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Abstract. Since there are different ways of axiomatizing and developing
a mathematical theory, knowledge about a such a theory may reside in
many places and in many forms within a library of formalized mathemat-
ics. We introduce the notion of a realm as a structure for consolidating
knowledge about a mathematical theory. A realm contains several axiom-
atizations of a theory that are separately developed. Views interconnect
these developments and establish that the axiomatizations are equivalent
in the sense of being mutually interpretable. A realm also contains an
external interface that is convenient for users of the library who want
to apply the concepts and facts of the theory without delving into the
details of how the concepts and facts were developed. We illustrate the
utility of realms through a series of examples. We also give an outline of
the mechanisms that are needed to create and maintain realms.

1 Introduction

In [Far11] the second author calls for the establishment of a “universal digital
library of mathematics” (UDLM). In our joint work it is understood that the
UDLM will be organized as a theory graph, i.e., a set of theories (collections of
symbol declarations, definitions, assertions, and their proofs) interconnected by
meaning-preserving views (morphisms). The “little/tiny theories approach” first
put forward in [FGT92] has been very fruitful for formal developments of math-
ematical knowledge, but it has not found its way into mainstream mathematics.
One reason may be that there is a mismatch with the way mathematicians —
the supposed users of the UDLM — think about and work with theories. [CF08]
argues for the development of “high-level theories” that better mesh with these
expectations. We will re-examine the issues involved and propose a solution.

In the mathematical community the term “theory” is used to describe mul-
tiple ideas, from the axiomatic theory of the algebraic structure of a group
to “Group Theory” as an entire discipline, and various gradations in between.
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Looked at more closely, this implies a multi-scale organizational structure to
the basic components of mathematics, ranging from individual concepts (e.g., a
group) to whole subareas of mathematics (e.g., Group Theory). Here our interest
in this structure is purely pragmatic: how can it be leveraged to build a better
mechanized mathematics systems and, ultimately, a better UDLM.

We will consider this in a bottom-up manner: what is the most natural struc-
ture on theories that allows us to abstract away from irrelevant details, yet still
allow us to get some practical work done? One such structure is that of mu-
tual interpretability between theories. Basically this is the case when we have
two equivalent theories T1 and T2 (in a sense to be made precise later) with
presentations that can be markedly different.

But why should theory presentations matter at all? Studies of “theories” in
mathematics (e.g., Lawvere theories [Law04; LR11]) or in logic focus on entities
that are complete in some sense. But such completeness generally also implies
that the object at hand is effectively infinite, and thus cannot be directly rep-
resented in software. Hence we are immediately forced to work with finite rep-
resentations of these infinite objects. Furthermore, by Gödel’s incompleteness
theorem, most of the interesting theories will be fundamentally incomplete, in
that no finite representation will be able to adequately represent the complete
whole. The relevance here is that we are forced to deal with (syntactic) repre-
sentations, which will generally be incomplete. As this is forced on us, we need
to gracefully adapt to dealing with theory presentations in place of the theories
they represent.

2 The Setting: Theory Graphs

We will now present an abstract notion of a theory graph that is sufficient to
introduce the notion of a realm without committing ourselves to a particular
approach such as [CO12] or [RK13].

Let a theory be a presentation of an axiomatic theory consisting of a finite
sequence of symbol and formula declarations. The symbols denote concepts and
the formulas denote facts about these concepts. There are three kinds of formula
declarations: axioms, definitions, and theorems.3 We further assume that for
a theory T = [A0, A1, . . . , An], for all i with 0 ≤ i < n, Ai+1 is well formed in
the context of [A0, A1, . . . , Ai]. A theory thus represents an axiomatization of
a mathematical topic. If T is a theory and A is a symbol or formula declara-
tion, T ⊢ A wf, means that A is well formed in the context of theory T . When
T ⊢ A wf, we define T ⋉A to mean [A0, A1, . . . , An, A]; we also extend ⋉ to
apply to sequences of declarations (on the right). If T is a theory and ϕ is a for-
mula, then T |= ϕ means ϕ is a logical consequence of T . A theory is primitive

3 If we make use of the Curry-Howard isomorphism — as we do in [RK13], then
we can get by with typed symbol declarations (with optional definitions) only. In
the propositions-as-types paradigm, axioms are typed constant declarations, and
theorems are typed definitions — a proof corresponds to the respective definiens of
a symbol which is of the respective type.



if it contains only symbol declarations and axioms. A primitive theory repre-
sents a set of concepts and facts without a development structure. The empty

theory is the empty sequence. When T1 = T ⋉A and T2 = T ⋉ B, we also
define T1 ⊕ T2 := (T ⋉A)⋉B whenever A and B are disjoint (i.e., they declare
symbols or formulas with different names). By also extending ⊕ to sequences of
declarations, we get a join operation on theory presentations.

A theory graph is a directed graph in which a node is a theory and we have
edges from a theory T to a theory T ⋉A. If T and T ′ are theories in a theory

graph G, an edge from T to T ′ is designated as T
G
−→ T ′. A theory graph is a

modular representation of a formalized body of mathematical knowledge.

An axiomatic development of a theory T to a theory T ′ in G is a subgraph
G′ of G in which T is the only source of G′ and T ′ is the only sink of G′. In this
case, T and T ′ are called the bottom theory and the top theory, respectively.
An axiomatic development is thus a lattice of theories in which the top theory
is the join of the members of the lattice.

Let T1 and T2 be theories in G. A view of T1 in T2 is a homomorphic
mapping Φ of the language of T1 to the language of T2 such that, for each
formula ϕ of T1, T1 |= ϕ implies T2 |= Φ(ϕ). We denote a view by Φ : T1  T2. A
view is thus a meaning preserving mapping that shows how T1 can be embedded
in T2. It also provides a mapping from the models of T2 to the models of T1

(note the reversal of order). T1 and T2 are equivalent if there is a view in both
directions. A view Φ : T1  T2 is faithful if for each formula ϕ of T1, T2 |= Φ(ϕ)
implies T1 |= ϕ. Views give a second (oriented, multi) graph structure on G,
making it into a bigraph. It is important to note that the base theory graph
(with edges but not views) is always acyclic.

Let T and T ′ be theories. T ′ is an extension of T , and T is a subtheory of
T ′, if there exists a sequence S such that T ′ = T ⋉ S. In this case, there is a view
Φ : T  T ′ such that Φ is the identity function. We call Φ the inclusion of T
into T ′ and denote it by T T ′. This corresponds to the extensions of [CO12],
identity structures in [RK13], as well as the display maps of categorical type
theory.

An interface for T is a view Φ : T ′
 T such that Φ is injective. T ′ and T

are called, respectively, the front and back of the interface. Each subtheory of
T can be a front of an interface for T . An interface is intended to be a convenient
means for accessing (parts of) T . The front of a good interface includes a carefully
selected set of symbols and formulas that denote orthogonal concepts and facts
that can be easily combined to express the other concepts and facts of T . See
section 5 for some concrete examples.

T

T ′

:=

T

T ′

ιΦ

An extension T ′ of T is conservative if there is a view Φ :
T ′
 T such that Φ is the identity function when restricted

to T (i.e., Φ ◦ ι = IdT where ι is the inclusion of T in T ′). If
T ′ is a conservative extension of T , then for each formula ϕ of
T , T ′ |= ϕ implies T |= ϕ. Common examples of conservative
extensions are extensions by symbol declarations, definitions,
or theorems (with proofs). Obviously, if T ′ is a conservative extension of T ,



then T and T ′ are equivalent. We abbreviate the two arrows in a conservative
extension with a double inclusion arrow in theory graphs. A subgraph G′ of a
theory graph G is conservative if T ′ is a conservative extension of T for each

edge T
G
−→ T ′ in G′. A conservative development is an axiomatic development

that is conservative. Note that all the theories in a conservative development are
equivalent to each other. We will write a conservative development with bottom
theory S and top theory T as S T .

Φ : T1  T2 is expansive if there is a Ψ : T2  T2 such that (1) the range
of Ψ is the image of Φ and (2) Ψ is the identity on the image of Φ. That is, a
view of T1 in T2 is expansive if, roughly speaking, T2 is a conservative extension
of the view’s image. A view of T is conservative if it is faithful and expansive.
A conservative view of T is a generalization of a conservative extension of T . If
there is a conservative view of T1 in T2, then T1 and T2 are mutually viewable.

3 Motivation: Developers, Students, and Practitioners

The user of a UDLM can play three different roles. As a developer, the user creates
new representations of mathematical knowledge or modifies existing ones in the
library. As a student, the user studies the mathematical knowledge represented in
the library. And, as a practitioner, the user applies the mathematical knowledge
in the library to problems, both theoretical and practical. A user may play
different roles at different times and may even sometimes combine roles.

A theory graph does not fully support all three of the user’s roles. In fact, it
lacks the structure that is necessary to satisfy the following requirements:

R1 There can be many equivalent theories in a theory graph that represent dif-
ferent axiomatizations of the same mathematical topic. As a result, concepts
and facts about this mathematical topic, possibly expressed in different lan-
guages, may be widely distributed across a theory graph. The developer and
the student would naturally want to have these different axiomatic develop-
ments and the set of concepts and facts that are produced by them in one
convenient place and in one convenient language.

R2 Developers prefer developments that start with minimal bottom theories and
are built as much as possible using conservative extensions. This approach
minimizes the chance of introducing inconsistencies (which would render the
developments pointless) and maximizes the opportunities for reusing the de-
velopment in other contexts. While these two benefits may not be of primary
concern for the student and the practitioner, such a careful development is
usually easier to understand and produces concepts and facts that can be
more reliably applied.

R3 The developer would like to create a view from one theory to another in
a convenient manner by starting with a view of a minimal axiomatization
of the theory and then building up the view as needed using conservative
extensions. Also, there is a desire to use the most convenient axiomatization
amongst equivalent presentations.



R4 The application of a mathematical fact usually does not require an under-
standing of how concepts and facts were derived from first principles. Hence
the parts of the theory graph which were needed by the developer may not
be useful to the practitioner, and may well get in the way of the practi-
tioner’s work. The practitioner would naturally want the concept or fact to
be lifted out of this tangled development bramble.

R5 Languages are introduced in a theory graph for the purpose of theory de-
velopment. They may employ vocabulary that is inconvenient for particular
applications. The practitioner would naturally like to have vocabulary cho-
sen for applications instead of development.

In summary, the developer, the student, and the practitioner have different con-
cerns that are not addressed by the structure of a theory graph. These different
concerns lead us to propose putting some additional structure on a theory graph,
a notion we call a “realm”, to meet these five requirements.

4 Realms

In a nutshell, a realm identifies a subgraph of a development graph, equips it
with a carefully chosen interface theory that abstracts from the development,
and supplies the practitioner with the symbols and formulas she needs.

Definition 1. A realm R is a tuple (G,F, C,V , I) where:
1. G is a theory graph.
2. F is a primitive theory in G called the face of the realm R.
3. C is a set {C1, C2, . . . , Cn} of conservative developments in G.
4. V is a set of views that establish that the bottom theories ⊥1,⊥2, . . . ,⊥n of

C1, C2, . . . , Cn, respectively, are pairwise equivalent.
5. I is a set {I1, I2, . . . , In} of conservative interfaces such that F is the front

of Ii and the top theory ⊤i of Ci is the back of Ii for each i with 1 ≤ i ≤ n.
For each i we call (⊥i, Ci,⊤i) the i-th pillar of R and Ii its interface. Note
that every subset of pillars of a realm R forms a realm together with its interface
and the face of R. We call realms with just one pillar simple and realms with
more than one pillar proper.

⊥1 ⊥2
. . . ⊥n

⊤1 ⊤2
. . . ⊤n

C1 C2 Cn

F

I1
I2 I... In

Fig. 1: The Architecture of a Realm

Figure 1 shows the general sit-
uation, we depict realms by double
dashed boxes and faces by dashed
ones. All the theories in the realm
R are equivalent to each other since
i) all the bottom theories are equiv-
alent by the views in V , ii) all the
members of a conservative develop-
ment are equivalent, and iii) the
front and back of a conservative in-
terface are equivalent.



To ensure that realms have a pleasant categorical structure (that of a con-
tractible groupoid), we assume that V always contains identity views which show
self-equivalence.

A realm consolidates a body of formalized mathematics pertaining to one
topic. Each bottom theory ⊥i is a different (ideally minimal) axiomatization
and each conservative development Ci is a family of extensions of ⊥i. F is an
(ideally convenient) presentation of the topic without any development structure
and without any scaffolding, i.e., the concepts and facts that are needed only for
development purposes. Finally, each interface Ii establishes that F is indeed a
presentation of the topic and how it embeds into each ⊤i.

The realm R = (G,F, C,V , I) minus F and I records the development struc-
ture of the topic; we call R := (G, C,V) the body of R. It can be used to study
the development structure of the topic or as a basis for extensions. The face F
exposes the most important and useful concepts and facts pertaining to that
realm. It is also meant to be used as a module for constructing larger bodies of
formalized mathematics. In other words, it can be seen as an export facility that
only exports carefully selected symbols and formulas from the realm, without
duplication or redundancy. Note that, in practice, we will choose for F the “usual
symbols” traditionally used for that theory; these will also often correspond to
the “original symbols” used in (some of) the bottom theories.

In particular, realms offer the infrastructure to satisfy the five requirements
for users of a UDLM described in section 3. R1 is addressed by the set of theories
in the realm R and by the concepts and facts in F . R2 is addressed by the
conservative developments in C. R3 is addressed by the views in V and the
conservative developments in C. R4 and R5 are addressed by F being primitive
and the fact that F is the front of an interface to each top theory.

Example 1 (Trivial realm). Any theory S in G induces a simple realm R =
(G,S, {GS}, {IdS}, {IdS}) where GS is the subgraph G consisting of S alone
and IdS is the identity view on S. Thus S serves as the top and bottom theories
of the trivial conservative development of S, as well as the face of R.

Example 2 (Initial realm). For any theory T in G we can extend G with a copy

FT of T and a conservative interface FT

ι

T , where ι maps any symbol to
its copy to obtain a theory graph G′. We call RT

G
:= (G′, FT , {GT }, {IdS}, {ι}),

where GT is the subgraph of G consisting of T alone, the initial realm for T
in G.

⊤1 ⊤2

F1 F2

I1 I2

ṽ

v

Fig. 2: Lifting

We can project any realm R to its face F , forgetting
all developmental structure. Note that we can lift views
between theories to realm morphisms (theory morphisms
between their faces): given two realms R1 and R2 with
two interfaces Ii, fronts Fi, and top theories ⊤i, a view

⊤1

v

⊤1 induces a partial view F1

ṽ

F2 on the faces,
where ṽ = I−1

2 ◦ v ◦ I1 (see Figure 2). In practice, the lifted
views will almost always be total, since we prefer to use (in ⊤i and Fi) the
original symbols from the bottom theories.



5 Examples

As the development of the last few sections is fairly abstract, we will attempt
to give the reader a better feel for realms through a selection of examples. We
develop the first one in some detail and then give a more intuitive (and thus
shorter) description of the remaining examples.

5.1 Groups

It is well known that groups can alternatively be described in two ways:

Definition 1 [KM79]. A group1 is a set G together with an
associative binary operation ◦ : G×G → G, such that there is
a unit element e for ◦ in G, and all elements have inverses.

Definition 2 [Hal59]. A group2 is a set G, together with a
(not necessarily associative) binary operation / : G ×G → G,
such that a/a = b/b, a/(b/b) = a, (a/a)/(b/c) = c/b, and
(a/c)/(b/c) = a/b for all a, b, c ∈ G.

For any group1 (G, ◦), we can define a binary operation /◦ by a/◦b := a ◦ b−1

that shows that (G, /◦) is a group2, and vice versa — using a ◦/ b := a/b−1
/ with

b−1
/ := (b/b)/b. Practitioners want to use both group multiplication and division
but are usually indifferent to how and where they are introduced.

In Figure 3, we have assembled this situation into a two-pillar realm with face
group. The two bottom theories group1 and group2 are equivalent via the views
v1 and v2 and the back views of c1 and c1, respectively.4 Note that the views
v1 = ◦ 7→ ◦/, e 7→ e/, i 7→ i/ and v2 = / 7→ /◦ carry proof obligations that show
that the newly defined extensions slash1 and circ-i2 behave as expected by the
group3−i. The face group contains “new” symbols, for which we use underlined
symbols, to distinguish them from the ones in the pillars of the realm. The
interface views Ii pick out the respective “original operators” /, ◦, and i, together
with the corresponding axioms (and any theorems that may have been proven
along the way). Here we have

I1 = ◦ 7→ ◦, e 7→ e, i 7→ i, / 7→ /◦ and I2 = ◦ 7→ ◦/, e 7→ e/, i 7→ i/, / 7→ /

In particular, it is very natural to require that the interfaces of a realm are
conservative since they have access to all symbols in the body of the realm.

5.2 Natural Number Arithmetic

A realm N of natural number arithmetic would naturally contain conservative
developments of several different axiomatizations of the natural numbers with

4 This is a very common situation; the base theories differ mainly in which symbols are
considered primitive, and the conservative developments mainly introduce definitions
for the remaining ones.



group1

G : set, ◦ : G2
→ G

e : G, i : G → G

(a ◦ b) ◦ c = a ◦ (b ◦ c)
a ◦ e = a, a ◦ i(a) = e

group2

G : set, / : G2
→ G

a/a = b/b, a/(b/b) = a
(a/a)/(b/c) = c/b
(a/c)/(b/c) = a/b

slash1

/◦ : G2
→ G

a/◦b := a ◦ i(b)

circ-i2

◦/ : G2
→ G

e/ : G, i/ : G → G

a ◦/ b := a/i/(b)
e/ := b/b, i/(a) := e//a

c1
c2

v1
v2

group

G : set, ◦ : G2
→ G, e : G, i : G → G, / : G2

→ G

(a◦b)◦c = a◦(b◦c), a ◦ e = a, a◦i(a) = e, a/b = a◦i(b)

a/a = b/b, a/(b/b) = a, (a/a)/(b/c) = c/b, (a/c)/(b/c) = a/b

I1
I2

Fig. 3: A Realm of Groups with Face group

the usual arithmetic operations. One conservative development would certainly
start with Peano’s axiomatization of the natural numbers [Pea89]. The base
theory would contain the symbols 0 and S (the successor function) and the
(second-order) Peano axioms. The conservative development would include re-
cursive definitions of + (addition) and ∗ (multiplication). This development is
particularly useful as it makes the proofs of many properties of the natural num-
bers simple.

Another kind of conservative development would start with a construction
of the natural numbers using machinery available in the underlying logic. There
are many such constructions. Some examples are finite von Neumann ordinals
constructed from sets, Church numerals constructed from lambda expressions,
strings of bits, and various bijective numeration schemes. These constructions
define representations of the natural numbers that are semantically equivalent
but far from equivalent with respect to computational complexity. It is worth
singling out the sequences of machine-sized words representation, which tends
to be the most efficient.

The face FN of N would be restricted to the most basic concepts and facts
about natural number arithmetic. These would naturally include symbols for all
the natural numbers (i.e., natural number numerals) and all the true equations of
the form n1+n2 = n3 and n1∗n2 = n3. Thus FN would contain an infinite number
of symbols and facts. An implementation of FN would require an efficient means



to represent and compute with natural number numerals. Biform theories [Far07]
would be best suited for such a task.

This realm N that we have described is a multi-pillar presentation of the
mathematical topic of natural number arithmetic. It can be used by developers
as a module with which to build more complex theories and by students who are
interested in understanding what are the basic concepts and facts of this topic
and how they are derived from first principles. A realm like N that contains
several pillars and a face of basic concepts and facts is called a foundational

realm. Used for building new theories and for study, a foundational realm would
not be expected to change much over time.

Since the mathematical theory of natural number arithmetic is exceedingly
rich, there are a great many concepts and facts about natural numbers that
could be of use to practitioners. For developers and students, the usefulness
of N would be greatly reduced if there was an attempt to include all of these
concepts and facts in FN. It would be much better for practitioners — who are
primarily interested in applications — to create another single-pillar realm N

′

of natural number arithmetic whose face would contain all the useful concepts
and facts about natural numbers that have been derived someplace in the theory
graph. A realm of this type is called a high-level realm. Used for applications,
a high-level realm would be continuously updated as new concepts and facts
are discovered. It would be an implementation of the idea of a high-level theory
discussed in [CF08].

5.3 Real Numbers

The theory of the real numbers covers the algebraic and topological structure
of the real numbers. Rich in concepts and facts, it is one of the most important
theories in all of mathematics. It is important to developers since real numbers
are needed in most mathematical developments. It is important to students since
it includes many of the most important ideas of mathematics. It is important
to practitioners since most mathematical problems involve the real numbers in
some way.

A realm R of the real numbers could be used to consolidate and organize all
the knowledge about the real numbers that resides in a UDLM. R would have
a structure similar to the realm of natural number arithmetic. It would contain
two kinds of conservative developments. The first kind are axiomatizations of a
complete ordered field – all complete ordered fields are isomorphic. The second
kind are constructions of the real numbers, of which there are many. Some ex-
amples are Dedekind cuts in the field of rational numbers, Cauchy sequences of
rational numbers, infinite decimal expansions, the quotient of the finite hyperra-
tionals by the infinitesimal hyperrationals, and as a substructure of the surreal
numbers. It is worth remarking that most of these constructions leverage N, so
that constructing realms is also a modular process.

The realm R would be a foundational realm like N for developers and stu-
dents. There should also be a high-level realm R

′ like N
′ for practitioners. The



face of R would only contain the basic concepts and facts about the real num-
bers, while the face of R′ would contain all the useful concepts and facts about
the real numbers that have been derived someplace in the theory graph. The
prominent role of the real numbers would mean that R or R′ would be the basis
of many of the more sophisticated theories in a UDLM.

5.4 Monads

Category theorists and (advanced) Haskell programmers are familiar with the
expressive power of monads. Most know that there are in fact two equivalent
presentations of the theory of monads, one using a multiplication operation µ
(called join in Haskell) and unit η (return), the other using Kleisli triples with
a lifting operation −∗ (called bind or >>= in Haskell). From there, one can define
a large list of generic combinators that work for any monad.

These two presentations are equivalent, and are again similar in flavor to the
previous ones: one is more convenient for proofs, the other for computational
purposes. Again, these basic theories tend to be followed by a substantial tower of
conservative extensions. In other words, Haskell’s Control.Monad should really
be seen as the face of a realm of monads.

5.5 Modal Logic S4

The modal logic S4 has a large number of equivalent presentations — John
Halleck [Hal] lists 28 of them. This gives developers significant flexibility when
using views (aka requirement R3) to establish that a structure can interpret
S4. And, of course, S4 supports rather significant conservative extensions and
applications of it are found in a variety of places.

5.6 Models of Computation

The Chomsky hierarchy of regular, context-free, context-sensitive and recursively
enumerable languages offer names for (the face of) four more, nested, realms. As
is well known, each of the above languages contains many different formalisms
which are nevertheless equivalent.

Inside the recursively enumerable languages (for example), we would have
the pillars of Turing machines, Register Machines, the Lambda Calculus, certain
automata, etc, as alternatives. It is difficult to design a suitable face theory for
this realm, as the syntax of any high-level programming language could serve;
given the heated debates around what language is “best”, this is one realm whose
face may not settle for a long time.

6 The Realm Idea

The examples of the previous section show the advantages of realms as consoli-
dated structures: a realm hides cumbersome details, while still allowing access to



the details for those (such as developers) who must deal with them. Realms thus
deal with two structural tensions in the design of theory graphs that formalize
a mathematical domain:

Foundational realms can in many ways be understood as the formalization of
the ideas of information hiding and modules coming from software engineering.
The face of a realm corresponds to an interface; its secrets, i.e., what it hides, is
the actual conservative development of the theory; and its representation details
correspond to an axiomatization. Of course, to get substitutivity, we need to
ensure equivalence. In an ad hoc manner, Haskell’s type classes, ML’s modules
and functors, Scala’s traits, Isabelle’s locales (etc) all capture certain aspects of
realms. However, the lack of good support for views really hampers the use of
these proto-realms as a modular development mechanism.

High-level realms give practitioners high-level collections of useful symbols and
formulae that function like a tool-chest for applications based on the tiny theo-
ries developers use as a fine-grained model of dependencies, symbol visibilities,
and consistency. For them theories should be static over time, depicting a com-
pleted axiomatic development of a mathematical topic. This gives a persistent
base (and rigid designators) to develop against. But this means that conservative
extensions (like definitions and theorems) need new theories, leading to a severe
pollution of the theory namespace. Practitioners, on the other hand, would nat-
urally prefer dynamic theories that continuously grow as new concepts and facts
are introduced (another kind of rigid designator).

The contribution of realms is an overlay structure that can implement informa-
tion hiding, and mediates between dynamic high-level theories and an underly-
ing, static theory graph. So users can have their cake and eat it.

7 Representing and Growing Realms in a UDLM

Our work on OMDoc/MMT [MMT; KRZ10] and the MathScheme [CFO11] sys-
tems have given us a decent intuition (or so we feel) regarding the services that
a theory-graph based system should provide. We now extent this to realms.

Marking Up Realms. If we look at the definition of a realm, we see that the
body components are already present in the theory graph given by the existing
axiomatic developments. Thus, given a theory graph G, we can add a realm R by
just tagging a subgraph of G and adding a set of interfaces with their common
front (the face of R); all of these are regular components of theory graphs,
so we only need to extend the theory graph data structures (and representation
languages) by a “realm tagging” functionality. This also shows us that the concept
of realms is conservative over theory graphs.

One can easily envision two methods of syntactically identifying realms: glob-
ally via a theory-level “realm declaration” which specifies the five components



from Definition 1, or locally by extending theory and view declarations with a
field that specifies the realm (or realms) it participates in. Given the little the-
ory approach, we tend to use theory extensions and view declarations when the
local context is clear (for example, within a single “file”), and the more global ap-
proach when drawing from a wider context. This appears to be a good syntactic
compromise.

An implementation will have to check the internal constraints from Defini-
tion 1, in particular, that interfaces are total. But the idea of simply “discovering”
realms that occur in the wild is a bit optimistic. From our case studies, we expect
that realms have to be engineered purposefully: they are grown from a seed, and
grow over time by coordinated (and system-supported) additions of theories and
views.

7.1 Supporting the Life Cycle of Realms

We postulate that three realm-level operations will be needed in practice:
i) realms are initialized by designating chosen theories as initial realms, which
ii) can be extended by adding conservative extensions, and iii) proper realms
are created by merging existing realms. These three operations were sufficient
to explain the complex realms in our case studies. We will now discuss them in
more detail.

⊥

S

⊤

F

I

 

⊥

S

S′
⊤

⊤
′

F ′

I ′

realm extension

Initializing Realms. Given a theory graph G, we add any
realm (e.g., the initial realm RT

G
for a theory T in G; see

Example 2) as a starting point of development.

Extending Realms by (internal) conservative extensions.
Given a realm R := (G,F, C,V , I), a top theory ⊤ of some
C ∈ C, and an interface I for ⊤, then we can extend R by:

i) adding a conservative extension S S′ by declaration
c and a commensurate extension ⊤ ⊤′ to C and

ii) (optionally) adding a declaration c to F , giving a new
face F ′, and extending I so that I ′ := I, c 7→ c. If we do
– e.g., for a high-level view – we have to apply i) to each
of the pillars of R, so that all their interfaces are total;
the diagram shows the situation for a simple realm.

In particular, an implementation of high-level realms must
provide a registration functionality for conservative extensions
in C that keeps the interface(s) consistent by ensuring new names appear in the
face of the realm. Note that this extension operation does not change the number
of pillars of a realm, in particular, if realms are started by initial realms, they
will only be extended to simple realms. It is predominantly used for high-level
realms.

The next operation merges two realms if they are mutually interpretable.
This operation is mainly used to build up foundational views, the construction
makes sure that all symbols in the face are interpreted in all the pillars.



Merging Realms along Views. Given two realms R1 := (G,F1, C1,V1, I1) and

R2 := (G,F2, C2,V2, I2), and views ⊥1

v

⊥2 and ⊥′

2

w

⊥′

1, where ⊥i and
⊥′

i are (arbitrary) bottom theories in Ci, then we can define the union realm
R1 ∪

v
w R2 along v and w as (G,F1 ∪F2, C

+w

1 ∪C+v

2 ,V1 ∪V2 ∪{v, w}, I+w

1 ∪I+v

2 ).
Figure 4 shows the situation for two simple realms. Generally, we define that:

i) C+w

1
is the set of conservative developments {C+w | C ∈ C1}, where C+w

is C extended by a copy5 of the development of ⊥′

2 to ⊤′

2 along w, itself
extended to ⊤ ∪ w(⊤′

2). C
+v

2 is defined analogously. In Figure 4, C+v

2 and
C+w

1 are the two diamonds on the left and right.

ii) F1∪F2

I
+w
1

⊤1∪w(⊤2) is I1∪w◦I2 and F1∪F2

I
+v
2

⊤2∪v(⊤1) is I2∪v◦I1.
An implementation of this construction would take great care to merge corre-
sponding symbols in the two faces to minimize the union. Moreover, the copying
operation can be optimized to only copy over those conservative extensions that
are mentioned in the interface extension.
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I+w
1 I+v
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Fig. 4: Union Realm

7.2 Modular Realms

Note that the extension and merging operations highlight an internal invariant
of realms that may not have been obvious until now: All pillars of a realm must
interpret the full vocabulary of the face to admit total interfaces. This duplication
can become quite tedious in practice. Therefore it is good practice to modularize
realms in the spirit of a “little realms approach”. For instance, the groups realm
from Figure 3 could be extended by the usual group theorems via conservative
extensions in both pillars. But we can also build a simple realm with base theory
group and extend that conservatively (once per theorem). Unless there are proofs
that directly profit from the particulars of the concrete formulations in the pillars

5 A copy of a development (sub)graph H along a view v is an isomorphic graph H ′,
where for any theory S in H , S′ in H ′ consists of the declarations c : v(τ ) = v(δ),

for all c : τ = δ in S. This construction gives us a view S
v

S′.



below, the modular approach is more efficient representationally and thus more
manageable.

7.3 Interface Matters

As the realms are the main interaction points for mathematicians with the
UDLM, realms must be discoverable and provide a range of convenient infor-
mation retrieval methods (after all, realms will get very large in practice). These
can range from community tools like peer reviewed periodicals (aka. academic
journals) to technical means like intra- and cross-realm search engines (as realms
are built upon theory graphs, specialization of the ♭search engine [KI12] will be
a good starting point.)

It will be very important to provide a set of interactions for the interface of a
realm that users can understand. It will be important to look up the definienda
and proofs of interface items, even though this will usually mean that we need
to descend into (conservative extensions of) one of the fronts of the interface,
which employ different languages. This needs to be transparent enough to be
understandable to users/mathematicians.

Similarly, the equivalence relation of the (tiny) theories that make up the
realm should be made transparent and easy to browse for the user.

8 Conclusion

We have presented an extension of the theory graph approach to representing
mathematical knowledge. Realms address the mismatch between the successful
practice of the little/tiny theory approach natural for developing theory graphs
and the high-level theories most useful for practitioners utilizing such mathemat-
ical knowledge representations. We have proposed a formal definition for realms
that is conservative over theory graphs and shown its adequacy by applying it
to examples from various areas of mathematics and computation.

As a step towards an implementation we have investigated a set of realm-
level operations that can serve as a basis for system support of realm manage-
ment. The next step in our investigation will be to realize and test such support
in the OMDoc/MMT [MMT; KRZ10] and the MathScheme [CFO11] systems,
fully develop the examples sketched in this paper, and test the interactions on
developers, students, and practitioners (see section 3).
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