
SE 3M04 Software Engineering Slide 1

Design Pattern
Christopher Alexander (1977, buildings / towns):

“Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way”.

At high-level design: Architectural Styles
At low-level design: Design Patterns
Encourages design reuse (intended for OO)
Used as a means for transferring knowledge from
experienced designers to novice designers

SE 3M04 Software Engineering Slide 2

Design pattern definition
Describe the objects and classes (can be modules) that
communicate with each other and are customized to
solve a general design problem in a particular context.
A pattern has four essential elements:

Name: a handle we can use to describe a design problem, its
solution, and consequences in a word or two.

Problem: describes when to apply the pattern; can be a specific
design problem or a set of conditions to exist.

Solution: describes the elements that make up the design, their
relationships, responsibilities, and collaborations.

Consequences: are the results and trade-offs applying the pattern.

SE 3M04 Software Engineering Slide 3

MVC Pattern in Smalltalk

MVC (Model / View / Controller) consists of:
Model: the application program (object)

View: its screen presentation

Controller: defines the way the user interface reacts to user
input.

A = 30%
B = 20%
C = 50%

Views

Model

Controller
not shown

Subscribe
Notify model

SE 3M04 Software Engineering Slide 4

MVC

Model notifies the views when its value changes
Views communicate with model to access new values
The problem that MVC addresses:

Decoupling objects so that changes to one can affect any number of
others without requiring the changed object to know details of the
others. Observer design pattern.

MVC: a control panel of buttons, ie, nested view:
A design pattern that let us treat a composite view just like we treat
one of its components. Composite design pattern.

MVC: possible to change a view’s controller at run-time
Lets you change the way a view responds to user input without
changing its visual presentation. Strategy design pattern

SE 3M04 Software Engineering Slide 5

Describing Design Patterns
Pattern name and classification

Conveys the essence of the pattern (Creatinal, Structural, Behavioral)

Intent: short statement to answer:
What particular design issue it addresses? What is its rationale?

Also known as:
other name for the pattern

Motivation:
A scenario that illustrates a design problem

Applicability:
In what situations the pattern applies?

Structure:
Graphical representation of the classes in OMT notation

SE 3M04 Software Engineering Slide 6

Describing Design Patterns ….

Participants:
Classes and their responsibilities

Collaborations:
Collaboration among participants

Consequences:
How does the pattern support its objectives?

Implementation:
Pitfalls, hints, techniques to be aware of when implementing

Sample code:
Code in C++ , Smalltalk, Java to implement pattern

Known uses:
Examples of the pattern found in real systems in other domains.

Related patterns

SE 3M04 Software Engineering Slide 7

The Catalog of Design Pattern

Abstract Factory
Provide an interface for creating families of related or dependent
objects without specifying their concrete classes
Example: a user-interface toolkit that supports multiple look-and-feel
standards such as Motif and Open-window.

Adapter
Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces
Example: component programming

Bridge
Decouple an abstraction from its implementation so that two can vary
independently.
Example: implementation of a portable window abstraction in a user
interface toolkit. The abstraction should enable us to write applications
that work on both the X window system and Presentation Manager.

SE 3M04 Software Engineering Slide 8

The Catalog of Design Pattern …
Decorator

Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to sub-classing for extending functionality.
Example: a graphical user interface toolkit should let you add properties
like borders or behaviors like scrolling to any user interface component.

Façade
Provide a unified interface to a set of interfaces in a subsystem. Façade
defines a higher-level interface that makes the subsystem easier to use.
Example: consider a compiler component having scanner, parser, … Some
specialized applications may need to access these classes directly. But most
clients of compiler only want to compile the program and don’t care about
the details of compiler.

SE 3M04 Software Engineering Slide 9

The Catalog of Design Pattern …
Iterator

Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation
Example: an aggregate object such as a list should provide a way to
access its elements without exposing its internal structure. You
should be able to traverse the list in either direction.

Mediator
Define an object that encapsulates how a set of object interact.
Mediator promotes loose coupling by keeping objects from referring
to each other explicitly, and it lets you vary their interaction
independently.

SE 3M04 Software Engineering Slide 10

The Catalog of Design Pattern …

Strategy
Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it.
Example: many algorithms exist for breaking a stream of text into
lines. Hard coding all such algorithms into the classes that require
them is not desirable.

Visitor
Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

SE 3M04 Software Engineering Slide 11

Organizing the Catalog
Purpose

Sc
op

e

C
la

ss
O

bj
ec

t
Creational Structural Behavioral

Factory Method

Abstract Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Chain
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Adapter Interpreter
Template Method

SE 3M04 Software Engineering Slide 12

Abstract Factory Design Pattern

Intent:
Provide an interface for creating families of related or dependent

objects without specifying their concrete classes

Motivation:

A user-interface toolkit that supports multiple look-and-feel standards
such as Motif and Open-window.

A Kitchen-viewer software that allows the home owners to choose
between two styles modern an antique for their wall and floor kitchen-
cabinets and then view the kitchen.

SE 3M04 Software Engineering Slide 13

Abstract Factory Pattern
(Kitchen View Example)

Wall cabinet

Floor cabinet

Countertop

Modern AntiqueClassic

Modern AntiqueClassic

Provide an interface for creating families
of related or dependent objects without
specifying their concrete classes

Example: a user-interface toolkit that
supports multiple look-and-feel standards
such as Motif and Open-window.

SE 3M04 Software Engineering Slide 14

Kitchen viewer without Design Pattern

AnticFloorCabinetModernFloorCabinet
AnticWallCabinetModernWallCabinet

Client
renderKitchen()

FloorCabinet
WallCabinet

Kitchen

Aggregation
Kitchen contains a number
of wall-cabinets and
floor-cabinets

Specialization
Wall cabinet can be
ModernWallCabinet or
AnticWallCabinet

Implementation
dependency

SE 3M04 Software Engineering Slide 15

Abstract Factory Design Pattern idea
Applied to KitchenView

AnticFloorCabinet

………

………

ModernKStyle
WallCabinet getWallCabinet()
FloorCabinet getFloorCabinet()

FloorCabinet

KitchenStyle
getWallCabinet()
getFloorCabinet()

WallCabinet

AntiqueKStyle
WallCabinet getWallCabinet()
FloorCabinet getFloorCabinet()

AnticWallCabinet

FloorCabinet getFloorCabinet()
{ return new ModernFloorCabinet(); }

FloorCabinet getFloorCabinet()
{ return new AntiqueFloorCabinet(); }

myStyle can be:
ModernKStyle or
AntiqueKStyle

Different implementations for “getFloorCabinet()”

SE 3M04 Software Engineering Slide 16

Abstract Factory Design Pattern
Applied to KitchenView

AnticFloorCabinet

ModernFloorCabinet

ModernWallCabinet

ModernKStyle
getWallCabinet()
getFloorCabinet()

Client
renderKitchen(KitchenStyle)

FloorCabinet

Kitchen
getWallCabinet()
getFloorCabinet()

KitchenStyle
getWallCabinet()
getFloorCabinet()

WallCabinet

AntiqueKStyle
getWallCabinet()
getFloorCabinet()

AnticWallCabinet

SE 3M04 Software Engineering Slide 17

Adapter Design Pattern

Intent:
Convert the interface of a class into another interface that the
clients expect.

Motivation:
We want to use the functionality provided by an existing
application.
We want to modify our application as little as possible
We want to be able to easily switch to alternative
implementations.
Example: an existing financial application computes the
principal money obtained from investing a given amount of
money for a given number of years in a special type of
investment

SE 3M04 Software Engineering Slide 18

Example of Adapter:
Financial application

Legacy application …..: computeValue (float years, float interest, float amount)
New application …….: amount (float originalAmount, float numYears, float intRate)

FinancialAdapter
amount()

Principal
computeValue()

Financial
amount()

Client

{ adaptee.requiredMethod (); }

Application Legacy systemAdaptation

legacyAdaptee

	Design Pattern
	Design pattern definition
	MVC Pattern in Smalltalk
	MVC
	Describing Design Patterns
	Describing Design Patterns ….
	The Catalog of Design Pattern
	The Catalog of Design Pattern …
	The Catalog of Design Pattern …
	The Catalog of Design Pattern …
	Organizing the Catalog
	Abstract Factory Design Pattern
	Abstract Factory Pattern (Kitchen View Example)
	Kitchen viewer without Design Pattern
	Abstract Factory Design Pattern ideaApplied to KitchenView
	Abstract Factory Design PatternApplied to KitchenView
	Adapter Design Pattern
	Example of Adapter:Financial application

