
1

CAS 706 - Presentation

Compiling Functional Programs
in a Statically-typed Language

Xiao-lei Cui
Nov 24th, 2006

2

Compilation in General

In a broader view, a compiler is a
program which processes a
structured source and generates
(simpler structured) target code.
Compilation is typically split into a
number of consecutive phases.

Source code: programming language,
text formatting language, database
query language, etc.
Target code: high-level language,
assembly language, virtual-machine
code, machine code, etc.

Front end: consists of the phases
serve to figure out the meaning of
the source code; operations are
mostly dependent to the source
language.
Back end: consists of the phases
serves to construct target code;
operations are mostly dependent to
the target architecture.

source code (char stream)

syntactic analysis

lexical analysis

contextual analysis

intermediate code
generation

code optimization

Target code generation

target code

token stream

parse tree

annotated AST

intermediate code

intermediate code

Front
end

Back
end

3

Outline

Section 1: A Short Tour of Haskell
(review essential functional programming aspects)

Section 2: Front End of a functional compiler
(address on aspects handled at the Front End)

Section 3: Back End of a functional compiler
(address on aspects handled at the Back End)

4

Short Tour of Haskell..

Compiling functional programs differs considerably from compiling
imperative programs. Before discussing techniques employed in a
functional language compiler, we quickly walk through a tour of
Haskell to highlight the aspects that require special care.

We will emphasize the aspects of functional languages that raise
the level of abstraction above that of imperative languages.

Haskell:
- representative of “pure functional lazy language”
- contains most features from functional programming
- statically-typed: Haskell is strongly-typed and the type-checking

can be performed at compile-time.

5

..Short Tour of Haskell..

Offside Rule

Function is defined in the form of an equation. There is no explicit token to
denote the end of each equation. The Offside rule controls the bounding
box of an expression (the function name).

Offside Rule states:
Anything belonging to a function definition must be indented from
where that function definition began; anything that is not indented is
taken to be a new function definition.

Example:
twice x = 2 * x

twice x =

2 * x

but not same as:
twice x =

2 * x

6

..Short Tour of Haskell..

Offside Rule (continued)
• The Offside rule has to be applied recursively for nested function

definitions, as in:
fac n = if (n == 0) then 1 else prod n (n-1)

where
prod acc n = if (n == 0) then acc

else prod (acc*n) (n-1)

Handled conveniently by lexical analyzer (How?)
Lexical analyzer inserts explicit end-of-equation token, a “;” in Haskell, as
follows.

It maintains a stack of offside markers.

Step1: When the lexical analyzer detects the first character of a function name,
it pushes the cursor position of this character on stack. Upon detecting a line-
break, it skips all white space and records the first character position of the
next function name.

Step2: It then compares this new position with the top of the marker stack. If
the new position is less or equal to the marker, it pops the marker and inserts a
“;” token; the lexical analyzer then compares the new position with the top of the
stack repeatedly, until the stack is empty OR the new position is greater than
the top marker. Continue with Step 1.

7

..Short Tour of Haskell..

Exercise:
According to the Offside rule in functional programming, if the
entire program has been scanned (lexical analysis completes), can
you tell anything about the state of the marker stack ?

empty

non-empty

8

..Short Tour of Haskell..

List

[] empty list
[1] list of integer
[1,2,3] ...
[“red”, “green”, “blue”] list of string

[1..5] arithmetic sequence
shorthand for [1,2,3,4,5]

Note:
An arithmetic sequence ([n..m]) can be constructed by a function as
follows

range n m = if n>m then []
else (n : range (n+1) m)

9

..Short Tour of Haskell..

List Comprehension

In mathematics, the comprehension notation can be used to
construct a new sets from old sets.

{x2 | x ∈ {1..5} }

In Haskell, a similar comprehension notation can be used to
construct new lists from old lists.

[x^2 | x <- [1..5]]

List Comprehension is considered to be syntactic sugar
since it can be transformed easily to a simpler expression.
This transformation will be discussed in Section 2.

10

..Short Tour of Haskell..

Pattern matching

• In general a function can be specified by several equations
containing patterns at argument position.

• A pattern can be a constant, a variable or a constructor whose
elements are patterns such as (x:xs).

• Function definitions based pattern matching can be translated
to equivalent definitions based on if-then-else construct.
Further details will be shown in Section 2.

Example:

length [] = 0
length (x:xs) = 1 + length xs

length list =
if (list == []) then 0
else let

x = head list
xs = tail list

in
1 + length xs

11

..Short Tour of Haskell

Higher-order function
• A function that takes a function as an argument, or delivers one

as a result.
• Currying allows us to create new functions by partially apply an

existing function to arguments that is less than the arity of the
function.

• Functional languages consider a function with n argument as
syntactic sugar for a chain of n unary functions processing the
arguments one by one:

f e1 e2 … en == (… ((f e1) e2) … en)
• In short, an n-ary function applied to m arguments denotes an

(n-m)-ary function. A 0-ary function can be viewed as an
expression.

• We need additional run-time support to construct and evaluate
curried functions. This will be discussed later in Section 3.

12

..Short Tour of Haskell..

Lazy Evaluation
• Evaluate a non-trivial expression amounts to evaluating its sub-

expressions and combining the results by operators or
functions.

• Lazy Evaluation specifies a subexpression will only be evaluated
when its value is needed for the progress of the computation.

• Example:

> ignorearg (1/0)
"I did not evaluate the arg.“

> seq ignorearg (1/0)
1.#INF

ignorearg x = "I did not evaluate the arg."

• Lazy evaluation requires run-time support. A function application
is translated into a graph containing function and arguments. When
needed, such a suspended function can be activated at run-time.

13

Front End of the compiler..

General structure of a functional
compiler is given by the picture to
the right.
High-level source code is simplified
through several transformations
into a functional core
(intermediate code in Haskell),
which contains no syntactic sugar.
The Functional core requires
explicit typing, therefore the
front end has to derive type
information from source code.
(type checking is done at compile-
time)
Optimizations may be applied to
functional core multiple times.
In the final step, code generation
transform functional core to
target code (C code); the resulting
C program is then linked with the
run-time system and compiled with
a C compiler.

High-level language

Functional core

C code

Run-time system

+

Type Inference
Desugaring

Code
Generation

Optimization

14

..Front End of the compiler..

Functional core
It includes the following constructs:

• Basic data types
• Structured data types
• Typed non-nesting functions
• Local bindings
• Expression consisting of identifier, arithmetic operator, if-

then-else compound, and function application
• Higher-order functions
• Lazy evaluation semantics

These constructs, except for the last two, can be easily mapped to
C contructs.

15

..Front End of the compiler..

• Polymorphic type checking

– Type checker must derive type information solely from function
definitions.

– When type checking an n-ary function, n fresh types Typi are
added for each argument.

– Setting up a set of equations (the constraint), and then solve
(unify) the equations.

– See the Hindley-Milner Type Inference Algorithm
• Chapter 22 in “Type and Programming Languages” [Pierce]
• Chapter 16 in “Modern compiler implementation in ML”

[Appel]

16

..Front End of the compiler..

• Desugaring (removing syntactic sugar)
– After type checking, the compiler performs Desugaring.
– Focus on translating:

• List
• List comprehension
• Pattern matching
• Nested function

into their equivalent functional core constructs.

1. List
List notations contain 3 forms of syntactic sugar:

, : ..

[1,2]

Cons(1,Cons(2,Nil))

x : xs

Cons(x, xs)

17

..Front End of the compiler..

[n..m] range n m = if n>m then []
else (n : range (n+1) m)

2. List comprehension

The general form of list comprehension

[expression | qualifier, … , qualifier]

where a qualifier is either a generator of a filter(F):

generator ::= var <- list comprehension

filter ::= boolean expession

pyth n = [(a,b,c) | a <- [1 .. n],
b <- [a .. n],
c <- [b .. n],
a^2 + b^2 == c^2]

Example in Haskell

18

..Front End of the compiler..

List comprehension continued
function pyth n computes all Pythagorean triangles with sides less
than or equal to n.

– Transformation of list comprehensions works by processing the
qualifiers from left to right one at a time.

– Translation scheme for list comprehension is the following
(F denotes filter; Q denotes a sequence of qualifiers; L
denotes a list expression):

T{ [expr |] } [expr] (1)

T{ [expr | F, Q] } if (F) then T{ [expr | Q] } (2)
else []

T{ [expr | e <- L, Q] } mappend fQ L (3)
where

fQ e = T{ [expr | Q] }

19

.. Front End of the compiler..

• Rule (1) covers the base case; no more qualifiers left.
• Rule (2) handles the filter qualifier(F). If F holds, we compute the

remaining Q by recursively invoking translation scheme T;
otherwise, return empty list and terminates.

• Rule (3) covers the generator qualifier, e <- L. Since the generator
produces zero or more element drawn from L, we need generate
code to iterate over all elements in L, compute the remainder Q,
and concat result lists to a single list.
– Need a nested function fQ. It takes element e and produces a

list of values that Q can assume for e.
– Need a function that concat the result lists into a single list,

mappend (similar to List.map):

mappend :: (a -> [b]) -> [a] -> [b]
mappend f [] = []
mappend f (x:xs) = f x ++ mappend f xs

20

..Front End of the compiler..

Applying the translation scheme to function pyth produces code:

pyth n = mappend f_bc2 [1..n]
where
f_bc2 a = mappend f_c2 [a .. n]

where
f_c2 b = mappend f_2 [b .. n]

where
f_2 c = if (a^2 + b^2 == c^2)

then [(a,b,c)]
else []

21

..Front End of the compiler..

3. Pattern Matching
The general layout of pattern matching:

fun p1,1 ... p1,n = expr1
.
.
.
fun pm,1 ... Pm,n = exprm

Translation Scheme:

fun a1 ... an => if (cond1) then let defs1 in expr1
else if (cond2) then let defs2 in expr2

.

.

.
else if (condm) then let defsm in exprm
else error "fun: no matching pattern"

22

..Front End of the compiler..

If pattern contains constructors, type information is needed at run
time. We must verify the argument actually matches the
constructor specified in the pattern.

– Need two functions
_type_contr : returns the constructor tag of any type elmt.
_type_field n : returns the nth field of a structured type.

take a1 a2 = if (a1 == 0) then
let xs = a2 in []

else if (a2 == []) then
let n = a1 in []

else if (_type_constr a2 == Cons) then
let

n = a1
x = _type_field 1 a2 --get the head
xs = _type_field 2 a2 -- get the tail

in x : take (n-1) xs
else error "take: no matching pattern"

23

..Front End of the compiler

• Nested function definition
- The functional core deliberately excludes nested functions.

Nested functions are translated into their equivalent non-nested
forms.

- One obvious reason is that the target code (in C), do not support
nested functions. There are more convincing arguments for
choosing to un-nest nested function rather than implement a
compiler supports nested function definitions directly (like Pascal).

- Modern functional languages uses lambda-lifting to un-nest the
nested functions:

sv_mul scal vec =
let

s_mul x = scal * x
in
map s_mul vec

s_mul_2 scal x = scal * x

sv_mul scal vec =
map (s_mul_2 scal) vec

Need to lift s_mul. Define a new function s_mul_2 to replace s_mul.

24

Back End of the compiler..

• The task now is to generate C code from the Functional core.
• The generated C code will create data structures, graphs, that are

further handled by a graph reducer (an interpreter).
• Graph reducer is the heart of the run-time system, and it deals

with higher-order functions, lazy evaluations.

Graph reduction
Notation: write f e1 e2 … en as (…((f @ e1) @ e2)… en)
where, @ operator denotes an application node holding a function
pointer and an argument pointer. The linked list of @ is called an
application spine.

The graph
representation
of a function
application

25

..Back End of the compiler..

How does the graph reducer evaluate an expression?
• The execution of a functional program starts with constructing the

graph representing the initial expression.
• Next, the graph reducer repeatedly select a part of the graph (a

subexpression) that can be simplified by function application. Such
expression is called reducible expression, or redex for short.

• The selected redex is then reduced and this process is repeated.
• The graph reducer stops when it can not find a redex. Finally, the

resulting graph is returned as the result of the initial expression.

An example of graph reduction:

let twice f x = f (f x)

square n = n*n

in twice square 3

@

@

twice

x

square

(1)

26

..Back End of the compiler..

The initial expression contains one redex, application of twice to its
two arguments. From definition of function twice, we replace graph
(1):

@

@ x

squaretwice

by

@

square @

x

Likewise, from
definition of square, we
replace graph (2) by (3):

(2)

@

@

@

*

3square

(3)

27

..Back End of the compiler..

Continuing the reduction, need to select the next redex in graph (3).
There are two candidates: * spine and square spine, each having all
their arguments present. The * spine can not be reduced because
the built-in operators can only perform operations when all arguments
point to a value.

Therefore, graph reducer selects the square spine to reduce

@

@

@

*

3square

@

@

@

3

@

*

*

(3) (4)

from (3) to (4):

28

..Back End of the compiler..

• In (4), we observe that the inner * can be reduced, because its
arguments are in proper format. Replace (4) by (5), finally the
outer * can be reduced to complete the computation:

9

@

@

*

(5)

81

The above example shows that the graph reducer is basically a three-
stroke engine:

• select a redex

• instantiate the right-hand side of the function

• update the root of the redex

29

..Back End of the compiler..

Reduction Order
A computation graph may contain many redexes. How to select an essential
redex to reduce?
Since the initial expression must reduce to a value, we start with the root of
the expression.

If root is not an application node, the graph reducer returns its value. If the
root is an @, we traverse the application spine down to the left to find the
function node, say f; we then check whether the application spine contains
necessary number of args for f. If it does not, we detect a curried
function, and the reducer will return this curried function.

If all argument are present in the spine for f, and f is a user-defined
function, we can apply f. But, in case that f is an built-in operator, it
depends on the state of the argument and nature of the operator.

For example, * and + require the arguments pointing to numbers. We can say
the arg of * and + are strict arguments (* and + are strict on all of their
arguments).

30

..Back End of the compiler..

• The process of reducing the graph and finding the next redex is
called unwinding.

• The unwinding we see so far always selects the leftmost-outermost
redex; this reduction order is known as Normal-order reduction.
This is the underlying mechanism to implement lazy evaluation.

• Another reduction order, Applicative-order reduction, selects the
leftmost-innermost redex; this is the strategy employed by
imperative languages (arg evaluated before invoking function).

31

..Back End of the compiler..

• Implementation of graph reducer
(the reduction engine in C)

– Reduction engine operates on 4 types of graph nodes:
number, list, function application, function descriptor

– Structure of graph node: a Tag, and a union holding one of the
four node types.

– A function descriptor contains: arity of function, function
name, and a pointer to its code (in C).

– The constructor functions specify how each type of graph node
can be constructed.

32

..Back End of the compiler..

<Declaration of node types and constructor functions>

33

..Back End of the compiler..

34

..Back End of the compiler..

• The eval function implements the reduction engine. It takes a
pointer to an graph node and perform case analysis on Tags to find
out what to do next.

• Application nodes and function descriptor require further
processing, while other tags will stop the reduction engine because
basic value can be returned immediately.

• To process a @, we must unwind it to obtain the function and its
arguments. Arguments are pushed onto stack so they can be
referred directly when needed.
For example:

35

..Back End of the compiler..

• When the reduction engine detects a function descriptor, it
checks if all arguments are present. If this is not the case, a
curried function is detected, reduction stops, and arguments are
unstacked before returning.

• If, however, all arguments are present, the pointer to the function
code is retrieved from descriptor and function is called. When
function returns, the args are popped off the stack, and the result
is copied to the root node (of the function application).

• eval is called recursively.

• Reduction engine is accompanied by routines implementing built-in
operators and list operators. Each built-in operator is wrapped in a
function descriptor, which includes a pointer to the code
performing the reduction.

36

..Back End of the compiler..

Implementation of built-in opr *

Pnode mult (Pnode _arg0, Pnode _arg1)
{
Pnode a = eval(_arg0);
Pnode b = eval(_arg1);
return Num(a->nd.num * b->nd.num);
}
Pnode _mult(Pnode *arg)
{
return mult(arg[0], arg[1]);
}

struct node __mult= {FUNC, {2, "mul", _mult}};

__mult represents
function mult as a graph
node; __mult may be
used by code generator
to construct graph for
expression like *(a,b).

37

..Back End of the compiler..

• Code generation for functional core

– Note: this is not ordinary program transformation between
these two.

– The (only) task of the generated C code is to create graph for
the graph reducer to reduce. And that graph represents the
source program.

– For each function definition, we generate a function descriptor
and code to build the right-hand-side.

38

..Back End of the compiler..

Example: twice f x = f (f x)

Pnode twice (Pnode _arg0, Pnode _arg1)
{
Pnode f = eval(_arg0);
Pnode x = eval(_arg1);
return Appl(f, (Appl(f, x)));
}

Pnode _twice(Pnode *arg)
{
return twice(arg[0], arg[1]);
}

struct node __twice=
{FUNC, {2, “twice", _twice} }

Generating code for functions that instantiate the right-hand
side of the function at run-time is straightforward.

39

..Back End of the compiler..

• Generating code for other core constructs:
– The graph reducer knows how to handle function applications,

so we can simply translate each constructs into a function call.

– Identifier : we can use the same name in C code, therefore,
need no further processing.

– Numbers : wrap them with the Num constructor function (eg
for 5, Num(5))

– Function application: build a graph consisting application nodes,
which hold pointers to argument expression.

– If-then-else: less straightforward. Need to use conditional
expression in C, (cond ? x : y).

40

..Back End of the compiler..

• Let-expression: the let bindings are translated to assignment to
local variables in C. Such local variable holds pointer to the nodes
representing named expression.
Example

Pnode f(Pnode _arg0)
{

Pnode a = _arg0;
Pnode b = Appl(&__fac, a);
Pnode c = Appl(Appl(&__mul, b), b);
return Appl (Appl(&__add, c), c);

}

41

..Back End of the compiler..

• Optimizing the functional core

– Functional language compilers usually apply a number of
advanced optimization techniques to achieve an acceptable
performance.

– Typically, these optimizations are performed on the AST
(representing intermediate code).

– Introduce one optimization technique, Strictness analysis,
tackling the overhead of manipulating graph node.

42

..Back End of the compiler..

• Strict analysis
– Lazy evaluation causes expression at argument positions of a

function call to be passed unevaluated as a graph node.
– However, building graph is very expensive, and becomes

overhead when the function will eventually evaluate the (lazy)
arguments to proceed it computation.

– In fact, some functions always need to evaluate their args.
– If a function always needs the value of its argument ai, the

function is said to be strict on ai.

– Purpose of strictness analysis:
Determine all functions which have strict arguments?. Then the
code generator can evaluating expression at strict arg positions
before invoking function. Thus, we can save the overhead of:
1. building graph by the caller ;
2. call to the graph reducer by the callee.

43

..Back End of the compiler..

• Analyzing the strictness of a function
– Propagate the strictness of built-in operator and other

functions bottom-up through the AST.
Example

safe_div a b = if (b==0) then 0 else a/b

The derived set of
strict argument for
safe_div is {b}

44

..Back End of the compiler..

• Strictness propagation rules

• We start from identifiers at the leaves position of the AST. A parameter
p will yield the set {p}.

• Likewise, local variable v yield the set {v}.

• Constant, function names yield empty set { }.

• Then applying propagation rules, as follows:

Capital letters on the
left column denotes
language construct,
whereas in the right
column they denotes
the corresponding set
of strict variables.

Predicate strict(fun,i) = true if argi of fun is strict

false otherwise

45

..Back End of the compiler..

• Note that there are two rules for function applications:

The first rule covers the case that the function identifier is a global name, funm
indicates its arity is m. In this case, all args set occurring at strict positions are
propagated.

The second rule covers the cases that function is described by some
expression(F). For example, F may be a result from computing a higher-order
function. So no strictness information about the args can be derived.

• Strict analysis for recursive function definitions

The solution is to optimistically assume that a recursive function is strict on all its
arguments, and then check if the derived set (R) includes all arguments (set A). In
general case, R do not contain all arguments, so we know the assumption (set A)
was too optimistic. Let A=R, and derive the strict arg set (call it R’) again, check if
R’=A. Continue with this narrowing operation, until R’=A.

46

..Back End of the compiler

• Code generation for strict arguments
– Expression occurring at strict arg positions may be evaluated

immediately without building graph.
– Consider factorial function fac

fac = if (n==0) then 1 else n*fac(n-1)

Pnode fac(Pnode _arg0)
{

Pnode n = _arg0;
return equal(n, Num(0))- >nd.num ? Num(1) :
mul(n, fac(Appl(Appl(&__sub, n), Num(1))));

}

Without strictness
information, the arg of
fac is passed lazily as a
graph node.

Pnode fac(Pnode _arg0)
{
Pnode n = _arg0;
return equal(n, Num(0))->nd.num ? Num(1) :
mul(n, fac(sub(n, Num(1))));

}

Using the fact that fac
is strict in its arg, we
can remove the
application spine.

47

The End..

Thanks.

	CAS 706 - Presentation
	Compilation in General
	Outline
	Short Tour of Haskell..
	..Short Tour of Haskell..
	..Short Tour of Haskell..
	..Short Tour of Haskell..
	..Short Tour of Haskell..
	..Short Tour of Haskell..
	..Short Tour of Haskell..
	..Short Tour of Haskell
	..Short Tour of Haskell..
	Front End of the compiler..
	..Front End of the compiler..
	..Front End of the compiler..
	..Front End of the compiler..
	..Front End of the compiler..
	..Front End of the compiler..
	.. Front End of the compiler..
	..Front End of the compiler..
	..Front End of the compiler..
	..Front End of the compiler..
	..Front End of the compiler
	Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler..
	..Back End of the compiler
	The End..

