
GOOL: A Generic Object-Oriented Language
(extended version)

Jacques Carette
Department of Computing and

Software
McMaster University

Hamilton, Ontario, Canada
carette@mcmaster.ca

Brooks MacLachlan
Department of Computing and

Software
McMaster University

Hamilton, Ontario, Canada
maclachb@mcmaster.ca

W. Spencer Smith
Department of Computing and

Software
McMaster University

Hamilton, Ontario, Canada
smiths@mcmaster.ca

Abstract
We present GOOL, a Generic Object-Oriented Language. It
demonstrates that a language, with the right abstractions,
can capture the essence of object-oriented programs. We
show how GOOL programs can be used to generate human-
readable, documented and idiomatic source code in multi-
ple languages. Moreover, in GOOL, it is possible to express
common programming idioms and patterns, from simple
library-level functions, to simple tasks (command-line argu-
ments, list processing, printing), to more complex patterns,
such as methods with a mixture of input, output and in-out
parameters, and finally Design Patterns (such as Observer,
State and Strategy). GOOL is an embedded DSL in Haskell
that can generate code in Python, Java, C#, and C++.

Keywords Code Generation, Domain Specific Language,
Haskell, Documentation

1 Introduction
Java or C#? At the language level, this is close to a non-
question: the two languages are so similar that only issues
external to the programming language itself would be the
deciding factor. Unlike say the question “C or Prolog?”, which
is almost non-sensical, as the kinds of applications where
each is well-suited are vastly different. But, given a single
paradigm, for example object-oriented (OO), would it be
possible to write a unique meta-language that captures the
essence of writing OO programs? After all, they generally all
contain (mutable) variables, statements, conditionals, loops,
methods, classes, objects, and so on.
Of course, OO programs written in different languages

appear, at least at the surface, to be quite different. But this
is mostly because the syntax of different programming lan-
guages is different. Are they quite so different in the utter-
ances that one can say in them? In other words, are OO
programs akin to sentences in Romance languages (French,
Spanish, Portugese, etc) which, although different at a sur-
face level, are structurally very similar?

This is what we set out to explore. One non-solution is to
find an (existing) language and try to automatically translate

PL’20, ,
2020.

it to the others. Of course, this can be made to work — one
could engineer a multi-language compiler (such as gcc) to
de-compile its Intermediate Representation (IR) into most
of its input languages. The end-results would however be
wildly unidiomatic; roughly the equivalent of a novice in a
new (spoken) language “translating” word-by-word.
What if, instead, there was a single meta-language de-

signed to embody the common semantic concepts of a num-
ber of OO languages, encoded so that the necessary informa-
tion for translation is present? This source language could
be agnostic about what eventual target language will be used
– and free of the idiosyncratic details of any given language.
This would be quite the boon for the translator. In fact, we
could go even further, and attempt to teach the translator
about idiomatic patterns of each target language.
Trying to capture all the subtleties of each language is

hopeless — akin to capturing the rhythm, puns, metaphors,
similes, and cultural allusions of a sublime poem in transla-
tion. But programming languages are most often used for
muchmore prosaic tasks: writing programs for getting things
done. This is closer to translating technical textbooks, mak-
ing sure that all of the meaningful material is preserved.
Is this feasible? In some sense, this is already old hat:

modern compilers have a single IR, used to target multiple
processors. Compilers can generate human-readable sym-
bolic assembly code for a large family of CPUs. But this is not
the same as generating human-readable, idiomatic high-level
code.
More precisely, we are interested in capturing the con-

ceptual meaning of OO programs, in such a way as to fully
automate the translation from the “conceptual” to human-
readable, idiomatic code, in mainstream languages.

At some level, this is not new. Domain-Specific Languages
(DSL), are high-level languages with syntax and semantics
tailored to a specific domain [18]. ADSL abstracts over the de-
tails of “code”, providing notation to specify domain-specific
knowledge in a natural manner. DSL implementations often
work via translation to a GPL for execution. Some generate
human-readable code [5, 12, 19, 25].

This is what we do, for the domain of OO programs.
We have a set of new requirements:

1. The generated code should be human-readable,
1

ar
X

iv
:1

91
1.

11
82

4v
1

 [
cs

.P
L

]
 2

6
N

ov
 2

01
9

2. The generated code should be idiomatic,
3. The generated code should be documented,
4. The generator expresses common OO patterns.
Here we demonstrate that all of these requirements can be

met. While designing a generic OO language is a worthwhile
endeavour, we had a second motive: we needed a means to
do exactly that as part of our Drasil project [23, 24]. The
idea of Drasil is to generate all the requirements documenta-
tion and code from expert-provided domain knowledge. The
generated code needs to be human readable so that experts
can certify that it matches their requirements. We largely
rewrote SAGA [5] to create GOOL1. GOOL is implemented
as a DSL embedded in Haskell that can currently generate
code in Python, Java, C#, and C++. Others could be added,
with the implementation effort being commensurate to the
(semantic) distance to the languages already supported.

First we expand on the high-level requirements for such an
endeavour, in Section 2. To be able to give concrete examples,
we show the syntax of GOOL in Section 3. The details of the
implementations, namely the internal representation and the
family of pretty-printers, is in Section 4. Common patterns
are illustrated in Section 5. We close with a discussion of
related work in Section 6, plans for future improvements in
Section 7, and conclusions in Section 8.
Note that a short version of this paper [16] will be pub-

lished at PEPM 2020. The text in both version differs many
places (other than just in length), but do not differ in mean-
ing.

2 Requirements
While we outlined some of our requirements above, here we
give a complete list, as well as some reasoning behind each.

mainstream Generate code inmainstream object-oriented
languages.

readable The generated code should be human-readable,
idiomatic The generated code should be idiomatic,
documented The generated code should be documented,
patterns The generator should allow one to express

common OO patterns.
expressivity The language should be rich enough to

express a set of existing OO programs, which act as
test cases for the language.

common Language commonalities should be abstracted.
Targetting OO languages (mainstream) is primarily be-

cause of their popularity, which implies the most potential
users — in much the same way that the makers of Scala and
Kotlin chose to target the JVM to leverage the Java ecosystem,
and Typescript for Javascript.

The readable requirement is not as obvious. As DSL users
are typically domain experts who are not “programmers”,
why generate readable code? Few Java programmers ever

1Available at https://github.com/JacquesCarette/Drasil as a sub-package.

look at JVM bytecode, and fewC++ programmers at assembly.
But GOOL’s aim is different: to allow writing high-level OO
code once, but have it be available in many GPLs. One use
case would be to generate libraries of utilities for a narrow
domain. As needs evolve and language popularity changes,
it is useful to have it immediately available in a number
of languages. Another use, which is core to our own moti-
vation as part of Drasil [23, 24], is to have extremely well
documented code, indeed to a level that would be unrealistic
to do by hand. But this documentation is crucial in domains
where certification is required. And readable is a proxy for
understandable, which is also quite helpful for debugging.
The same underlying reasons for readable also drive id-

iomatic and documented, as they contribute to the human-
understandability of the generated code. idiomatic is impor-
tant as many human readers would find the code “foreign”
otherwise, and would not be keen on using it. Note that
documentation can span from informal comments meant for
humans, to formal, structured comments useful for generat-
ing API documentation with tools like Doxygen, or with a
variety of static analysis tools. Readability (and thus under-
standability) are improved when code is pretty-printed [7].
Thus taking care of layout, redundant parentheses, well-
chosen variable names, using a common style with lines that
are not too long, are just as valid for generated code as for
human-written code. GOOL does not prevent users from
writing undocumented or complex code, if they choose to
do so. It just makes it easy to have readable, idiomatic and
documented code in multiple languages.
The patterns requirement is typical of DSLs: common

programming idioms can be reified into a proper linguistic
form instead of being merely informal. Even some of the
design patterns of [10] can become part of the language itself.
While this does make writing some OO code even easier
in GOOL than in GPLs, it also helps keep GOOL language-
agnostic and facilitates generating idiomatic code. Examples
will be given in Section 5. But we can indicate now how this
helps: Consider Python’s ability to return multiple values
with a single return statement, which is uncommon in other
languages. Two choices might be to disallow this feature in
GOOL, or throw an error on use when generating code in lan-
guages that do not support this feature. In the first case, this
would likely mean unidiomatic Python code, or increased
complexity in the Python generator to infer that idiom. The
second option is worse still: one might have to resort to writ-
ing language-specific GOOL, obviating the whole reason for
the language! Multiple-value return statements are always
used when a function returns multiple outputs; what we can
do in GOOL is to support such multiple-output functions,
and then generate the idiomatic pattern of implementation
in each target language.

expressivity is about GOOL capturing the ideas con-
tained in OO programs. We test GOOL against real-world

2

https://github.com/JacquesCarette/Drasil

examples from the Drasil project, such as software for de-
termining whether glass withstands a nearby explosion and
software for simulating projectile motion.

The last requirement (common) that language common-
alities be abstracted, is internal: we noticed a lot of repeated
code in our initial backends, something that ought to be
distasteful to most programmers. For example, writing a gen-
erator for both Java and C# makes it incredibly clear how
similar the two languages are.

3 Creating GOOL
How do we go about creating a “generic” object-oriented
language? We chose an incremental abstraction approach:
start from OO programs written in two different languages,
and unify them conceptually.

We abstract from concrete OO programs, not just to meet
our expressivity requirement, but also because that is our
“domain”. Although what can be said in any given OO lan-
guage is quite broad, what we actually want to say is often
much more restricted. And what we need to say is often
even more concise. For example, Java offers introspection
features, but C++ doesn’t, so abstracting from portable OO
will not feature introspection (although it may be the case
that generating idiomatic Java may later use it); thus GOOL
as a language does not encode introspection. C++ templates
are different: while other languages do not necessarily have
comparable meta-programming features, as GOOL is a code
generator, it is not only feasible but in fact easy to provide
template-like features, and even aspects of partial evaluation
directly. Thus we do not need to generate templates. In other
words, we are trying to abstract over the fundamental ideas
expressed via OO programs, rather than abstracting over the
languages — and we believe the end result better captures the
essence of OO programs. Of course, some features, such as
types, which don’t exist per se in Python but are required in
Java, C# and C++, will be present as doing full type inference
is unrealistic.
Some features of OO programs are not operational: com-

ments and formatting decisions amongst them. To us, pro-
grams are a bidirectional means of communication; they
must be valid, executable programs by computers, but also
need to be readable and understandable by humans. Gener-
ating code for consumption by machines is well understood
and performed by most DSLs, but generating code for human
consumption has been given less attention. We tried to pay
close attention to program features — such as the habits of
programmers to write longer methods as blocks separated
by (at least) blank lines, often with comments — which make
programs more accessible to human readers.

Finding commonalities between OO programs is most eas-
ily done from the core imperative language outwards. Most
languages provide similar basic types (variations on integers,

floating point numbers, characters, strings, etc.) and func-
tions to deal with them. The core expression language tends
to be extremely similar across languages. One then moves
up to the statement language — assignments, conditionals,
loops, etc. Here we start to encounter variations, and choices
can be made; we’ll cover that later.
For ease of experimentation, GOOL is an Embedded Do-

main Specific Language (EDSL) inside Haskell. We might
eventually give GOOL its own external syntax, but for now
it works well as a Haskell EDSL, especially as part of Drasil.
Haskell is very well-suited for this, offering a variety of fea-
tures (GADTs, type classes, parametric polymorphism, kind
polymorphism, etc.) that are quite useful for building lan-
guages. Its syntax is also fairly liberal, so that with smart
constructors, one can somewhat mimic the usual syntax of
OO languages.

3.1 GOOL Syntax: Imperative core
Basic types in GOOL are bool for Booleans, int for integers,
float for doubles, char for characters, string for strings,
infile for a file in read mode, and outfile for a file in write
mode. Lists can be specified with listType; listType int
specifies a list of integers. Objects are specified using obj
followed by a class name.
Variables are specified with var followed by the variable

name and type. For example, var "ages" (listType int)
represents a variable called “ages” that is a list of integers.
For common constructions, it is useful to offer shortcuts for
defining them; for example, the above can also be done via
listVar "ages" int. Typical use would be
let ages = listVar "ages" int in
so that ages can be used directly from then on. Other means
for specifying variables is shown in Table 1.

Table 1. Syntax for specifying variables

GOOL Syntax Semantics

extVar for a variable from an external library
classVar for a variable belonging to a class
objVar for a variable belonging to an object
$-> infix operator form of objVar
self for referring to an object in the definition

of its class

Note that GOOL distinguishes a variable from its value2.
To get the value of ages, one must write valueOf ages.
This distinction is motivated by semantic considerations;
it is beneficial for stricter typing and enables convenient
syntax for patterns that translate to more idiomatic code.
Syntax for literal values is shown in Table 2 and for op-

erators on values in Table 3. Each operator is prefixed by
2 as befits the use-mention distinction from analytic philosophy

3

an additional symbol based on type. Boolean-valued by ?,
numeric by #, and others by $.

Table 2. Syntax for literal values

GOOL Syntax Semantics

litTrue literal Boolean true
litFalse literal Boolean false
litInt i literal integer i
litFloat f literal float f
litChar c literal character c
litString s literal string s

Table 3. Operators for making expressions

GOOL Syntax Semantics

?! Boolean negation
?&& conjunction
?|| disjunction
?< less than
?<= less than or equal
?> greater than
?>= greater than or equal
?== equality
?!= inequality
#~ numeric negation
#/^ square root
#| absolute value
#+ addition
#- subtraction
#* multiplication
#/ division
#^ exponentiation

Table 4 shows conditional expressions and function appli-
cation. selfFuncApp and objMethodCallNoParams are two
shortcuts for when a method is being called on self or when
the method takes no parameters.
Variable declarations are statements, and take a variable

specification as an argument. For foo = var "foo" int, the
corresponding variable declaration would be varDec foo,
and initialized declarations are varDecDef foo (litInt 5).
Assignments are represented by assign a (litInt 5).
Convenient infix and postfix operators are also provided,
prefixed by &: &= is a synonym for assign, and C-like &+=,
&++, &-= and &~- (the more intuitive &-- cannot be used as
-- starts a comment in Haskell).

Other simple statements include break and continue,
returnState (followed by a value to return), throw (fol-
lowed by an error message to throw), free (followed by a
variable to free from memory), and comment (followed by a
string used as a single-line comment).

Table 4. Syntax for conditionals and function application

GOOL Syntax Semantics

inlineIf conditional expression
funcApp function application (list of parameters)
extFuncApp function application, for external library
newObj for calling an object constructor
objMethodCall for calling a method on an object

A single OO method is frequently laid out as a sequence
of blocks of statements, where each block represents a mean-
ingful task. In GOOL, block is used for this purpose. Thus
bodies are not just a sequence of statements (as would be
natural if all we cared about was feeding a compiler), but
instead a body is a list of blocks. A body can be used as a
function body, conditional body, loop body, etc. This addi-
tional level of organization of statements is operationally
meaningless, but represents the actual structure of OO pro-
grams as written by humans. This is because programmers
(hopefully!) write code to be read by other programmers,
and blocks increase human-readability. Naturally, shortcuts
are provided for single-block bodies (bodyStatements) and
for the common single-statement case, oneLiner.
GOOL has two forms of conditionals: if-then-else via

ifCond (which takes a list of pairs of conditions and bodies)
and if-then via ifNoElse. For example:
ifCond [
(foo ?> litInt 0, oneLiner (
printStrLn "foo is positive ")),

(foo ?< litInt 0, oneLiner (
printStrLn "foo is negative "))]

(oneLiner $ printStrLn "foo is zero ")
GOOL also supports switch statements.
There are a variety of loops: for-loops (for), which are

parametrized by a statement to initialize the loop variable,
a condition, a statement to update the loop variable, and
a body; forRange loops, which are given a starting value,
ending value, and step size; and forEach loops. For example:
for (varDecDef age (litInt 0)) (age < litInt 10)
(age &++) loopBody

forRange age (litInt 0) (litInt 9) (litInt 1) loopBody
forEach age ages loopBody
While-loops (while) are parametrized by a condition and a
body; try-catch (tryCatch) is parameterized by two bodies.

3.2 GOOL Syntax: OO features
A function declaration is followed by the function name,
scope, binding type (static or dynamic), type, list of parame-
ters, and body. Methods (method) are defined similarly, with
the addition of the the containing class’ name. Parameters
are built from variables, using param or pointerParam. For

4

example, assuming variables “num1” and “num2” have been
defined, one can define an add function as:
function "add" public dynamic_ int
[param num1, param num2]
(oneLiner (returnState (num1 #+ num2)))

The pubMethod and privMethod shortcuts are useful for
public dynamic and private dynamic methods, respectively.
mainFunction defines themain function of a program. docFunc
generates a documented function from a function description
and a list of parameter descriptions, an optional description
of the return value, and the function itself. This generates
Doxygen-style comments.

Classes are defined with buildClass followed by the class
name, name of the class from which it inherits (if applica-
ble), scope, list of state variables, and list of methods. State
variables can be built by stateVar followed by scope, static
or dynamic binding, and the variable itself. constVar can
be used for constant state variables. Shortcuts for state vari-
ables include privMVar for private dynamic, pubMVar for
public dynamic, and pubGVar for public static variables. For
example:
buildClass "FooClass" Nothing public
[pubMVar 0 var1, privMVar 0 var2] [mth1, mth2]

Nothing here indicates that this class does not have a par-
ent, privClass and pubClass are shortcuts for private and
public classes, respectively. docClass is like docFunc.

3.3 GOOL syntax: modules and programs
Akin to Java packages and other similar constructs, GOOL
has modules (buildModule) consisting of a name, a list of
libraries to import, a list of functions, and a list of classes.
Module-level comments are done with docMod.
At the top of the hierarchy are programs, auxiliary files,

and packages. A program (prog) has a name and a list of files.
A package is a program and a list of auxiliary files; these
are non-code files that augment the program. Examples are
a Doxygen configuration file (doxConfig), and a makefile
(makefile). A parameter of makefile toggles generation of
a make doc rule, to compile the Doxygen documentation
with the generated Doxygen configuration file.

4 GOOL Implementation
There are two “obvious” means of dealing with large embed-
ded DSLs in Haskell: either as a set of Generalized Algebraic
Data Types (GADTs), or using a set of classes, in the “fi-
nally tagless” style [8] (we will refer to it as simply tagless
from now on). The current implementation uses a “sophisti-
cated” version of tagless. A first implementation of GOOL,
modelled on the multi-language generator SAGA [5] used a
straightforward version of tagless, which did not allow for
enough generic routines to be properly implemented. This
was replaced by a version based on GADTs, which fixed that

problem, but did not allow for patterns to be easily encoded.
Thus the current version has gone back to tagless, but also
uses type families in a crucial way.
In tagless the means of encoding a language, through

methods from a set of classes, really encodes a generalized
fold over any representation of the language. Thus what looks
like GOOL “keywords” are either class methods or generic
functions that await the specification of a dictionary to de-
cide on the final interpretation of the representation. We
typically instantiate these to language renderers, but we’re
also free to do various static analysis passes.
Because tagless representations give an embedded syn-

tax to a DSL while being polymorphic on the eventual se-
mantic interpretation of the terms, [8] dubs the resulting
classes “symantic”. Our language is defined by a hierarchy
of 43 of these symantic classes, grouped by functionality,
as illustrated in Figure 1. For example, there are classes for
programs, bodies, control blocks, types, unary operators,
variables, values, selectors, statements, control statements,
blocks, scopes, classes, modules, and so on. These define 328
different methods — GOOL is not a small language!

For example, here is how variables are defined:

class (TypeSym repr) => VariableSym repr where
type Variable repr
var :: Label −> repr (Type repr) −>
repr (Variable repr)

As variables are typed, their representation must be aware
of types and thus that capability (the TypeSym class) is a
constraint. The associated type type Variable repr is a
representation-dependent type-level function. Each instance
of this class is free to define its own internal representation
of what a Variable is. var is then a constructor for variables,
which takes a Label and a representation of a type, returning
a representation of a variable. Specifically, repr has kind
* -> *, and thus Variable has kind (* -> *) -> *.
In repr (X repr), the type variable repr appears twice
because there are two layers of abstraction: over the target
language, handled by the outer repr, and over the underlying
types to which GOOL’s types map, represented by the inner
repr.

We make use of this flexibility of per-target-language rep-
resentation variation to record more (or less) information
for successful idiomatic code generation. For example, the
internal representation for a state variable in C++ stores
the corresponding destructor code, but not in the other lan-
guages.

For Java, we instantiate the VariableSym class as follows:

instance VariableSym JavaCode where
type Variable JavaCode = VarData
var = varD

where JavaCode is essentially the Identity monad:
5

Figure 1. Dependency graph of all of GOOL’s type classes

newtype JavaCode a = JC {unJC :: a}

The unJC record field is useful for type inference: when
applied to an otherwise generic term, it lets Haskell infer
that we are wishing to only consider the JavaCode instances.
VarData is defined as

data VarData = VarD {
varBind :: Binding,
varName :: String ,
varType :: TypeData,
varDoc :: Doc}

Thus the representation of a (Java) variable consists of more
than just its printed representation (the Doc field), but also
its binding time, name, and type of the variable. Doc comes
from the package Text.PrettyPrint.HughesPJ and repre-
sents formatted text. It is common in OO programs to declare
some variables as static to signify that the variable should
be bound at compile-time. The Binding, either Static or
Dynamic, is thus part of a variable’s representation. That a
variable is aware of its type makes the generation of declara-
tions simpler. The inclusion of a name, as a String, makes
generating meta-information, such as for logging, easier.

All representing structures contain at least a Doc. It can be
considered to be our dynamic representation of code, from a
partial-evaluation perspective. The other fields are generally
static information used to optimize the code generation.

We prefer generic code over representation-specific code,
so there is little code that works on VarData directly. Instead,
there aremethods like variableDoc, part of the VariableSym
type class, with signature:

variableDoc :: repr (Variable repr) −> Doc

which acts as an accessor. For JavaCode, it is simply:

variableDoc = varDoc . unJC

Other uses of additional information are for uniform doc-
umentation, builds and better arrangement of parentheses.
A common documentation style for methods is to provide a
description of each of the method’s parameters. The repre-
sentation for Methods stores the list of parameters, which is
then used to automate this pattern of documentation. Make-
files are often used to compile OO programs, and this process
sometimes needs to know which file contains the main mod-
ule or method. Since GOOL includes the option of generat-
ing a Makefile as part of a Package, the representation for a
Method and a Module store information on whether it is the
mainmethod ormodule. Redundant parentheses are typically
ignored by compilers, but programmers still tend tominimize
them in their code — it makes the code more human-readable.
Operator precedence is used for this purpose, and thus we
also store precedence information in the representations for
Values, UnaryOperators and BinaryOperators to elide extra
parentheses.

6

Note that the JavaCode instance of VariableSym defines
the var function via the varD function:
varD :: (RenderSym repr) => Label −> repr (Type repr)
−> repr (Variable repr)

varD n t = varFromData Dynamic n t (varDocD n)

varDocD :: Label −> Doc
varDocD = text
varD is generic, i.e. works for all instances, via dispatching
to other generic functions, such as varFromData:
varFromData :: Binding −> String −> repr (Type repr)
−> Doc −> repr (Variable repr)

This method is in class InternalVariable. Several of these
“internal” classes exist, which are not exported from GOOL’s
interface. They contain functions useful for the language
renderers, but not meant to be used to construct code rep-
resentations, as they reveal too much of the internals (and
are rather tedious to use). One important example is the
cast method, which is never needed by user-level code, but
frequently used by higher-level functions.

varDocD can simply be text as Label is an alias for a
String – and Java variables are just names, as with most
OO languages.

We have defined 300 functions like varDocD, each abstract-
ing a commonality between target languages. This makes
writing new renderers for new languages fairly straightfor-
ward. GOOL’s Java and C# renderers demonstrate this well.
Out of 328 methods across all of GOOL’s type classes, the
instances of 229 of them are shared between the Java and
C# renderers, in that they are just calls to the same common
function. That is 40% more common instances compared to
between Python and Java. A further 37 instances are partially
shared between Java and C#, for example they call the same
common function but with different parameters. The num-
bers of common methods between each pair of renderers
are shown in Figure 2. It is clear from the graph that Python
is the least similar to the other target languages, whereas
C# has the most in common with the others, closely followed
by Java. 143 methods are actually the same between all 4
languages GOOL currently targets. This might indicate that
some should be generic functions rather than class methods,
but we have not yet investigated this in detail.
Examples from Python and C# are not shown because

they both work very similarly to the Java renderer. There are
PythonCode and CSharpCode analogs to JavaCode, the un-
derlying types are all the same, and the methods are defined
by calling common functions, where possible, or by con-
structing the GOOL value directly in the instance definition,
if the definition is unique to that language.
C++ is different since most modules are split between a

source and header file. To generate C++, we traverse the
code twice, once to generate the header file and a second

Pyt
hon

/Ja
va

Pyt
hon

/C#

Pyt
hon

/C+
+ S
rc.

Jav
a/C

#

Jav
a/C

++
Src
.

C#
/C+

+ S
rc.

0

100

200

#
co
m
m
on

m
et
ho

ds

Figure 2. Number of common methods between renderers

time to generate the source file corresponding to the same
module. This is done via two instances of the classes, for two
different types: CppSrcCode for source code and CppHdrCode
for header code. Since a main function does not require a
header file, the CppHdrCode instance for a module containing
only a main function is empty. The renderer optimizes empty
modules/files away — for all renderers.
As C++ source and header should always be generated

together, a third type, CppCode achieves this:

data CppCode x y a = CPPC {src :: x a , hdr :: y a}

The type variables x and y are intended to be instantiated
with CppSrcCode and CppHdrCode, but they are left generic
so that we may use an even more generic Pair class:

class Pair (p :: (∗ −> ∗) −> (∗ −> ∗) −> (∗ −> ∗)) where
pfst :: p x y a −> x a
psnd :: p x y b −> y b
pair :: x a −> y a −> p x y a

instance Pair CppCode where
pfst (CPPC xa _) = xa
psnd (CPPC _ yb) = yb
pair = CPPC

Pair is a type constructor pairing, one level up fromHaskell’s
own (,) :: * -> * -> *. It is given by one constructor
and two destructors, much as the Church-encoding of pairs
into the λ-calculus.
To understand how this works, here is the instance of

VariableSym, but for C++:

instance (Pair p) => VariableSym
(p CppSrcCode CppHdrCode) where
type Variable (p CppSrcCode CppHdrCode) = VarData
var n t = pair (var n $ pfst t) (var n $ psnd t)

7

The instance is generic in the pair representation p but oth-
erwise concrete, because VarData is concrete. The actual in-
stance code is straightforward, as it just dispatches to the un-
derlying instances, using the generic wrapping/unwrapping
methods from Pair. This pattern is used for all instances, so
adapting it to any other language with two (or more) files
per module is straightforward.
At the program level, the difference between source and

header is no longer relevant, so they are joined together into
a single component. For technical reasons, currently Pair is
still used, and we arbitrarily choose to put the results in the
first component. Since generating some auxiliary files, espe-
cially Makefiles, requires knowledge of which are source files
and which are header files, GOOL’s representation for files
stores a FileType, either Source or Header (or Combined
for other languages).
GOOL’s ControlBlockSym class is worth drawing atten-

tion to. It contains methods for certain OO patterns, and they
return Blocks, not Statements. So in addition to automating
certain tasks, these methods also save the user from having
to manually specify the result as a block.

While “old” features of OO languages — basically features
that were already present in ancestor procedural languages
like Algol — have fairly similar renderings, more recent (to
OO languages) features, such as for-each loops, show more
variations. More precisely, the first line of a for-each loop in
Python, Java, C# and C++ are (respectively):
for age in ages :

for (int age : ages) {

foreach (int age in ages) {

for (std :: vector<int >:: iterator age = ages .begin (); \
age != ages .end (); age++) {

where we use backslashes in generated code to indicate man-
ually inserted line breaks so that the code fits in this paper’s
narrow column margins. By providing forEach, GOOL ab-
stracts over these differences.

5 Encoding Patterns
There are various levels of “patterns” to encode. The previ-
ous section documented how to encode the programming
language aspects. Now we move on to other patterns, from
simple library-level functions, to simple tasks (command-line
arguments, list processing, printing), on to more complex
patterns such as methods with a mixture of input, output
and in-out parameters, and finally on to design patterns.

5.1 Internalizing library functions
Consider the simple trigonometric sine function, called sin
in GOOL. It is common enough to warrant its own name,
even though in most languages it is part of a library. A GOOL

expression sin foo can then be seamlessly translated to
yield math.sin(foo) in Python, Math.sin(foo) in Java,
Math.Sin(foo) in C#, and sin(foo) in C++. Other func-
tions are handled similarly. This part is easily extensible, but
does require adding to GOOL classes.

5.2 Command line arguments
A slightly more complex task is accessing arguments passed
on the command line. This tends to differ more significantly
accross languages. GOOL offers an abstraction of these mech-
anisms, through an argsList function that represents the
list of arguments, as well as convenience functions for com-
mon tasks such as indexing into argsList and checking if an
argument at a particular position exists. For example, these
functions allow easy generation of code like sys.argv[1]
in Python.

5.3 Lists
Variations on lists are frequently used in OO code, but the
actual API in each language tends to vary considerably; we
need to provide a single abstraction that provides sufficient
functionality to do useful list computations. Rather than
abstracting from the functionality provided in the libraries
of each language to find some common ground, we instead
reverse engineer the “useful” API from actual use cases.
One thing we immediately notice from such an exercise

is that lists in OO languages are rarely linked lists (unlike in
Haskell, our host language), but rather more like a dynami-
cally sized vector. In particular, indexing a list by position,
which is a horrifying idea for linked lists, is extremely com-
mon.

This narrows things down to a small set of functions and
statements, shown in Table 5. For example, listAccess

Table 5. List functions

GOOL Syntax Semantics

listAccess access a list element at a given index
listSet set a list element at a given index to a

given value
at same as listAccess
listSize get the size of a list
listAppend append a value to the end of a list
listIndexExists check whether the list has a value at

a given index
indexOf get the index of a given value in a list

(valueOf ages) (litInt 1) will generate ages[1] in
Python and C#, ages.get(1) in Java, and ages.at(1) in
C++. List slicing is a very convenient higher-level primitive.
The listSlice statement gets a variable to assign to, a list to
slice, and three values representing the starting and ending
indices for the slice and the step size. These last three values

8

are all optional (we use Haskell’s Maybe for this) and default
to the start of the list, end of the list and 1 respectively. To
take elements from index 1 to 2 of ages and assign the result
to someAges, we can use
listSlice someAges (valueOf ages) (Just $ litInt 1)
(Just $ litInt 3) Nothing

List slicing is of particular note because the generated Python
is particularly simple, unlike in other languages; the Python:
someAges = ages [1:3:]
while in Java it is
ArrayList<Double> temp = new ArrayList<Double>(0);
for (int i_temp = 1; i_temp < 3; i_temp++) {

temp.add(ages . get (i_temp));
}
someAges = temp;
This demonstrates GOOL’s idiomatic code generation, en-
abled by having the appropriate high-level information to
drive the generation process.

5.4 Printing
Printing is another feature that generates quite different
code depending on the target language. Here again Python is
more “expressive” so that printing a list (via printLn ages)
generates print(ages), but in other languages we must
generate a loop; for example, in C++:
std :: cout << "[";
for (int list_i1 = 0; list_i1 < \
(int)(myName.size()) − 1; list_i1 ++) {
std :: cout << myName.at(list_i1);
std :: cout << ", ";

}
if ((int)(myName.size()) > 0) {
std :: cout << myName.at((int)(myName.size()) − 1);

}
std :: cout << "]" << std :: endl ;
In addition to printing, there is also functionality for reading
input.

5.5 Procedures with input, output and input-output
parameters

Moving to larger-scale patterns, we noticed that our codes
had methods that used their parameters differently: some
were used as inputs, some as outputs and some for both pur-
poses. This was a semantic pattern that was not necessarily
obvious in any of the implementations. However, once we
noticed it, we could use that information to generate better,
more idiomatic code in each language, while still captur-
ing the higher-level semantics of the functionality we were
trying to implement. More concretely, consider a function
applyDiscount that takes a price and a discount, subtracts

the discount from the price, and returns both the new price
and a Boolean for whether the price is below 20. In GOOL,
using inOutFunc, assuming all variables mentioned have
been defined:
inOutFunc "applyDiscount" public static_
[discount] [isAffordable] [price]
(bodyStatements [
price &−= valueOf discount,
isAffordable &= valueOf price ?< litFloat 20.0])

inOutFunc takes three lists of parameters, the input, output
and input-output, respectively. This function has two outputs
—price and isAffordable— and multiple outputs are not
directly supported in all target languages. Thus we need
to use different features to represent these. For example, in
Python, return statement with multiple values is used:
def applyDiscount(price , discount):

price = price − discount
isAffordable = price < 20

return price , isAffordable
In Java, the outputs are returned in an array of Objects:
public static Object [] applyDiscount(int price , \
int discount) throws Exception {
Boolean isAffordable ;

price = price − discount ;
isAffordable = price < 20;

Object [] outputs = new Object [2];
outputs[0] = price ;
outputs[1] = isAffordable ;
return outputs ;

}
}
In C#, the outputs are passed as parameters, using the out
keyword, if it is only an output, or the ref keyword, if it is
both an input and an output:
public static void applyDiscount(ref int price , \
int discount , out Boolean isAffordable) {
price = price − discount ;
isAffordable = price < 20;

}
And in C++, the outputs are passed as pointer parameters:
void applyDiscount(int &price, \
int discount , bool &isAffordable) {
price = price − discount ;
isAffordable = price < 20;

}
9

Here again we see how a natural task-level “feature”, namely
the desire to have different kinds of parameters, end up be-
ing rendered differently, but hopefully idiomatically, in each
target language. GOOLmanages the tedious aspects of gener-
ating any needed variable declarations and return statements.
To call an inOutFunc function, one must use inOutCall so
that GOOL can “line up” all the pieces properly.

5.6 Getters and setters
Getters and setters are a mainstay of OO programming.
Whether these achieve encapsulation or not, it is certainly
the case that saying to an OO programmer “variable foo
from class FooClass should have getters and setters” is
enough information for them to write the code. And so it is
in GOOL as well. Saying getMethod "FooClass" foo and
setMethod "FooClass" foo. The generated set methods
in Python, Java, C# and C++ are:
def setFoo(self , foo):

self . foo = foo

public void setFoo(int foo) throws Exception {
this . foo = foo ;

}
}

public void setFoo(int foo) {
this . foo = foo ;

}

void FooClass :: setFoo(int foo) {
this−>foo = foo ;

}
The point is that the conceptually simple “set method” con-
tains a number of idiosyncracies in each target language.
These details are irrelevant for the task at hand, and this te-
dium can be automated. As before, there are specific means
of calling these functions, get and set.

5.7 Design Patterns
Finally we get to the design patterns of [10]. GOOL currently
handles three design patterns: Observer, State, and Strategy.

For Strategy, we draw from partial evaluation, and ensure
that the set of strategies that will effectively be used are
statically known at generation time. This way we can ensure
to only generate code for those that will actually be used.
runStrategy is the user-facing function; it needs the name
of the strategy to use, a list of pairs of strategy names and
bodies, and an optional variable and value to assign to upon
termination of the strategy.
For Observer, initObserverList generates an observer

for a list. More specifically, given a list of (initial values), it
generates a declaration of an observer list variable, initially
containing the given values. addObserver can be used to

add a value to the observer list, and notifyObservers will
call a method on each of the observers. Currently, the name
of the observer list variable is fixed, so there can only be one
observer list in a given scope.
The State pattern is here specialized to implement Fi-

nite State Machines with fairly general transition functions.
Transitions happen on checking, not on changing the state.
initState takes a name and a state label and generate a dec-
laration of a variable with the given name and initial state.
changeState changes the state of the variable to a new state.
checkState is more complex. It takes the name of the state
variable, a list of value-body pairs, and a fallback body; and
it generates a conditional (usually a switch statement) that
checks the state and runs the corresponding body, or the
fallback body, if none of the states match.
Of course the design patterns could already have been

coded in GOOL, but having these as language features is
useful for two reasons: 1) the GOOL-level code is clearer in
its intent (and more concise), and 2) the resulting code can
be more idiomatic.
Below is a complete example of a GOOL function. The

recommended style is to name all strings (to avoid hard-to-
debug typos) and variables, then write the code proper.

patternTest :: (MethodSym repr) => repr (Method repr)
patternTest = let
fsmName = "myFSM"
offState = "Off"
onState = "On"
noState = "Neither"
obsName = "Observer"
obs1Name = "obs1"
obs2Name = "obs2"
printNum = "printNum"
nName = "n"
obsType = obj obsName
n = var n int
obs1 = var obs1Name obsType
obs2 = var obs2Name obsType
newObs = extNewObj obsName obsType []

in mainFunction (body [block [
varDec n,

initState fsmName offState ,
changeState fsmName onState,
checkState fsmName
[(litString offState , oneLiner $ printStrLn offState),
(litString onState , oneLiner $ printStrLn onState)]
(oneLiner $ printStrLn noState)],

block [
10

varDecDef obs1 newObs,
varDecDef obs2 newObs],

block [
initObserverList obsType [valueOf obs1],
addObserver $ valueOf obs2,
notifyObservers (func printNum void []) obsType]])

6 Related Work
We divide the Related Work into the following categories

• General-purpose code generation
• Multi-language OO code generation
• Design pattern modeling and code generation

which we present in turn.

6.1 General-purpose code generation
Haxe [3] is a general-purpose multi-paradigm language and
cross-platform compiler. It compiles to all of the languages
GOOL does, and many others. However, it is designed as
a more traditional programming language, and thus does
not offer the high-level abstractions that GOOL provides.
Furthermore Haxe strips comments and generates source
code around a custom framework; the effort of learning this
framework and the lack of comments makes the generated
code not particularly readable. The internal organization of
Haxe does not seem to be well documented.

Protokit [14] is a DSL and code generator for Java and
C++, where the generator is designed to produce general-
purpose imperative or object-oriented code. The Protokit
generator is model-driven and uses a final “output model”
from which actual code can be generated. Since the “out-
put model” is quite similar to the generated code, it pre-
sented challenges with regards to semantic, conventional,
and library-related differences between the target languages
[14]. GOOL’s finally-tagless approach and syntax for high-
level tasks, on the other hand, help overcome differences
between target languages.

ThingML [11] is a DSL for model-driven engineering tar-
geting C, C++, Java, and JavaScript. It is specialized to deal
with distributed reactive systems (a nevertheless broad range
of application domains). This means that this is not quite a
general-purpose DSL, unlike GOOL. ThingML’s modelling-
related syntax and abstractions stand in contrast to GOOL’s
object-oriented syntax and abstractions. The generated code
lacks some of the pretty-printing provided by GOOL, specif-
ically indentation, which detracts from readability.

6.2 Object-oriented generators
There are a number of code generators with multiple target
OO languages, though all are for more restricted domains
than GOOL, and thus do not meet all of our requirements.

Google protocol buffers [2] is a DSL for serializing struc-
tured data, which can be compiled into Java, Python, Objec-
tive C, and C++. Thrift [21] is a Facebook-developed tool
for generating code in multiple languages and even multiple
paradigms based on language-neutral descriptions of data
types and interfaces. Clearwater [22] is an approach for
implementing DSLs with multiple target languages for com-
ponents of distributed systems. The Time Weaver tool [9]
uses a multi-language code generator to generate “glue” code
for real-time embedded systems. The domain of mobile ap-
plications is host to a bevy of DSLs with multiple target
languages, of whichMobDSL [15] and XIS-Mobile [20] are
two examples. Conjure [1] is a DSL for generating APIs. It
reads YML descriptions of APIs and can generate code in
Java, TypeScript, Python, and Rust.

6.3 Design Patterns
A number of languages for modeling design patterns have
been developed. TheDesign PatternModeling Language
(DPML) [17] is similar to the Unified Modeling Language
(UML) but designed specifically to overcome UML’s short-
comings so as to be able to model all design patterns. DPML
consists of both specification diagrams and instance dia-
grams for instantiations of design patterns, but does not
attempt to generate actual source code from the models. The
Role-Based Metamodeling Language [13] is also based
on UML but with changes to allow for better models of design
patterns, with specifications for the structure, interactions,
and state-based behaviour in patterns. Again, source code
generation is not attempted. Another metamodel for design
patterns includes generation of Java code [4]. IBM developed
a DSL in the form of a visual user interface for generation of
OO code based on design patterns [6]. The languages that
generate code do so only for design patterns, not for any
general-purpose code, as GOOL does.

7 Future Work
Currently GOOL code is typed based on what it represents:
variable, value, type, or method, for example. The type sys-
tem does not go “deeper”, so that variables are untyped, and
values (such as booleans and strings) are simply “values”.
This is sufficient to allow us to generate well-formed code,
but not to ensure that it is well-typed. For example, it is
unfortunately possible to pass a value that is known to be a
non-list to a function (like listSize) which requires it. This
will generate a compile-time error in generated Java, but a
run-time error in generated Python. We have started to stati-
cally type GOOL, by making the underlying representations
for GOOL’s Variables and Values Generalized Algebraic
Data Types (GADTs), such as this one for Variables:

data TypedVar a where
BVr :: VarData −> TypedVar Boolean
IVr :: VarData −> TypedVar Integer

11

...

This will allow variables to have different types, and Haskell
will catch these. We would be re-using Haskell’s type system
to catch (some) of the type errors in GOOL. Because we do
not need to type arbitrary code in any of the target languages,
but only what is expressible in GOOL, we can engineer things
so as to encode quite a wide set of typing rules.

GOOL is currently less-than-precise in the list of generated
import statements; we want to improve the code to track
precise dependencies, and only generate imports for the
features we actually use. This could be done via weaving
some state at generation-time for example. In general, we
can do various kinds of static analyses to help enhance the
code generation quality. For example, we ought to be much
more precise about throws Exception in Java.

Another important future feature is being able to interface
to external libraries, instead of just already-known libraries.
In particular, we have a need to call external Ordinary Dif-
ferential Equation (ODE) solvers, since Drasil currently fo-
cuses on scientific applications. We do not want to restrict
ourselves to a single function, but have a host of different
functions implementing different ODE-solving algorithms
available. The structure of code that calls ODE solvers varies
considerably, so that we cannot implement this feature with
current GOOL features. In general, we believe that this re-
quires a multi-pass architecture: an initial pass to collect
information, and a second to actually generate the code.

Some implementation decisions, such as the use of ArrayList
to represent lists in Java, are hard-coded. But we could have
used Vector instead. We would like such a choice to be user-
controlled. Another such decision point is to allow users to
choose which specific external library to use.
And, of course, we ought to implement more of the com-

mon OO patterns.

8 Conclusion
We currently successfully use GOOL to simultaneously gen-
erate code in all of our target languages for the glass and
projectile programs described in Section 2.
Conceptually, mainstream object-oriented languages are

similar enough that it is indeed feasible to create a single
“generic” object-oriented language that can be “compiled”
to them. Of course, these languages are syntactically quite
different in places, and each contains some unique ideas
as well. In other words, there exists a “conceptual” object-
oriented language that is more than just “pseudocode”: it is
a full-fledged executable language (through generation) that
captures the common essence of mainstream OO languages.

GOOL is an unusual DSL, as its “domain” is actually that
of object-oriented languages. Or, to be more precise, of con-
ceptual programs that can be easily written in languages
containing a procedural code with an object-oriented layer
on top — which is what Java, Python, C++ and C# are.

Sincewe are capturing conceptual programs, we can achieve
several things that we believe are together new:

• generation of idiomatic code for each target language,
• turning coding patterns into language idioms,
• generation of human-readable, well-documented code.

We must also re-emphasize this last point: that for GOOL,
the generated code is meant for human consumption as
well as for computer consumption. This is why semanti-
cally meaningless concepts such as “blocks” exist: to be able
to chunk code into pieces meaningful for the human reader,
and provide documentation at that level as well.

References
[1] [n. d.]. Conjure: a code-generator for multi-language HTTP/JSON

clients and servers. https://palantir.github.io/conjure/#/ Accessed
2019-09-16.

[2] [n. d.]. Google Protocol Buffers. https://developers.google.com/
protocol-buffers/ Accessed 2019-09-16.

[3] [n. d.]. Haxe - The cross-platform toolkit. https://haxe.org Accessed
2019-09-13.

[4] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. 2001. Meta-modeling
design patterns: Application to pattern detection and code synthesis.
In Proceedings of ECOOP Workshop on Automating Object-Oriented
Software Development Methods.

[5] Lucas Beyak and Jacques Carette. 2011. SAGA: A DSL for story man-
agement. arXiv preprint arXiv:1109.0776 (2011).

[6] Frank J. Budinsky, Marilyn A. Finnie, JohnM. Vlissides, and Patsy S. Yu.
1996. Automatic code generation from design patterns. IBM systems
Journal 35, 2 (1996), 151–171.

[7] Raymond PL Buse and Westley R Weimer. 2009. Learning a metric
for code readability. IEEE Transactions on Software Engineering 36, 4
(2009), 546–558.

[8] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally
tagless, partially evaluated: Tagless staged interpreters for simpler
typed languages. Journal of Functional Programming 19, 5 (2009),
509–543.

[9] Dionisio de Niz and Raj Rajkumar. 2004. Glue code generation: Closing
the loophole in model-based development. In 10th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS 2004).
Workshop on Model-Driven Embedded Systems. Citeseer.

[10] Erich Gamma. 1995. Design patterns: elements of reusable object-oriented
software. Pearson Education India.

[11] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa.
2016. Thingml: a language and code generation framework for het-
erogeneous targets. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems. ACM,
125–135.

[12] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. 2012.
Green-Marl: a DSL for easy and efficient graph analysis. ACMSIGARCH
Computer Architecture News 40, 1 (2012), 349–362.

[13] Dae-Kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. 2003.
A uml-based metamodeling language to specify design patterns. In
Proceedings of Workshop on Software Model Engineering (WiSME), at
UML 2003. Citeseer.

[14] Gábor Kövesdán and László Lengyel. 2017. Multi-Platform Code Gen-
eration Supported by Domain-Specific Modeling. International Journal
of Information Technology and Computer Science 9, 12 (2017), 11–18.

[15] Dean Kramer, Tony Clark, and Samia Oussena. 2010. MobDSL: A
Domain Specific Language for multiple mobile platform deployment.
In 2010 IEEE International Conference on Networked Embedded Systems
for Enterprise Applications. IEEE, 1–7.

12

https://palantir.github.io/conjure/#/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://haxe.org

[16] Brooks MacLachlan, Jacques Carette, and Spencer S. Smith. 2020.
GOOL: Generic Object-Oriented Language. In Proceedings of the con-
ference on Partial Evaluation and Program Manipulation. ACM.

[17] David Mapelsden, John Hosking, and John Grundy. 2002. Design
pattern modelling and instantiation using DPML. In Proceedings of the
Fortieth International Conference on Tools Pacific: Objects for internet,
mobile and embedded applications. Australian Computer Society, Inc.,
3–11.

[18] Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and
how to develop domain-specific languages. ACM computing surveys
(CSUR) 37, 4 (2005), 316–344.

[19] Arjan J Mooij, Jozef Hooman, and Rob Albers. 2013. Gaining indus-
trial confidence for the introduction of domain-specific languages. In
2013 IEEE 37th Annual Computer Software and Applications Conference
Workshops. IEEE, 662–667.

[20] André Ribeiro and Alberto Rodrigues da Silva. 2014. Xis-mobile: A
dsl for mobile applications. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing. ACM, 1316–1323.

[21] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift:
Scalable cross-language services implementation. Facebook White
Paper 5, 8 (2007).

[22] Galen S Swint, Calton Pu, Gueyoung Jung, Wenchang Yan, Younggyun
Koh, Qinyi Wu, Charles Consel, Akhil Sahai, and Koichi Moriyama.
2005. Clearwater: extensible, flexible, modular code generation. In Pro-
ceedings of the 20th IEEE/ACM international Conference on Automated
software engineering. ACM, 144–153.

[23] Daniel Szymczak, W. Spencer Smith, and Jacques Carette. 2016. Po-
sition Paper: A Knowledge-Based Approach to Scientific Software
Development. In Proceedings of SE4Science’16 in conjunction with the
International Conference on Software Engineering (ICSE). In conjunction
with ICSE 2016, Austin, Texas, United States. 4 pp.

[24] Drasil Team. 2019. Drasil Software: Generate All The Things (Focusing
on Scientific Software). https://github.com/JacquesCarette/Drasil.

[25] Daniel C Wang, Andrew W Appel, Jeffrey L Korn, and Christopher S
Serra. 1997. The Zephyr Abstract Syntax Description Language.. In
DSL, Vol. 97. 17–17.

13

https:// github.com/JacquesCarette/Drasil

	Abstract
	1 Introduction
	2 Requirements
	3 Creating GOOL
	3.1 GOOL Syntax: Imperative core
	3.2 GOOL Syntax: OO features
	3.3 GOOL syntax: modules and programs

	4 GOOL Implementation
	5 Encoding Patterns
	5.1 Internalizing library functions
	5.2 Command line arguments
	5.3 Lists
	5.4 Printing
	5.5 Procedures with input, output and input-output parameters
	5.6 Getters and setters
	5.7 Design Patterns

	6 Related Work
	6.1 General-purpose code generation
	6.2 Object-oriented generators
	6.3 Design Patterns

	7 Future Work
	8 Conclusion
	References

