Computing and Software Department, McMaster University

Normalization and References

Wen Yu

October, 2006

Wen Yu: Normalization & References(slide 1)

Today's Agenda

Normalization

- Logical Relations
- Proof Outline
- References
 - Introduction
 - Typing
 - Evaluation
 - Store Typings
 - Safety

Normalization

Wen Yu: Normalization & References(slide 3)

Introduction

- Evaluation of a well-typed program is guaranteed to halt in a finite number of steps — that is, every well-typed term is normalizable
- The simply typed lambda-calculus over a single base type A is considered here.
- Logical relations is used for proving normalization.

Problems with Induction on the Size

Example: proof that t_1 t_2 is normalizing.

- Assume both t₁ and t₂ are normalized and have normal forms v₁ and v₂ respectively.
- ▶ By the inversion lemma: v_1 has type $T_{11} \rightarrow T_{12}$ for some T_{11} and T_{12} .
- By the canonical forms lemma: v_1 has the form λx : $T_{11}.t_{12}$
- Then, we get $[x \mapsto v_2]t_{12}$.
- However, if there are more than on occurrences of x in t_{12} , $[x \mapsto v_2]t_{12}$ is bigger than the original term t_1 t_2 .
- We get stuck.

Logical Relations

Prove some property P of all closed terms of type A by induction on types

- all terms of type A possess property P
- all terms of type $A \rightarrow A$ preserve property P
- ► all terms of type (A → A) → (A → A) preserve the property of preserving property P
- and so on

Definitions

For each type T, define a set R_T of closed terms of type T, written as $R_T(t)$ for $t \in R_T$.

- $R_A(t)$ iff t halts.
- ▶ $R_{T_1 \to T_2}(t)$ iff t halts and, whenever $R_{T_1}(s)$, we have $R_{T_2}(ts)$.

Proof Outline

- ▶ Theorem [Normalization]: If $\vdash t : T$, then t is normalizable.
- Steps of Proof
 - 1. Every element of every set R_T is normalizable
 - 2. Every well-typed term of type T is an element of R_T .

Proof Outline (Cont.) I

1. The first step is immediate from the definition of R_T . Lemma: If $R_T(t)$, then t halts.

2. The second step is broken into two lemmas.

Lemma: If t : T and $t \to t'$, then $R_T(t)$ iff $R_T(t')$

Proof: by induction on the structure of the type T. For "only if" direction (\Longrightarrow):

- If T = A, there is nothing more to show.
- Suppose that $T = T_1 \rightarrow T_2$ for some T_1 and T_2 , and that $R_T(t)$ and that $R_{T_1}(s)$ for some arbitrary $s : T_1$.
 - By definition: $R_{T_2}(t \ s)$
 - ▶ By induction hypothesis: $R_{T_2}(t' \ s)$ since $t \ s \to t' \ s$

Proof Outline (Cont.) II

Since this holds for an arbitrary s, we have $R_T(t')$. The proof of "if" direction (\Leftarrow) is similar.

> Lemma: if $x_1 : T_1, ..., x_n : T_n \vdash t : T$ and $v_1, ..., v_n$ are closed values of types $T_1, ..., T_n$ with $R_{T_i}(v_i)$ for each *i*, then $R_T([x_1 \mapsto v_1] \cdots [x_n \mapsto v_n]t)$.

Proof: by induction on a derivation of $x_1 : T_1, ..., x_n : T_n$. (See the proof of *Lemma 12.1.5.*)

References

Wen Yu: Normalization & References(slide 11)

Introduction

Basics

The basic operations on references are *allocation*, *dereferencing*, and *assignment*.

• To allocate a reference, we use the **ref** operator, providing an initial value for the new cell.

$$r = ref 5;$$

 $r: Ref Nations r: r$

• To change the value stored in the cell, we use the assignment operator.

```
r := 7;
▷ unit: Unit
```

• If we dereference r again, we see the updated value.

```
!r;
⊳ 7 : Nat
```

Introduction (Cont.)

Side Effects and Sequencing

The fact that the result of an assignment expression is that the trivial value *unit* fits nicely with the sequencing notation.

$$rac{t_1
ightarrow t_1'}{t_1; t_2
ightarrow t_1'; t_2}$$

unit;
$$t_2 \rightarrow t_2$$

We can write (r := succ(!r); !r); instead of the equivalent, but more cumbersome, $(\lambda_{-}: Unit.!r)(r := succ(!r))$; to evaluate two expressions in order and return the value of the second.

Introduction (Cont.)

References and Aliasing If we make a cope of r (s = r), what gets copied if only the reference, not the cell.

The references r and s are said to be *aliases* for the same cell.

Shared State
 For example

For example,

$$c = ref 0;$$

$$incc = \lambda x:Unit. (c := succ (!c); !c);$$

$$decc = \lambda x:Unit. (c := pred (!c); !c);$$

$$o = \{ i = incc, d = decc \} ;$$

The whole structure can be passed around as a unit. Its components can be used to perform incrementing and decrementing operations on the shared piece of state in c.

Introduction (Cont.)

▶ References to Compound Types An example: an implementation of arrays of numbers $NatArray = Ref (Nat \rightarrow Nat);$ $newarray = \lambda_:Unit. ref (\lambda n:Nat.0);$ $lookup = \lambda a:NatArray. \lambda n:Nat. (!a) n;$ $update = \lambda a: NatArray. \lambda m:Nat. \lambda v:Nat$ let oldf = !a in $a := (\lambda a:NatArray. if equal m n then v$ else oldf n);

No garbage collection primitives for freeing reference cells

Typing Rules for **ref**, :=, and !

$$\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash ref \ t_1 : Ref \ T_1}$$
$$\frac{\Gamma \vdash t_1 : Ref \ T_1}{\Gamma \vdash !t_1 : T_1}$$
$$\frac{\Gamma \vdash t_1 : Ref \ T_1}{\Gamma \vdash !t_1 : T_1}$$
$$\frac{\Gamma \vdash t_1 : Ref \ T_1 \qquad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 := t_2 : Unit}$$

Wen Yu: Normalization & References(slide 16)

Evaluation

In most programming language implementations

- The run-time store is a big array of bytes.
- A new reference cell is a large enough segment form the free region of the store(4 bytes for integer cells, 8 bytes for cells storing Float, tec.)
- A reference is the index of the start of the newly allocated region

Abstraction

- The store is an array of *values*.
- Each value is a reference cell.
- ► A reference is an element of some uninterpreted set *L* of *store locations*.
- ► A store becomes a partial function from locations *I* to values.
- The metavariable μ is used to range over stores

Change of syntax

Wen Yu: Normalization & References(slide 18)

Augmenting existing evaluation rules

$$\begin{aligned} (\lambda x: T_{11}.t_{12})v_2 |\mu &\to [x \mapsto v_2]t_{12} |\mu \\ &\frac{t_1 |\mu \to t_1' |\mu'}{t_1 t_2 |\mu \to t_1' t_2 |\mu'} \\ &\frac{t_2 |\mu \to t_2' |\mu'}{v_1 t_2 |\mu \to v_1 t_2' |\mu'} \end{aligned}$$

Wen Yu: Normalization & References(slide 19)

New Evaluation rules

$$\begin{aligned} \frac{t_1|\mu \to t_1'|\mu'}{|t_1|\mu \to |t_1'|\mu'} \\ \frac{\mu(l) = \mathbf{v}}{|l|\mu \to \mathbf{v}|\mu} \\ \frac{t_1|\mu \to t_1'|\mu'}{t_1 := t_2|\mu \to t_1' := t_2|\mu'} \end{aligned}$$

Wen Yu: Normalization & References(slide 20) New Evaluation rules (Cont.)

1

$$\begin{aligned} &\frac{t_2|\mu \to t_2'|\mu'}{v_1 := t_2|\mu \to v_1 := t_2'|\mu'} \\ &:= v_2|\mu \to unit|[l \mapsto v_2]\mu \\ &\frac{t_1|\mu \to t_1'|\mu'}{\text{ref } t_1|\mu \to \text{ref } t_1'|\mu'} \\ &\frac{l \notin dom(\mu)}{\text{ref } v_1|\mu \to l|(\mu, l \mapsto v_1)} \end{aligned}$$

Wen Yu: Normalization & References(slide 21)

Store Typings

First attempt

 $\frac{\Gamma \vdash \mu(I) : T_1}{\Gamma \vdash I : Ref \ T_1}$

Second attempt

 $\frac{\Gamma|\mu \vdash \mu(I) : T_1}{\Gamma|\mu \vdash I : \textit{Ref } T_1}$

Wen Yu: Normalization & References(slide 22)

Store Typings (Cont.)

- Problems
 - Inefficient

• The store may contains cycle

$$(l_1 \mapsto \lambda x : Nat. (!l_2), (l_2 \mapsto \lambda x : Nat. (!l_1)),$$

Store Typings (Cont.)

Solution

- Every location has a single, definite type in the store.
- Store typing $\boldsymbol{\Sigma}$ is defined as a finite function mapping locations to types.

Typing Rules

Typing rules

$$\begin{split} \frac{\Sigma(I) = T_1}{\Gamma | \Sigma \vdash I : Ref \ T_1} \\ \frac{\Gamma | \Sigma \vdash t_1 : Ref \ T_1}{\Gamma | \Sigma \vdash ref \ t_1 : Ref \ T_1} \\ \frac{\frac{\Gamma | \Sigma \vdash t_1 : Ref \ T_{11}}{\Gamma | \Sigma \vdash ! t_1 : T_{11}} \\ \frac{\Gamma | \Sigma \vdash t_1 : Ref \ T_{11}}{\Gamma | \Sigma \vdash t_1 : T_{11}} \end{split}$$

Wen Yu: Normalization & References(slide 25)

Safety

- Definition: A store µ is said to be well typed with respect to a typing context Γ and a store typing Σ, written Γ|Σ ⊢ µ, if dom(µ) = dom(Σ) and Γ|Σ ⊢ µ(I) : Σ(I) for every I ∈ dom(µ).
- ► Lemma [Substitution]: If $\Gamma, x : S | \Sigma \vdash t : T$ and $\Gamma | \Sigma \vdash s : S$, then $\Gamma | \Sigma \vdash [x \mapsto s]t : T$.
- Lemma: If

$$\begin{split} & \Gamma | \Sigma \vdash \mu \\ & \Sigma(I) = T \\ & \Gamma | \Sigma \vdash v : T \end{split}$$

then, $\Gamma | \Sigma \vdash [I \mapsto v] \mu$

• Lemma: If $\Gamma | \Sigma \vdash t : T$ and $\Sigma' \supseteq \Sigma$, then $\Gamma | \Sigma' \vdash t : T$.

Safety (Cont.)

▶ Theorem [Preservation]: If

$$\begin{array}{l} \mathsf{\Gamma}|\Sigma \vdash t : T \\ \mathsf{\Gamma}|\Sigma \vdash \mu \\ t|\mu \to t'|\mu' \end{array}$$

then, for some $\Sigma' \supseteq \Sigma$, $\Gamma | \Sigma' \vdash t' : T$ $\Gamma | \Sigma' \vdash \mu'$

Theorem [Progress]: Suppose t is a closed, well-typed term (that is Ø|Σ ⊢ t : T for some T and Σ). Then either t is a value or else, for any store µ such that Ø|Σ ⊢ µ, there is some term t' and store µ' with t|µ → t'|µ'.

