5 ,4 ,3]

• x = 5

• xs’ = [4 ,3]

• p x = (< 5) 5 = 5 < 5 = False

Therefore: dropWhile (< 5) [5 ,4 ,3] =

FP 2005 3.228 396

as-Patterns— 2

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

Consider matching of the third clause against dropWhile (< 5) [5 ,4 ,3]:

• p = (< 5)

• xs = [5 ,4 ,3]

• x = 5

• xs’ = [4 ,3]

• p x = (< 5) 5 = 5 < 5 = False

Therefore: dropWhile (< 5) [5 ,4 ,3] = [5 ,4 ,3]

FP 2005 3.229 397

SomePreludeFunctions— List Splitting with Predicates

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = let (ys,zs) = span p xs’ in (x:ys,zs)
| otherwise = ([],xs)

break p = span (not . p)

FP 2005 3.230 398

SomePreludeFunctions— Text Processing

lines :: String -> [String]
lines "" = []
lines s = let (l,s’) = break (’\n’==) s

in l : case s’ of [] -> []
(_:s”) -> lines s”

words :: String -> [String]
words s = case dropWhile isSpace s of

"" -> []
s’ -> w : words s”

where (w,s”) = break isSpace s’

unlines :: [String] -> String
unlines [] = []
unlines (l:ls) = l ++ ’\n’ : unlines ls

unwords :: [String] -> String
unwords [] = ""
unwords [w] = w
unwords (w:ws) = w ++ ’ ’ : unwords ws

FP 2005 3.231 399

map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

FP 2005 3.232 400

map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

FP 2005 3.233 401

map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]

FP 2005 3.234 402

map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

FP 2005 3.235 403

map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]

FP 2005 3.236 404

map and filter

map :: (a -> b) -> ([a] -> [b])

map f [] = []

map f (x:xs) = f x : map f xs

filter :: (a -> Bool) -> ([a] -> [a])

filter p [] = []

filter p (x : xs) = if p x then x : rest else rest

where rest = filter p xs

These functions could also be defined via list comprehension:

map f xs = [f x | x <- xs]

filter p xs = [x | x <- xs, p x]

Examples:

map (7 *) [1 .. 6] = [7, 14, 21, 28, 35, 42]

filter even [1 .. 6] = [2, 4, 6]

FP 2005 3.237 405

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

FP 2005 3.238 406

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

foldr1 (⊗) [x1, x2, x3, x4, x5]

FP 2005 3.239 407

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

foldr1 (⊗) [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr1 (⊗) [x2, x3, x4, x5])

FP 2005 3.240 408

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

foldr1 (⊗) [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr1 (⊗) [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr1 (⊗) [x3, x4, x5]))

FP 2005 3.241 409

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

foldr1 (⊗) [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr1 (⊗) [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr1 (⊗) [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr1 (⊗) [x4, x5])))

FP 2005 3.242 410

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

foldr1 (⊗) [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr1 (⊗) [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr1 (⊗) [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr1 (⊗) [x4, x5])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr1 (⊗) [x5]))))

FP 2005 3.243 411

foldr1

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 (⊗) [x] = x

foldr1 (⊗) (x:xs) = x ⊗ (foldr1 (⊗) xs)

foldr1 (⊗) [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr1 (⊗) [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr1 (⊗) [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr1 (⊗) [x4, x5])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr1 (⊗) [x5]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ x5)))

FP 2005 3.244 412

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

FP 2005 3.245 413

foldrX

foldrX : : (a → b → b) → b → [a] → b

foldrX (∗∗∗) z [] = z

foldrX (∗∗∗) z (x : xs) = x ∗∗∗ (foldrX (∗∗∗) z xs)

FP 2005 3.246 414

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

FP 2005 3.247 415

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr (⊗) z [x2, x3, x4, x5])

FP 2005 3.248 416

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr (⊗) z [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr (⊗) z [x3, x4, x5]))

FP 2005 3.249 417

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr (⊗) z [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr (⊗) z [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr (⊗) z [x4, x5])))

FP 2005 3.250 418

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr (⊗) z [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr (⊗) z [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr (⊗) z [x4, x5])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr (⊗) z [x5]))))

FP 2005 3.251 419

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr (⊗) z [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr (⊗) z [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr (⊗) z [x4, x5])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr (⊗) z [x5]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ (foldr (⊗) z [])))))

FP 2005 3.252 420

foldr

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr (⊗) z [] = z

foldr (⊗) z (x:xs) = x ⊗ (foldr (⊗) z xs)

foldr (⊗) z [x1, x2, x3, x4, x5]

= x1 ⊗ (foldr (⊗) z [x2, x3, x4, x5])

= x1 ⊗ (x2 ⊗ (foldr (⊗) z [x3, x4, x5]))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (foldr (⊗) z [x4, x5])))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (foldr (⊗) z [x5]))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ (foldr (⊗) z [])))))

= x1 ⊗ (x2 ⊗ (x3 ⊗ (x4 ⊗ (x5 ⊗ z))))

FP 2005 3.253 421

List Folding

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs

FP 2005 3.254 422

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

FP 2005 3.255 423

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 ∗ (limit + 1)

FP 2005 3.256 424

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)

FP 2005 3.257 425

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

FP 2005 3.258 426

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

Another definition:

concat = foldr (++) []

FP 2005 3.259 427

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

Another definition:

concat = foldr (++) []

Expanding this definition:

concat [[1,2 ,3] , [4 ,5]]

FP 2005 3.260 428

Unfolding Definitions

A simple definition:

limit = 10 ^ 2

Expanding this definition:

4 * (limit + 1)
= 4 * ((10 ^ 2) + 1)
= …

Another definition:

concat = foldr (++) []

Expanding this definition:

concat [[1,2 ,3] , [4 ,5]]
= (foldr (++) []) [[1,2 ,3] , [4 ,5]]
= …

FP 2005 3.261 429

Enumeration Type Definitions

data Bool = False | True deriving (Eq , Ord , Read , Show)
data Ordering = LT | EQ | GT deriving (Eq , Ord , Read , Show)

data Suit = Diamonds | Hearts | Spades | Clubs deriving (Eq , Ord)

Pattern matching:

not False = True
not True = False

lexicalCombineOrdering : : Ordering → Ordering → Ordering

lexicalCombineOrdering LT _ = LT

lexicalCombineOrdering EQ x = x

lexicalCombineOrdering GT _ = GT

FP 2005 3.262 430

Simple data Type Definitions

data Point = Pt Int Int deriving (Eq) −− screen coordinates

data Transport = Feet
| Bike
| Train Int −− price in cent

This defines at the same time data constructors:

Pt : : Int → Int → Point

Feet : : Transport

Bike : : Transport

Train : : Int → Transport

Pattern matching:

addPt (Pt x1 y1) (Pt x2 y2) = Pt (x1 + x2) (y1 + y2)

cost Feet = 0

cost Bike = 0

cost (Train Int) = Int

FP 2005 3.263 431

Simple Polymorphic data Type Definitions

The prelude type constructors Maybe, Either , Complex are defined as follows:

data Maybe a = Nothing | Just a deriving (Eq , Ord , Read , Show)
data Either a b = Left a | Right b

data Complex r = r :+ r deriving (Eq , Read , Show)

This defines at the same time data constructors:

Nothing : : Maybe a

Just : : a → Maybe a

Left : : a → Either a b

Right : : b → Either a b

(:+) : : r → r → Complex r

