Domain Theory

by Sabina Horton for CAS 706, March, 2005

- a branch of order theory which looks at special types of ordered sets called domains
- used to specify denotational semantics
- formalizes intuitive ideas about approximation

Partially Ordered Sets

A partial order, \sqsubseteq , defined on a set P, is:

- reflexive: For all $x \in P$, $x \sqsubseteq x$.
- transitive: For $x,y,z \in P$, if $x \sqsubseteq y$ and $y \sqsubseteq z$, then $x \sqsubseteq z$
- antisymmetric: For $x, y \in P$, if $x \sqsubseteq y$ and $y \sqsubseteq x$, then x = y.

The pair (P, \sqsubseteq) is then a partially ordered set.

Orderings of Partial Functions

Let $Pfn(A \rightarrow B)$ be the set of all (partial and total) functions from A to B.

Then we can order $Pfn(A \rightarrow B)$ such that, for $f,g \in Pfn(A \rightarrow B), f \sqsubseteq g \text{ iff } dom(f) \subseteq dom(g) \text{ and}$ $f(x) = g(x) \text{ for all } x \in dom(f).$

In this way, if we have a partial function f and a total function g, where $f,g \in Pfn(A \rightarrow B)$, and $f \sqsubseteq g$, we can think of f as approximating g because, where f is defined, it behaves exactly as g; it is just defined over fewer elements than g.

Chains and Antichains

- A partially ordered set P is a chain if for all $x,y \in P, x \sqsubseteq y$ or $y \sqsubseteq x$.
- P is an antichain if, for any x,y∈ P, x \sqsubseteq y only if x = y.

Any subset of a chain is also a chain. Likewise with antichains.

Any set can be given the antichain ordering.

Top and Bottom

- If P is a partially ordered set, then its bottom element, \bot , if it exists, has the property that $\bot \sqsubseteq x$ for all $x \in P$. P's top element, \top , is defined as $x \sqsubseteq \top$.
- op represents a contradictory element, whereas \perp represents a complete lack of information.
- All finite chains have a top and bottom element.
- In domain theory, we typically want a bottom element, so we can form $P \perp$ by "lifting" a set P by giving it the antichain order, and then taking P U { \perp }, where $\perp \notin P$, and updating the order so that $\perp \sqsubseteq x$ for all $x \in P$. P \perp is then flat.

Least Upper Bounds and Directed Sets

Let P be an ordered set and $S \subseteq P$. Then $x \in P$ is an upper bound of S if $y \sqsubseteq x$ for all $y \in S$. x is a least upper bound, $\sqcup S$ if $x \sqsubseteq y$ for all upper bounds y.

A non-empty subset S of an ordered set P is directed if for every pair of elements $x,y \in S$, there exists a $z \in S$ such that z is an upper bound of $\{x,y\}$.

This is equivalent to saying that S is directed iff every finite subset of S has an upper bound in S.

Complete Partially Ordered Sets

A partially ordered set P is complete if each directed subset $D \subseteq P$ has a least upper bound and if P contains a bottom element.

An equivalent definition is that P is complete iff each chain $D \subseteq P$ has a least upper bound in P.

The fact that a CPO needs a least upper bound does not need to be an explicit part of the second definition because the empty subset is (vacuously) a chain, and its least upper bound will be a bottom, whereas a directed subset, by definition, is non-empty.

A CPO without a bottom is called a pre-CPO.

Monotone and Continuous Functions

- A function f: A \rightarrow B, where A and B are ordered, is monotone if, for $x, y \in A$, $x \sqsubseteq y$ in A implies $f(x) \sqsubseteq f(y)$ in B.
- A function f: A \rightarrow B is continuous if A and B are pre-CPOs and, for every directed set C in A, the subset f(C) of B is directed, and f(\sqcup C) = \sqcup f(C).

Lemma: All continuous functions are monotone. Proof: Given a continuous function $f(P \rightarrow Q)$, take $x, y \in P$, $x \sqsubseteq y$. Then $\{x, y\}$ is a directed set, and we know $\sqcup \{x, y\} = y$, and therefore $f(\sqcup \{x, y\}) = f(y)$. We also know that $f(x) \sqsubseteq \sqcup f(\{x, y\})$ because $x \sqsubseteq y$. Since f is continuous, we then get $f(x) \sqsubseteq \sqcup f(\{x, y\}) = f(\sqcup \{x, y\}) = f(y)$.

CPOs of Partial Functions

Let A be a non-empty set. Then $f \in Pfn(A \rightarrow A)$ can be converted into a total function by mapping every element in $A \setminus \{dom(f)\}$ to the bottom element of $A \perp$.

We get $f_{\perp}(x) = f(x)$ if $x \in dom(f)$ and $f_{\perp}(x) = \bot$ otherwise.

We can then use the partial function V: $f \mapsto f \perp$ to show that both Pfn(A \rightarrow A) and Tfn(A \rightarrow A \perp) are CPOs by showing that V is an order-isomorphism (x \sqsubseteq y iff V(x) \sqsubseteq V(y)).