
Clarification

• There is NO “textbook”

• The “lectures notes” are Custom Courseware

• SE 3MO4 (this course) and SE 3K04 share the same con-

tent but different instructors, lectures, slides and exams

• It so happens that the Custom Courseware only says

SE 3K04 in its title.

• Only the slides will be posted on the web

1



What is “Software Engineering”

Engineering

• Engineering is a discipline

• Goal: Creation of a Product

• The Product is specified, documented, and it is possible

to verify that it performs as it is supposed to

• An engineer is responsible for his/her product (Not a dis-

claimer!)

2



“Engineered” Software Products

• Pure software products

– COTS: Microsoft Word, Matlab, PSpice

– Banking system, MUGSI

• Software as part of others products

(Car, Airplane, Nuclear Power Plant, X-ray-machine)

• Software used in the design of products

– program computing the beams of a bridge

3



Mission and Safety Critical software

Definition:

• failure causes harm to life or environment

• financial disaster (recalls)

Who of you ever wrote a program larger than N lines

which worked perfectly the first time?

How can we trust software consisting of 1’000’000 lines of

code or more?

4



Goals of this course:

Learn how to develop (large) software products that

• are reliable

• really do what they are supposed to

• can be verified

• can be developed by a team

• can be easily maintained

5



Engineering Principles

• Accept individual responsibility

– Social

– Professional

– Ethical

– Environmental

• Solve the Real Problem

• Be honest about the capabilities

• Produce Reviewable Designs (Documentation)

• Specify and document your software

• State the limitations of your software

6



Software Facts

• More than half the cost of software is spent in mainte-
nance

– Bug Fixes

– Change of Functionality

– Extension of Functionality

• Software is used over a long time: “Software Aging”
(Y2K problem, DOS/640K)

• Software is used for things it was not designed for

• More and more hardware is replaced by software; (A cel-
lular phone has about 700k of software)

• Many crucial aspects of our life is controlled by software
(ABS brakes, telephone, power, bank, medical instru-
ments)

7



Software and Industry

• Software is often developed in an naive, unprofessional

way

– Year 2000 problem

– “There are so many trees that we do not see the for-

est”

• Software is not documented

– Knowledge is lost when a developer leaves

– Maintaining the software is very difficult

8



Software and Industry

• There are no requirements specifications

– Communication problems between programmer and

client

– “Is the software finished?”

• No formal or semi-formal specification

– “How to test it?”

– “Is is a bug or a feature?”

– Why did this happen ? Should it happen? How can I

prevent this from happening?

9


