Computing and Software Department, McMaster University

Normalization and References

Wen Yu

October, 2006

Wen Yu: [Normalization & References\(slide 1\)](#page-26-0)

Today's Agenda

 \blacktriangleright Normalization

- Logical Relations
- Proof Outline
- \blacktriangleright References
	- Introduction
	- Typing
	- Evaluation
	- Store Typings
	- Safety

Normalization

Wen Yu: [Normalization & References\(slide 3\)](#page-0-0)

Introduction

- \triangleright Evaluation of a well-typed program is guaranteed to halt in a finite number of steps — that is, every well-typed term is normalizable
- \triangleright The simply typed lambda–calculus over a single base type A is considered here.
- \triangleright Logical relations is used for proving normalization.

Problems with Induction on the Size

Example: proof that t_1 t_2 is normalizing.

- Assume both t_1 and t_2 are normalized and have normal forms v_1 and v_2 respectively.
- ► By the inversion lemma: v_1 has type $T_{11} \rightarrow T_{12}$ for some T_{11} and T_{12} .
- \triangleright By the canonical forms lemma: v_1 has the form λx : $T_{11}.t_{12}$
- \triangleright Then, we get $[x \mapsto v_2]t_{12}$.
- \blacktriangleright However, if there are more than on occurrences of x in t_{12} , $[x \mapsto v_2]t_{12}$ is bigger than the original term t_1 t_2 .
- \triangleright We get stuck.

Logical Relations

Prove some property P of all closed terms of type A by induction on types

- \blacktriangleright all terms of type A possess property P
- \triangleright all terms of type $A \rightarrow A$ preserve property P
- ightharpoonup all terms of type $(A \rightarrow A) \rightarrow (A \rightarrow A)$ preserve the property of preserving property P
- \blacktriangleright and so on

Definitions

For each type T, define a set R_T of closed terms of type T, written as $R_T(t)$ for $t \in R_T$.

- \blacktriangleright $R_A(t)$ iff t halts.
- ▶ $R_{\mathcal{T}_1 \to \mathcal{T}_2}(t)$ iff t halts and, whenever $R_{\mathcal{T}_1}(s)$, we have $R_{\mathcal{T}_2}(ts)$.

Proof Outline

- \blacktriangleright Theorem [Normalization]: If $\vdash t : T$, then t is normalizable.
- \blacktriangleright Steps of Proof
	- 1. Every element of every set R_T is normalizable
	- 2. Every well-typed term of type T is an element of R_T .

Proof Outline (Cont.) I

1. The first step is immediate from the definition of R_{τ} . Lemma: If $R_T(t)$, then t halts.

2. The second step is broken into two lemmas.

Lemma: If $t : T$ and $t \to t'$, then $R_T(t)$ iff $R_T(t')$

Proof: by induction on the structure of the type T. For "only if" direction (\Longrightarrow) :

- If $T = A$, there is nothing more to show.
- Suppose that $T = T_1 \rightarrow T_2$ for some T_1 and T_2 , and that $R_T(t)$ and that $R_{T_1}(s)$ for some arbitrary s : T_1 .
	- By definition: $R_{T_2}(t \, s)$
	- ▶ By induction hypothesis: $R_{T_2}(t' | s)$ since $t s \rightarrow t' s$

Proof Outline (Cont.) II

Since this holds for an arbitrary s, we have $R_T(t')$. The proof of "if" direction (\Leftarrow) is similar.

> Lemma: if $x_1 : T_1, ..., x_n : T_n \vdash t : T$ and $v_1, ..., v_n$ are closed values of types $\mathcal{T}_1,...,\mathcal{T}_n$ with $R_{\mathcal{T}_i}(\mathsf{v}_i)$ for each i, then $R_{\tau}([x_1 \mapsto v_1] \cdots [x_n \mapsto v_n]t)$.

Proof: by induction on a derivation of $x_1 : T_1, ..., x_n : T_n$. (See the proof of Lemma 12.1.5.)

References

Wen Yu: [Normalization & References\(slide 11\)](#page-0-0)

Introduction

 \blacktriangleright Basics

The basic operations on references are allocation, dereferencing, and assignment.

• To allocate a reference, we use the ref operator, providing an initial value for the new cell.

$$
r = ref 5;
$$

$$
\triangleright r: Ref Nat
$$

• To change the value stored in the cell, we use the assignment operator.

```
r := 7:
\triangleright unit: Unit
```
• If we dereference r again, we see the updated value.

```
!r;
\triangleright 7 : Nat
```


Introduction (Cont.)

 \triangleright Side Effects and Sequencing

The fact that the result of an assignment expression is that the trivial value unit fits nicely with the sequencing notation.

$$
\frac{t_1 \rightarrow t_1'}{t_1; t_2 \rightarrow t_1'; t_2}
$$

$$
\textit{unit};\,t_2\rightarrow t_2
$$

We can write $(r := succ(!r); !r)$; instead of the equivalent, but more cumbersome, $(\lambda_{\perp} : Unit.!r)(r) = succ(!r)$; to evaluate two expressions in order and return the value of the second.

Introduction (Cont.)

 \blacktriangleright References and Aliasing

If we make a cope of r $(s = r)$, what gets copied if only the reference, not the cell.

The references r and s are said to be *aliases* for the same cell.

 \blacktriangleright Shared State

For example,

$$
c = ref 0;
$$

incc = λx :Unit. (c := succ (lc); lc);
decc = λx :Unit. (c := pred (lc); lc);
 $o = \{ i = incc, d = decc \}$;

The whole structure can be passed around as a unit. Its components can be used to perform incrementing and decrementing operations on theshared piece of state in c.

Introduction (Cont.)

▶ References to Compound Types An example: an implementation of arrays of numbers $NatArray = Ref (Nat \rightarrow Nat);$ newarray $=\lambda$:Unit. ref (λ n:Nat.0); lookup = λ a:NatArray. λ n:Nat. (!a) n; update $= \lambda a$: NatArray. λm : Nat. λv : Nat let oldf $=$ $!a$ in $a := (\lambda a \cdot \text{NatArray})$. if equal m n then v else oldf n);

 \triangleright No garbage collection primitives for freeing reference cells

Typing Rules for ref , :=, and !

$$
\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \text{ref } t_1 : \text{Ref } T_1}
$$
\n
$$
\frac{\Gamma \vdash t_1 : \text{Ref } T_1}{\Gamma \vdash t_1 : T_1}
$$
\n
$$
\frac{\Gamma \vdash t_1 : \text{Ref } T_1 \qquad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 := t_2 : \text{Unit}}
$$

Wen Yu: [Normalization & References\(slide 16\)](#page-0-0)

Evaluation

In most programming language implementations

- \blacktriangleright The run-time store is a big array of bytes.
- \triangleright A new reference cell is a large enough segment form the free region of the store(4 bytes for integer cells, 8 bytes for cells storing **Float**, tec.)
- \triangleright A reference is the index of the start of the newly allocated region

Abstraction

- \blacktriangleright The store is an array of values.
- \blacktriangleright Each value is a reference cell.
- \triangleright A reference is an element of some uninterpreted set L of store locations.
- \triangleright A store becomes a partial function from locations *l* to values.
- \blacktriangleright The metavariable μ is used to range over stores

Change of syntax

$$
v ::= \cdots
$$
\n
$$
t ::= \cdots
$$
\n
$$
ref t
$$
\n
$$
lt
$$
\n
$$
t := t
$$
\n
$$
t
$$

Wen Yu: [Normalization & References\(slide 18\)](#page-0-0)

Augmenting existing evaluation rules

$$
(\lambda x: T_{11}.t_{12})v_2|\mu \to [x \mapsto v_2]t_{12}|\mu
$$

$$
\frac{t_1|\mu \to t_1'|\mu'}{t_1 t_2|\mu \to t_1' t_2|\mu'}
$$

$$
\frac{t_2|\mu \to t_2'|\mu'}{v_1 t_2|\mu \to v_1 t_2'|\mu'}
$$

Wen Yu: [Normalization & References\(slide 19\)](#page-0-0)

New Evaluation rules

$$
\frac{t_1|\mu \to t'_1|\mu'}{!t_1|\mu \to !t'_1|\mu'}
$$

$$
\frac{\mu(l) = v}{!l|\mu \to v|\mu}
$$

$$
\frac{t_1|\mu \to t'_1|\mu'}{t_1 := t_2|\mu \to t'_1 := t_2|\mu'}
$$

Wen Yu: [Normalization & References\(slide 20\)](#page-0-0) New Evaluation rules (Cont.)

$$
\frac{t_2|\mu \to t_2'|\mu'}{v_1 := t_2|\mu \to v_1 := t_2'|\mu'}
$$
\n
$$
l := v_2|\mu \to \text{unit}[[l \mapsto v_2]\mu
$$
\n
$$
\frac{t_1|\mu \to t_1'|\mu'}{\text{ref } t_1|\mu \to \text{ref } t_1'|\mu'}
$$
\n
$$
\frac{l \notin \text{dom}(\mu)}{\text{ref } v_1|\mu \to l|(\mu, l \mapsto v_1)}
$$

Wen Yu: [Normalization & References\(slide 21\)](#page-0-0)

Store Typings

 \blacktriangleright First attempt

$$
\frac{\Gamma \vdash \mu(I): T_1}{\Gamma \vdash I : Ref \ T_1}
$$

 \blacktriangleright Second attempt

$$
\frac{\Gamma|\mu \vdash \mu(I): T_1}{\Gamma|\mu \vdash I : \text{Ref } T_1}
$$

Wen Yu: [Normalization & References\(slide 22\)](#page-0-0)

Store Typings (Cont.)

- \blacktriangleright Problems
	- Inefficient

$$
(l_1 \mapsto \lambda x : Nat. 999,l_2 \mapsto \lambda x : Nat. (!l_1),l_3 \mapsto \lambda x : Nat. (!l_2),l_4 \mapsto \lambda x : Nat. (!l_3),l_5 \mapsto \lambda x : Nat. (!l_4)),
$$

• The store may contains cycle

$$
\begin{array}{l} (l_1 \mapsto \lambda x : \mathsf{Nat}. \ (!l_2) \ , \\ (l_2 \mapsto \lambda x : \mathsf{Nat}. \ (!l_1)), \end{array}
$$

Store Typings (Cont.)

\blacktriangleright Solution

- Every location has a single, definite type in the store.
- Store typing Σ is defined as a finite function mapping locations to types.

Typing Rules

Typing rules

$$
\frac{\Sigma(l) = T_1}{\Gamma|\Sigma \vdash l : \text{Ref } T_1}
$$
\n
$$
\frac{\Gamma|\Sigma \vdash t_1 : T_1}{\Gamma|\Sigma \vdash \text{ref } t_1 : \text{Ref } T_1}
$$
\n
$$
\frac{\Gamma|\Sigma \vdash t_1 : \text{Ref } T_{11}}{\Gamma|\Sigma \vdash !t_1 : T_{11}}
$$
\n
$$
\frac{\Gamma|\Sigma \vdash t_1 : \text{Ref } T_{11} \qquad \Gamma|\Sigma \vdash t_2 : T_{11}}{\Gamma|\Sigma \vdash t_1 := t_2 : \text{Unit}}
$$

Wen Yu: [Normalization & References\(slide 25\)](#page-0-0)

Safety

- \triangleright Defintion: A store μ is said to be well typed with respect to a typing context Γ and a store typing Σ , written Γ | $\Sigma \vdash \mu$, if $dom(\mu) = dom(\Sigma)$ and $\Gamma(\Sigma \vdash \mu(I) : \Sigma(I)$ for every $l \in \text{dom}(\mu)$.
- **I** Lemma [Substitution]: If $\Gamma, x : S[\Sigma \vdash t : T$ and $\Gamma | \Sigma \vdash s : S$, then Γ | Σ \vdash [$x \mapsto s$] $t : T$.

 \blacktriangleright Lemma: If

$$
\Gamma|\Sigma \vdash \mu
$$

$$
\Sigma(I) = T
$$

$$
\Gamma|\Sigma \vdash v : T
$$

then, Γ |Σ \vdash [$l \mapsto v$]μ

Example 1 Lemma: If $\Gamma | \Sigma \vdash t : \top$ and $\Sigma' \supseteq \Sigma$, then $\Gamma | \Sigma' \vdash t : \top$.

Safety (Cont.)

 \blacktriangleright Theorem [Preservation]: If

$$
\Gamma|\Sigma \vdash t : T
$$

$$
\Gamma|\Sigma \vdash \mu
$$

$$
t|\mu \rightarrow t'|\mu'
$$

then, for some
$$
\Sigma' \supseteq \Sigma
$$
,
\n
$$
\Gamma|\Sigma' \vdash t': T
$$
\n
$$
\Gamma|\Sigma' \vdash \mu'
$$

 \triangleright Theorem [Progress]: Suppose t is a closed, well-typed term (that is $\emptyset | \Sigma \vdash t : T$ for some T and Σ). Then either t is a value or else, for any store μ such that $\emptyset | \Sigma \vdash \mu$, there is some term t' and store μ' with $t|\mu \rightarrow t'|\mu'.$

