Domain Theory

Pouya Larjani
Nov 28, 2006

Denotational Semantics

- Express meaning of terms by mathematical objects
- Constructing a model for λ-calculus
- Need a domain of individuals, and associating a function with each lambda term.

Problems

- Domain must consist of all constants S, and functions over them $S \rightarrow S, \ldots$
- $S \simeq[S \rightarrow S]$
- Simple example:
$\lambda x . x x$
- Associated functions cannot be total

Domains

- Need to define structures to describe domains of computation
- In typed λ-calculus, domains are models for types
- Representation of partial/incomplete data
- \{Dana Scott, 1970\}

Order Theory

- Partially-ordered sets:
- Reflexive: $x \leq x$
- Transitive : $x \leq y \wedge y \leq z \Rightarrow x \leq z$
- Antisymmetric: $x \leq y \wedge y \leq x \Rightarrow x=y$
- Subsets may have upper and lower bounds, maximal and minimal elements
- $u b(A)=\left\{x \in P \mid \forall_{a \in A} a \leq x\right\}$
- a is maximal in set A if there is no other elements above it

More Order Theory

- Suprema and infima:
$-x$ is $\sup (A)$ (join) if it is the minimal element of the upper bound on A.
- inf (meet) is maximal of lower bound
- Lattice: if sup and inf exist for every pair of elements
- Complete lattice: if they exist for any subset

Fixed Points

- A function on partial ordered sets is monotone if:
$\forall_{x, y \in P} \quad x \leq y \Rightarrow f(x) \leq f(y)$
- Theorem: If L is a complete lattice, then every monotone map from L to L has a fixed point.

Directed-Complete Partial Orders

- Subset A is directed, if it's non-empty, and every pair of elements in A has an upper bound in A .
- A partially-ordered set where every directed subset has a supremum is called a directedcomplete partial order.

Approximation

- x approximates y (x << y) if for any directed subset A of D ,

$$
y \leq \sup (A) \Rightarrow \exists_{a \in A} x \leq a
$$

- x is compact if $\mathrm{x} \ll \mathrm{x}$
- A subset B of D is a basis if for every x, the set of elements of B that approximate x contains a directed subset with sup $=x$

Continuity

- A function $f: D \rightarrow E$ is continuous if it is monotone and for each directed subset of D : $f(\sup A)=\sup f(A)$
- A continuous domain is a directed-complete partial order that has a basis. An algebraic domain has a basis of compact elements. It is ω-continuous if the basis is countable.

More continuity

- Continuous functions have a fixed point
- Continuity implied computability
- Scott's work on "computationally feasible": infinite objects are limits of their finite approximations.

Topology of Domains

- A subset C of domain D is closed if it's closed under suprema of directed subsets, and:

$$
x \in D \Rightarrow \forall_{y \leq x} y \in D
$$

- A subset is open if its complement is closed.
- $x \leq y \Leftrightarrow x \in \bar{y}$

References

- Continuous Lattices and Domains, G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, 2003.
- Domains for denotational semantics., D. S. Scott, 1982.
- Data types as lattices, D. S. Scott, 1976
- Domain Theory, S. Abramsky, and A. Jung, 1994

