
Fundamenta Informaticae XXI (2006) 1001–1022 1001

IOS Press

Computing Properties of Numerical Imperative Programs by
Symbolic Computation

Jacques Carette∗ Ryszard Janicki†

Department of Computing and Software

McMaster University

Hamilton, Ontario, Canada L8S 4K1

{carette,janicki}@mcmaster.ca

Abstract. We show how properties of an interesting class of imperativeprograms can be calculated
by means of relational modeling and symbolic computation. The ideas of [5, 26] are implemented
using symbolic computations based onMaple[30].

1. Introduction

In the late sixties and early seventies, a technique for verifications and analysis of computer programs
based on a calculus of functions and relations was proposed ([3, 4, 5, 11, 14, 18, 26, 27, 28] and others).
The initial ideas were due to Robert W. Floyd [14], butthe most advanced and sophisticated version
was based on the approach proposed by Antoni Mazurkiewicz in[26] and Andrzej Blikle and Antoni
Mazurkiewicz in [5] (see also [4, 18, 27, 28]).

The technique was based on calculatingTail Functiondefined in [26] as a tool to modelcontinuations.
If a program terminates, its meaning is defined by the value ofTail Function from its beginning. A
novelty was to use the Calculus of Relations even for entirely deterministic programs. For terminating
iterative programs the approach could be regarded as a predecessor (and a special case) of Kozen’s
Kleene Algebras with Tests [25].

Despite many theoretical and methodological advantages (it rather emphasizescalculationinstead of
provingas in the more popular method of Hoare [17]), the technique has never become widely accepted,
probably because of the huge amount of symbolic computations that need to be performed for even

∗Partially Supported by NSERC of Canada Grant RPG262084-03.
†Partially Supported by NSERC of Canada Grant.

1002 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

relatively simple cases, even though in most cases these arerather easy predicate calculus computations
albeit with formulas a couple of pages long.

The situation has dramatically changed today, as we have very powerful tools supporting symbolic
computation such asMaple [30] andMathematica[39], and relatively easy to use theorem provers such
asSimplify[12]. The problem is still non-trivial, as the most general cases are undecidable, but for many
practical cases an efficient solution seems to be feasible.

We were motivated by the approach of Blikle and Mazurkiewiczand we show an example of such
a computation in Section 2. But instead of expressing relations as predicates, we represent them as
symbolic recurrence relationsand then use a technique calledsymbolic execution. The main idea behind
symbolic execution is to use symbolic expressions as input values and to simulate the execution of the
program statements on this symbolic input. Symbolic execution has wide range of potential applications,
however, it has fallen out of favour for proving properties of programs. This is because naı̈ve symbolic
execution can lead to exponential blow-ups (or worse [41]).Recent work, amongst which one can find
[23, 33, 36], has shown how useful this can be when used in controlled situations.

Our symbolic analysis can be seen as a kind of compiler which can translate the input programs into
a symbolic expression, and then transform this expression into an output expression. From our point of
view, recursion and looping are essentially equivalent, and so we will mainly restrict ourselves to loops
as the source of our main difficulties. The basic technique used in such cases is to find “loop invariants”
proposed by C. A. R. Hoare in 1969 [17]. Unfortunately findingthem is often problematic and research
on how to find them in some automatic manner, after some very interesting early work [15, 21, 22, 38]
has only just restarted [23, 33].

We will show that for many frequently occurring loops, finding invariants is not necessary as the
symbolic expression for the output can be generated explicitly by solving the recurrence equations gen-
erated from the loop. Even if, due to structural complexity of a loop, finding loop invariants is necessary,
the technique we have proposed might often help substantially.

Since we do not represent relations as predicates but as symbolic recurrence relations over particular
rings, this induces a definite restriction on the structure of the programs that can be thus handled. Despite
this restriction, our method is still applicable to a large variety of numerical programs. In fact, this was
a big part of the first author’s original motivation – how to deal with exactly that class of numerical
programs. The intuition here came from a branch of mathematics that deals withholonomic functions
and sequenceswhere there exists very powerful theoretical results, as well as being the foundation for
quite practical work [8, 9, 29, 34]. From that work, we knew that certain kinds of programs which
correspond strongly to holonomic objects should be completely “solvable”. It was even fairly clear what
those programs should look like, as packages like Maple’sgfun can produce code from recurrences [34].

While influenced by axiomatic semantics [17], our techniques owes much more todenotational se-
mantics1 as well as borrowing some ideas from operational semantics.

Some preliminary results in this direction were first presented in [6]. More complete versions were
presented by both authors at conferences (by the first authorat a conference in honour of Sergei Abramov
where the holonomic and closed-form aspects were emphasized, and by the second author at a conference
in honour of Antoni Mazurkiewicz where the semantics and relations with Tail Functions were empha-
sized). Prototypes were implemented first by Y. Zhai [40] forMaple, and subsequently by O. Dragon

1The paper [26] was not initially appreciated by the denotational semantics community, but since the mid eighties it is widely
credited as being one of the first papers on ‘’continuations”[35]

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1003

[13] for Fortran 77. It is planned that these prototypes be made more widely available [31].
We assume a reader has some basic knowledge of programming languages semantics, computer

algebra and symbolic computation.
The next section provides the intuition (based on relations) and the initial motivation for the work.

In section 3, we formally define the problem we are going to solve, while in section 4 we give precise
semantics to our programming language. In section 5 we tie inthe recurrences to the symbolic semantics,
and then deal with issues of termination in section 6. Section 7 gives a brief overview of how to obtain
closed forms, and section 8 gives a variety of examples computable with our method, as implemented.
Lastly we close with some conclusion and some further work tobe done on this method.

2. Intuition and Motivation

The example below (based on [4, 5, 27]) provides the initial motivation and illustrates well the main
ideas. In principle we first translate a program into arelational expressionand then we will try to obtain
the program properties by analyzing this relational expression. A classical approach to the latter part
involves substantial use of thepredicate calculus.

Consider the well-known procedure factorial, written in a small subset of Maple [30]:

f a c t o r i a l :=proc (n : : p o s i n t)
l o c a l i , f a c ;

i : = 1 ;
f a c : = 1 ;
whi le i < n do

beg in
i := i +1;
f a c := f a c∗ i ;

end;
r e t u r n f a c
end proc ;

Sincen does not change its value in the above program we may considerit as a constant, so we may
assume the above program has two integer variablesi andfac. DefineD = Z × Z, whereZ is the set
of integers, and denote the elements ofD as(i, fac). Each assignment statement can be modeled by a
functionFi : D → D, i = 1, 2, 4, 5, in the following manner:

"i:=1" corresponds toF1(i, fac) = (1, fac),
"fac:=1" corresponds toF2(i, fac) = (i, 1),
"i:=i+1" corresponds toF4(i, fac) = (i + 1, fac), and
"fac:=fac*i" maps toF5(i, fac) = (i, fac · i).

The test"i<n" can be modeled by two partial identity functions,I3, Ī3 : D → D, whereI3 models
"i<n", andĪ3 models its complement, i.e."i≥n". More precisely,

"i<n" corresponds toI3(i, fac), and
"i≥n" corresponds tōI3(i, fac), where (⊥ denotesundefined)

I3(i, fac) =

{

(i, fac) if i < n

⊥ otherwise
Ī3(i, fac) =

{

(i, fac) if i ≥ n

⊥ otherwise

As we had mentioned previously, for terminating programs without recursion the approach could be

1004 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

regarded as a predecessor (and a special case) of Kleene Algebras with Tests [25], so we can use the
following scheme.

Let R,R1, R2 be relations (each function is a relation!) that model the program statementsS, S1,
S2, respectively. LetT be a test modeled by partial identitiesIT andĪT , and let the symbols “◦” and “∗”
denote the (forward) composition of relations, and transitive and reflexive closure of relations (Kleene
star), respectively.

Then :
"S1;S2" is modeled byR1 ◦R2,
"if T then S1 else S2" is modeled by(IT ◦R1) ∪ (ĪT ◦R2), and
"while T do S" is modeled by(IT ◦R)∗ ◦ ĪT .

Using this scheme one can easily model the above program by writing the following (symbolic) relational
expression:

F = F1 ◦ F2 ◦ (I3 ◦ F4 ◦ F5)
∗ ◦ Ī3

There are many methods of transforming programs likefactorial into relational expressions. In the
original paper [26] a technique called “label elimination”was proposed, solving appropriate equations
was proposed in [4, 5]. Both techniques can be applied to recursive programs, however for recursive
programs they do not always guarantee obtaining a closed relational expression. For non-recursive pro-
grams without “goto” the direct translation of program statements into relational expressions seems to
be the easiest method. Since the loop “for” can easily be simulated by “while” and “if-then-else”,
this method covers the loops “for” as well.

The techniques proposed in [4, 5, 26] can be applied to non-deterministic programs as well, how-
ever the method described in this paper and implemented in our prototypes ([40, 13]) are restricted to
deterministic programs, which means that all “atomic relations” corresponding to simple assignment
statements (F1, F2, F4, F5 for factorial) are functions, i.e. all “atomic relations” in the final relational
expression are also functions.

If R1 andR2 are (possibly partial) functions, calculatingR = R1 ◦ R2 is easy:R(x1, ..., xn) =
R2(R1(x1, ..., xn)). If at least one ofR1, R2 is not a function, in general, we have to use the rule:
(x1, ..., xn)R1◦R2(z1, ..., zn) ⇐⇒ ∃(y1, ..., yn) (x1, ..., xn)R1(y1, ..., yn)∧(y1, ..., yn)R2(z1, ..., zn).
Nevertheless, it might happen thatR1 ◦ R2 is a function even if bothR1 andR2 are not. In general
R1 ∪ R2 is not a function, even if bothR1 andR2 are functions. Similarly,R∗ =

⋃∞
0 Ri is almost

never a function, even ifR is a function, since ifR is a function, then(x1, ..., xn)R∗(y1, ..., yn) ⇐⇒
∃i ≥ 0. (y1, ..., yn) = Ri(x1, ..., xn), and this may happen for many, even infinite number ofi’s.
However the following folklore result can easily be proved.

Lemma 2.1.

1. For any testT , if R1 andR2 are functions then(IT ◦R1) ∪ (ĪT ◦R2) is always afunction.

2. For any testT , if R is a function, then(IT ◦R)∗ ◦ ĪT is either afunctionor the empty relation.

3. For any testT , if R is a function and(IT ◦R)∗ ◦ ĪT 6= ∅, then

((IT ◦R)∗ ◦ ĪT)(x) = Rk(x)(x)

wherek(x) is the smallestj such that̄IT (Rj(x1, ..., xn))(x) 6= ⊥. �

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1005

Lemma 2.1(3) is particularly helpful ifk(x) can (easily) be calculated, for instance if a closed formula
for k(x) can be obtained, which happens quite often (in particular for for loops), but not always.

Also, despite the above results, calculating functions that model even simple programs is very labour
consuming and error prone. To illustrate this technique we will calculate the functionF = F1 ◦ F2 ◦
(I3 ◦ F4 ◦ F5)

∗ ◦ Ī3 that models our simple programfactorial. The most difficult part is to calculate
the function(I3 ◦ F4 ◦ F5)

∗ ◦ Ī3.
DefineG = I3 ◦ F4 ◦ F5 andH = G∗ ◦ Ī3, soF = F1 ◦ F2 ◦H. First note that(F1 ◦ F2)(i, fac) =

F2(F1(i, fac)) = (1, 1), soF (i, fac) = H(F2(F1(i, fac))) = H(1, 1). For the functionG we have:

G(i, fac) = (I3 ◦ F4 ◦ F5)(i, fac) = F5(F4(I3(i, fac))) =

{

(i + 1, fac · (i + 1)) if i < n

⊥ if i ≥ n

Similarly :

G2(i, fac) = G(G(i, fac)) =

{

(i + 2, fac · (i + 1) · (i + 2)) if i + 1 < n

⊥ if i + 1 ≥ n

Hence :

Gj(i, fac) =

{

(i + j, fac · (i + 1) · (i + 2) · . . . · (i + j)) if i + j − 1 < n

⊥ if i + j − 1 ≥ n

Notice that this last step requires a small amount of human ingenuity to “see” the pattern (although
we will show how this can be automated in some cases). From Lemma 2.1(3) it followsH(i, fac) =
Gk(i, fac) wherek = k(i, fac) is the smallestj such that̄I3(G

j(i, fac)) 6= ⊥. In this case we can easily
show that there is only one suchj and thatk(i, fac) = n − i. First note that̄I3(G

j(i, fac)) 6= ⊥ implies
Gj(i, fac) 6= ⊥, i.e. Gj(i, fac) = (i + j, fac′) andi + j − 1 < n. FurthermoreĪ3(i + j, fac′) 6= ⊥
implies i + j ≥ n. From i + j − 1 < n andi + j ≥ n we immediately geti + j = n, or j = n − i.
Hencek(i, fac) = n− i, i.e.

H(i, fac) = Gn−i(i, fac) = (n, fac · (i + 1) · (i + 2) · . . . · n).

This meansF (i, fac) = H(1, 1) = (n, n!), so the program is correct (in the sense of partial cor-
rectness with respect to the specification that∀n ∈ N.factorial(n) = n!), although this last step still
requires a non-trivial proof. To make this technique feasible for bigger, more realistic programs, we
need a tool that would be able to do all those symbolic calculations. The reasoning presented above rely
heavily on Lemma 2.1(3) and is rather typical for human beings. Many steps and observations are not
easy to mechanize, which suggest that perhaps we should be looking for a different approach.

Our prototypes [40, 13] will take the text of the programfactorial as an input (in Maple and
Fortran 77 respectively) and will return the text “n!” as the main output. In the next sections we will
show how it can be done with some help fromMaple [30]. The main idea is not to represent relations
as predicates but to instead translate them into symbolic recurrence relations. Note the Maple prototype
[40] can deal with limited recursion as well, while the Fortran 77 prototype [13] can deal with vector and
matrix algebra.

1006 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

3. Formal description of the problem

Consider the following small core for a programming language SWL (forSimple While Language):

E ::= Var real or integer variable

| i integer literal

| E + E | E ∗E | E − E | E/E | E ^ i arithmetic operations

B ::= E = E | E < 0 bool from expressions

| B and B | B or B | not B boolean operations

S ::= Var := E variable assignment

| S ; S sequencing

S′ ::= S

| while B do S end while loop

P ::= proc(Var∗) {local Var+} S′ ; return E end procedure

with the obvious operational and denotational semantics2 and we use standard regular expressions in the
definition ofP for brevity. SWL is not meant to be a practical programming language, but rather a core
language into which one can easily translate other programs. For example, a practical programming lan-
guage would allow expressions likeE1 > E2 as boolean expressions; in SWL, this has to be represented
asE2 − E1 < 0. What is important to note about this language is that it onlyhas real or integer (but not
boolean) variables, and more importantly, no conditional3. Furthermore, we can only define single-level
procedures, as neither the syntax for statementsS nor expressionsE allow procedure invocation4 , and
the only control-flow mechanism is thewhile loop. While this may seem like an incredibly impoverished
language, it is still rich enough to encode the programs corresponding to holonomic objects. In fact, if
our target is just to deal with holonomic objects, this language is is more general than needed, as sim-
ple holonomic objects require only a single loop. Conversely, this small programming language can be
trivially mapped injectively in various programming languages, notablyC, Fortran, andMaple.

There is a natural programming concept which involves shifting: thewhile loop. More precisely,
each time through the body of the loop, theloop countgoes up by one. A loop may or may not include
an explicit counter variable, but there is nevertheless an abstract “loop counter”, and all the explicit state
variables changed in the body of a loop “depend” on this loop counter. Our task then will be to introduce
an actual loop counter variable, and then to make the dependence of each state variable on this loop
counter explicit. This will be the key to turning awhile loop into a recurrence.

Before we give a formal statement of the problem we are interested in, it is illustrative to consider a
simpler version, which can be solved completely.

Definition 3.1.
A programp is said to bevalid if all (local) variables are initialized before they are read. �

2A complete denotational semantics for SWL can be found in Section 4
3Although one can still encode a condition via two while loops, and a boolean via integers
4we can easily allow calls to procedures which return polynomial functions of their parameters

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1007

Suppose that we denote byJpK the mathematical function that a programp computes (i.e. its denota-
tional semantics, given for SWL in section 4). It is already easy to see the following:

Proposition 3.1. Let p be a program in thewhile-free fragment of SWL. Then ifp denotes a valid
program,JpK denotes a rational function of its inputs. If furthermore the program is division-free, then if
p denotes a valid program, it in fact denotes a polynomial of its inputs. �

The above proposition is easily proved by structural induction on the syntax of programs.
Note that we are dealing withabstract computation[37], as we are really interested in modeling

the algebraic situation over the reals. A common implementation would use floating point numbers to
model the reals, which will introduce all sorts of additional complications not present in the algebraic
model, and we will not concern ourselves with these issues here. We justify this by saying that it is
the use of floating point which is an implementation-time approximation to the real specifications. Thus
we use the usual algebraic domains (the ring of integersZ and the field of realsR) as the basis for our
models. However we should note that standard tricks from numerical analysis, like Kahan’s summation
algorithm [16, 19], are algebraically “invisible”, and thus we can also deal with programs written using
good numerical analysis methods.

In denotational semantics, one normally uses continuous functions on CPOs as denotations. We are
instead trying to recover the algebraic meaning as implemented in a program. In other words, we are
really interested in eithersequencesor functionsover combinations ofZ andR. That said, we are not
particularly interested incomputationalrepresentations of these (as that is our starting point), but rather
in classical mathematical expressions which denote the same mathematical object. Certain closed forms
tend to be preferred by humans, but a reasonable system of (linear) equations with initial conditions is
often mathematically much more tractable. This is easiest to explain via an example, to be followed by
an explicit definition.

Example 3.1. (Factorial again)
Consider the following SWL procedure:

proc (n) l o c a l r , i ;
r := 1 ;
i := 1 ;
whi le i −1 < n do

r := r ∗ i ;
i := i + 1 ;

end ;
r e t u r n r ;
end proc

Let us call this proceduref . As we have seen before,

JfK = λn.

{

n! n ≥ 0

⊥ otherwise

where weλ notation for function from theλ-calculus ([35] for its use in denotational semantics). More
interestingly for us, we have that

∀t ∈ N.JfK(t + 1) = (t + 1) · JfK(t), JfK(0) = 1 (1)

1008 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

which, when solved in explicit terms, gets us back ton!. Even more interesting is thatn! is quite a good
representation forf as overZ they are equivalent — if one is defined, then they are both defined and
equal, and if one is undefined, they are both undefined.

The factorial procedure is special in that one can provide a closed-form for it, as well as being able
to see the exact termination conditions. While we do not expect to be able to do this for all procedures,
even in a fragment of SWL, we would like to extract two pieces of information from such procedures:

1. An explicit system of recurrence equations, including initial conditions, for eachwhile loop and,

2. An explicit equation for the termination condition.

Referring back to ex. (3.1), we can show that the body of the while loop satisfies

r(t + 1) = r(t) · i(t), i(t + 1) = i(t) + 1, r(0) = 1, i(0) = 1

(where we uset as loop-counter, or “time”), and the termination conditionreads

te = min{t ∈ N | i(t)− 1 = n},

were we usete to denote the time at which the loop ends. In this particular case, we can see how to solve
the recurrence fori(t) to geti(t) = t + 1, upon which substitution into the equation forte leads us to
te = n, from which we easily get the recurrence (1). Our task then isto make this precise.

Problem 1. Given an SWL procedurep, return an explicit system of equations satisfied by all the state
(local) variables ofp. This system of equations should encode both correctness and termination condi-
tions. If possible, these equations should be solved in closed-form.

We could in fact be even more specific about what kinds of equations we will get (recurrence equa-
tions for loops and minimum equations for termination), butas we wish to later expand SWL, the above
statement will be sufficient. We often want closed forms; butonce we have in our hands systems of recur-
rences, we can leverage the tremendous power of today’s Computer Algebra Systems to find these closed
forms5. Furthermore, as this technology improves, we should be able to automatically benefit from these
improvements. This is why we focus on obtaining systems of equations, and then define our solution as
a two-step process of first getting recurrence equations, and then to finding potential closed-forms.

Note that our problem has a well-defined input language (SWL), a semi-formally defined interme-
diate language (systems of equations), and a very informal output language (closed forms). In the rest
of this paper, we will endeavour to give a formal definition for the intermediate language, but leave the
definition of “closed form” completely open, as we wish to be able to use whatever future technology
comes along for solving our equations. In this way, our solution is very modular.

Example 3.2. (Factorial revisited)
We made some claims about inverting the process of generating procedures from holonomic equations. If
we give eq. 1 to the Maple routines6 gfun[rectoproc] (which given a linear recurrence equation with
polynomial coefficients will return a procedure for computing thenth term), andLREtools[REtoproc]

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1009

Listing 1. gfun[rectoproc]

pg1 := proc (n)
l o c a l i1 , loc0 , l oc1 ;
l oc0 := 1 ;
f o r i 1 from 0 t o n−1 do

l oc1 := (i 1 +1)∗ l oc0 ;
l oc0 := l oc1

end do;
l oc0

end proc

Listing 2. LREtools[REtoproc]

pg2 := proc (n : : nonneg in t)
l o c a l i , u0 , u1 ;
u0 := 1 ;
f o r i t o n−1 do

u1 := i∗u0 ;
u0 := u1

end do;
n∗u0

end proc

Figure 1. automatic factorials

(which does the same but via a different algorithm), we obtain the procedures given in fig. 1. For both
of these programs, we obtain closed-formΓ(n + 1) andnΓ(n) respectively. As is well-known,Γ is
the unique convex continuous function which interpolatesn!, and it satisfies the functional equation
Γ(k + 1) = kΓ(k). From these, we see that these results are equivalent ton! on the positive integers, as
required.

4. Semantics

Figure 2 presents a subset of the (standard) operational semantics for SWL. Note that it is very important
to distinguish between the syntactic+ of the program text from the semantic+ of the underlying domain
(Z or R).

σ(E1)⇒ E′
1 σ(E2)⇒ E′

2

σ(E′
1+E

′
2)⇒ E′

1+E
′
2 σ(v1+v2)⇒ v1 + v2

σ(E)⇒ false

σ(while E do S end)⇒ σ

σ(E)⇒ true σ(S)⇒ σ1

σ(while E do S end)⇒ σ1(while E do S end)

Figure 2. Fragment of the operational semantics for SWL

In the above,σ denotes astore, an assignment of values to identifiers (variables),Ei is an expression
and vi is a value. A store represents thestateassociated to an imperative program. We extend the
definition of this function to the whole language in two ways:applied to an expressionE, we recursively
evaluate to get a value; applied to a statementS, we get a new store. The main reason to present the
operational semantics here is that we model most of our semantics on the denotational semantics of

5However, it seems that what “closed forms” means depends on the user. When giving talks about this work, some people loved
to see the exact special functions coming out, while others wanted to see unevaluated sums. Our prototype now returns both.
6
gfun is a Maple package revolving around generating functions, while LREtools is a package for dealing with linear recur-

rence equations.

1010 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

languages,exceptfor while loops, where we model the operational semantics much more closely. It is
important to note that this is quite close in spirit to what isdone in [26].

We next present the denotational semantics for SWL. Each syntactic construct in SWL denotes a
mathematical function from stores to stores. The semanticsof the constructs withoutwhile loops and
procedures is given in fig. 3, where⊕ represents the overriding union operator. Note that to makethe
presentation simpler, we elide the storeσ from all definitions which do not explicitly use it.

JVarKσ = σ(Var)

JE1 + E2K = JE1K + JE2K

JE1 - E2K = JE1K− JE2K

JE1 ˆ iK = JE1K
JiK

JE1 or E2K = JE1K ∨ JE2K

JE1 = E2K = JE1K = JE2K

JVar := EKσ = σ ⊕ {Var← JEK}

JiK = i

JE1 * E2K = JE1K ∗ JE2K

JE1 / E2K = JE1K/JE2K

Jnot E1K = ¬JE1K

JE1 and E2K = JE1K ∧ JE2K

JE1 <0K = JE1K < 0

JS1 ; S2Kσ = JS2K(JS1Kσ)

Figure 3. Denotational semantics for SWL

Finally, we get to the thorny issue of the semantics of thewhile loop. This is defined as follows:

Jwhile B do S endKσ = FIX F whereFg =

{

g ◦ JSK JBKσ = true

id JBKσ = false

whereFIX denotes the least fixed point of the operatorF with respect to the information ordering on
functions. Further details can be found in [35]. The semantics of a procedure can then be defined as

Jproc(x1, x2, . . . , xn) {local l1, l2, . . . , lm} S; return E endK = λx1, . . . , xn.JEK(JSKσx,l)

whereσx,l denotes the state where identifiersx1, . . . , xn andl1, . . . , lm are in the range. In other words,
the semantics of a procedure is a function from the value of all its inputs to the value of expressionE as
evaluated in the environment gotten from “running”S starting fromσx,l (as expected).

What we really want to do is to:

1. Go from denotational semantics tosymbolic semantics[36],

2. Replace the denotational semantics ofwhile with a semantics closer to its operational semantics,

3. Introduce explicit loop counters.

Luckily, these last two requirements work very well together. We will explain how this is done in the
next section. We finish this section with a quick introduction to symbolic semantics. In the case of
constructs withoutwhile loops and procedures, this is given in fig. 4, whereδ represents the overriding
union operator over symbolic values.

The basic idea is very simple – so simple in fact that for most practitioners of Computer Algebra,
the difference with denotational semantics is difficult to fathom. Instead of working with thesemantic
theory of state-transformers (basically partial functions), we will work one step removed, that is with a

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1011

JVarKσ = σ(Var)

JE1 + E2K = JE1K + JE2K

JE1 - E2K = JE1K - JE2K

JE1 ˆ iK = JE1K ^ JiK

JE1 or E2K = JE1K or JE2K

JE1 = E2K = JE1K = JE2K

JVar := EKσ = δ(σ, {Var ← JEKσ})

JiK = i

JE1 * E2K = JE1K * JE2K

JE1 / E2K = JE1K / JE2K

Jnot E1K = not JE1K

JE1 and E2K = JE1K and JE2K

JE1 <0K = JE1K < 0

JS1 ; S2Kσ = δ(JS1K, JS2K(JS1Kσ))

Figure 4. Symbolic semantics for SWL

syntactictheory. These are commonly known as “expressions” in Computer Algebra. However the main
point of expressions is that they serve two rôles: they can be syntactically manipulated, and they are
denotations of mathematical functions. In other words, there is (in semantics) a large difference between
the expressionx+sin(x) and the mathematical function denoted byλx : R.x+sin(x). The first is really
an abstract syntax tree (one can also think in terms of LISP s-expressions), while the second lives in the
function spaceR→ R. Of course, we have a canonical map from the expression to itsdenotation, which
is probably why these two concepts are so often seen as “the same”. However, there isno reasonable
converse mapping! Most functionsf ∈ R → R do not have finite expressions which denotef . This
structural property of possessing a finite expression is very powerful, and is part of the success of our
method. In fig. 4, we give the symbolic semantics for SWL. As for the rest of this paper we will only use
symbolicsemantics, we will re-use theJ K notation for this semantics. It is important to note that thetypes
involved are quite different: the symbolic semantics of an expression is always asyntactic expression.
There is still a store involved, but now it is a functionσ with symbolic valuesσ(Var) such that

σ(Var) =























v (Var, v) ∈ σ

v σ = δ(σ′,Var← v)

σ′(Var) σ = δ(σ′, x← v) andx 6= Var

Var otherwise

(2)

In other words, given the empty storeσ0 = ∅ (where we represent a store as a set of identifier-value
pairs), we have thatJx + yK σ0 = x + y, while in the storeσ1 = {(y, 3)}, Jx + yK σ1 = x + 3. There
is a simple correspondence between denotational and symbolic semantics — Theorem 5.1 in section 5
makes this precise.

The semantics of statements also changes: instead of being afunction from stores to stores, it now
becomes a function fromstore representationto store representation.

Definition 4.1. A store representationis a symbolic expression which can be evaluated to a unique store
(of symbolic expressions). �

We will use both explicit store representations (σ1 = {(y, 3)}) and implicit representations (σ3 =
δ(σ1, σ2)). We need to add just one more ingredient before we can move onto recurrences for loops –

1012 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

names for store representations. If we were to use the symbolic semantics defined in fig. 4 directly, even
for straight-line programs we would frequently get exponential blow-up in the sizes of our expressions
[20, example p. 10]. To preserve the structure of the straight-line program, as is also done by [36], each
statement produces anamedstore representation, which is used in further computations. To prevent the
blow-up of expressions, instead of computingσ(Var), we also use a symbolic representation for this step.
That is we modifyJVarKσ from beingσ(Var) to ǫ(σ,Var) (where we pickǫ to representevaluation). For
example,

i := 3 ;
r := r ∗ i ;
i := i + 1 ;

s0 = δ({}, i ← ǫ({}, 3))
s1 = δ(s0, r ← ǫ(s0, r) · ǫ(s0, i))

s2 = δ(s1, i← ǫ(s1, i) + 1)
which is also one of the ideas in Maple’sLargeExpressions package, which helps to produce dramatic
improvements in certain large symbolic computations [41] (see also [20] for related work).

5. Recurrences

The heart of this work is to re-use a very old idea: a loop executes a certain number of times, which
implicitly defines a non-negative integer “loop counter”. We thus reflect the number of iterations of a
loop as a variable that we can manipulate. We then express thesemantics of the loop body as a state
transformer from the state at timet to the state at timet + 1. A loop terminates at the first non-negative
time (if it exists) that the loop condition becomes true. We will use “iteration counter” and “time”
interchangeably, as we move between the traditional computer science view and the dynamical system
view of code.

To do this requires not only that we have a fresh name for this new variable (easy via a standard
gensym trick), we need to re-express the semantics of the body of a loop explicitly in terms of this new
variable. Schematically, we want to perform the following transformation:

whi le Cond i t i on do
s t a t e := F (s t a t e)

end
=⇒ st+1 = F (st)

wherestate should be thought of as a state vector andF as a vector-function.Hopefully the reader will
be struck by the resemblance between this last equation and theTail Functionof Mazurkiewicz [26].

What we get as a result is that our loop bodies always end up translating to a first-order, generally
non-linear, polynomial recurrences on the iteration counter (time). While this is certainly the correct
intuition, one cannot simply add subscripts in the appropriate places in the symbolic semantics of fig. 4
and get something semantically meaningful. If our programswere always written as explicit vector
functions, this would be the case. But consider the following code fragment

whi le Cond i t i on do
i := i + 1 ;
r := r ∗ i ;
i := i + 1 ;
q := q + r / (i −2);

end

Clearly thei in the second line refers to thenewvalue ofi, so that as a vector function this needs to be

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1013

JVarKwσ = σ(Var(t))

JVar := EKwσ = δ(σ, {Var(t + 1)← JEKσ})

Jwhile B do S endKσ =

Let B′
t = JBKwσ

S′
t = JSKw

e = min({t ≥ 0 | B′
t = true})

µ(S′
t, t = e, ǫ(~s, σ))

Jproc(~x) {local ~l} S; return E endK = JEK(JSKσ′
x,l)

Figure 5. Symbolic semantics – inside while loops, and procedures

translated to






it+1

rt+1

qt+1






=







it + 2

rt · (it + 1)

qt + rt · it+1
it






. (3)

But is this always possible? Yes it is, but there is a cost: onehas to expand every definition of a variable
into the expression using only timet values. Since at the start of a loop, all variables in the state vector
will have such values, it is a matter of propagating these through. This is easy, but there is a huge potential
for expression growth. Some program transformations can help mitigate this, but at the potential cost of
additional state variables. In particular, conversion to Static Single Assignment (SAS) [2] improves the
situation somewhat.

Another question is, why is the resulting system non-linearif the original system is holonomic7?
Essentially because the most natural way of coding some of these programs is to use implicit formulas
for what are simply polynomials, because they can be computed more easily that way. So instead of
having ann + 2 in a coefficient, there will be anin with in+1 = in + 1, i0 = 2. Similarly, even though
∑n

i=0
xi

i! can be represented using a single recurrence, a program representing this will typically have4
— one for each ofi, i!, xi and the sum itself. The resulting system is non-linear, but has a very natural
hierarchical structure in which it every “higher” variabledepends linearly on “lower” ones.

The first3 equations in fig. 5 gives the semantics for a while loop, whereonly those aspects which
differ from those in fig. 4 are given, and wheret is a freshvariable. We use the symbolJ Kw for clarity,
where the subscriptw is meant to indicate that this is theinner semantics of a loop. In fig. 5, we use
~s to denote those state variables which are assigned to duringthe execution of the loop body.S′

t is the
semantics of a sequence of assignments; but if we unravel what that means, it really encodes a set of
Var(t + 1) ← JEKσ which can readily be seen to be recurrence equations.µ is a symbolic constructor
that we use to pack up the results. The first argument encodes the recurrences,t = e gives the termination
condition andǫ(~s, σ) records the initial conditions of the relevant state variables. Implicit in this notation
is that aµ encodes a change to all the state variables in~s, as a simultaneous assignment. In other words,
µ represents running the “whole loop” and records the final state upon eventual termination. Going back

7Holonomic systems are, by definition, linear

1014 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

to ex. (3.1), we would get that the semantics of thewhile loop are

µ(δ(δ({}, r(t + 1)← r(t) ∗ i(t)), i(t + 1)← i(t) + 1),

t = min{t ∈ N | i(t)− 1 = n},
ǫ({r, i}, {r(0) = 1, i(0) = 1}))

Note thate may or may not be given in closed form. Just as important, while B′(t) will depend on
some of the variables in~s, it is frequently the case that it does not depend on all of them. Therefore
only part of the solution of the system of recurrencesS′ is needed for determining termination. The last
equation in fig. 5 gives the semantics for whole procedures, where we use~x to abbreviatex1, . . . , xn

and similarly for~l. σ′
x,l here denotes an environment where explicitly the identifiers ~x arefree, in other

words,undefined. Thus we will see (a subset of) those variables appear free inthe result. Equation 2 can
be completed as follows:

σ(Var) =































v (Var, v) ∈ σ

v σ = δ(σ′,Var← v)

σ′(Var) σ = δ(σ′, x← v) andx 6= Var

((S′
t)

(e)σ)(Var) σ = µ(S′
t, t = e, ǫ(~s, σ))

Var otherwise

(4)

whereF (i) denotes thei-times iterate ofF . Theµ case can be “optimized” ifVar /∈ ~s sinceS′
t is the

identity in that case.
While SWL does not allow nested loops, one can easily see whatwould be need to be done to allow

this. Changing the syntax is trivial; more complex would be the changes to the symbolic semantics. The
semantics of an inner-most loop would remain unchanged. Butwhat isJµKw? When this can be given in
closed-form, the interpretation is straightforward. But in other cases, it is quite unclear when it is even
useful to try to write out a mixed system encoding the nesting. This is the main reason we have chosen
to leave SWL with only single loops at this point.

A further point to notice is that a lot of programs, especially those that come from numerical pro-
grams, have a particular triangular structure visible in the recurrences. This structure is clearly visible in
eq. 3. Given such a triangular structure, it is much easier toget a closed-form, as each recurrence can be
solved independently in order of data flow dependence. We will comment further on this in Section 8.

We are now in a position to relate traditional denotational semantics to symbolic semantics. Since
we use the same notation for both kinds of semantics, in the theorem below we use a superscriptD
for denotational and superscriptS for symbolic. Below⊑ is the natural information ordering on partial
functions, whereg ⊑ f means thatf is defined everywhereg is (and equal tog there), and may be
defined on a bigger set thang.

Theorem 5.1. Let p be a valid SWL program, andV the sequence of input variables ofp. Then we have
thatJpKD ⊑ λV.JpKS.

Proof:
[Sketch] At the level of procedures, it is clear that one needs to take the free variables ofJpKS and abstract
them out, thus theλV . Then proof proceeds by structural induction on the programsyntax. The main

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1015

lemmas required relate the action of⊕ on stores andδ on store representations, and the behaviour of the
least-fixed-point operatorFIX versus the encoding ofµ. The reason we only get⊑ is related to the fact
that symbolic equations preserve definedness, but may remove some singularities (like that present in
x/x). ⊓⊔

6. Termination

As mentioned above, rewriting the semantics as a system of recurrences can make it quite clear when
termination depends on only a subset of the quantities computed. For example, this is always the case
for for loops encoded using awhile, as well as when an explicit but variable number of terms of a
sequence are needed. When termination depends on a more complex criteria, for example that a term
has gotten smaller than a certainǫ, finding a closed-form for the termination condition becomes much
harder, and is naturally undecidable in the general case (even in this restricted language).

It is worthwhile to examine a little closer whatmin({t ≥ 0 | B′
t = true}) really means. It says

that thesemanticsof a loop is related to thefirst timet ≥ 0 that the boolean conditionB becomestrue.
Using thisstopping timein the solution to the recurrenceS′

t (along with the initial conditions) gives the
full semantics. This should be intuitively clear – we claim that this is in fact much more intuitive than
either the denotational semantics given as an operator fixed-point in a CPO [35], or when using relational
semantics [25], as the Kleene closure of the relational version of S′. The correspondence in fact is much
closer to that of the operational semantics (see fig. 2).

Another aspect to consider is what happens whenB′
t is particularly simple. For example, assume

thatB′
t is u(t) < 0 for some integer-valued state variableu. While solvingB′

t = true may look like a
satisfaction (SAT) problem, this is not a very fruitful way to approach the problem. What is much more
important is the behaviour ofu(t) as a function oft. In particular, if we could determine that fort ≥ 0,
u(t) is monotonically decreasing andu(0) > 0, then we can immediately deduce termination (although
not in general in closed form). On the other hand, if fort ≥ 0, u(0) > 0 butu(t) is non-decreasing, then
we have an immediate proof of non-termination. In this case,it is theanalyticproperties ofu(t) which
are of interest, not its discrete properties. This should bea rich source of (semi-)decision procedures for
loop termination, and we hope to get back to this problem in the future. Let us record the discussion
above more formally.

Proposition 6.1. Consider the semantics for a while loop given in fig. 5. Then wehave that:

1. If B′
t is of the formEt < 0 for some integer-valued expressionE, E0 > 0 andEt is a monotoni-

cally decreasing function oft, then there exists a leastt such thatEt < 0.

2. If B′
t is of the formEt < 0 for some real-valued continuous expressionE, E0 > 0, limt→∞ Et < 0

andEt is a monotonically decreasing function oft, then there exists a leastt such thatEt < 0.

Proof:
The first item is because the positive integers are a discretetotal order with no infinite descending chains.
The second is a rephrasing of the intermediate value theorem. ⊓⊔

Of course, there are dual versions of the above statements with the inequalities reversed and with
increasing functions. It is also easy to formalize the negative statements. While these conditions might
seem quite special, they are nevertheless very useful to deal with practical problems.

1016 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

Interestingly, we can obtain most of our results without worrying about termination at all. In other
words, our method (like that of [33]) cleanly splits the process into one of dealing with invariantsfirst,
and then dealing with termination. In other words, we are claiming that the symbolic semantics given
in the previous section aremodular. In fact,3 different aspects are completely separated: the recurrence
relations from the body of the loop, the termination condition, and the initial conditions.

In our examples, termination will turn out to be either very easy or essentially impossible. More pre-
cisely, we’ll either have a termination condition which is both explicit and monotonic (over the positive
integers), or a completely implicit equation which is either not monotonic or whose monotonicity is a
difficult theorem.

7. Closed-forms

Obtaining closed forms is in many ways the easiest part! Thisis because of the tremendous pre-existing
technology already in place for dealing with recurrences, and especially those with polynomial coeffi-
cients. See [1] for a survey of some of these technologies.

As mentioned before, the basic algorithm involves sorting the recurrence equations in data depen-
dence order , solving each such system, substituting in the remaining equations, and iterating. Explicit
initial conditions are always given, as this can sometimes significantly improve the solving process.
Solving for the termination condition relies solely on Maple’s solve command being able to invert the
termination condition.

We do not always compute full closed-forms, as sometimes a sum or a product better expresses
the intent of some code, while the occurrence of a strange special function coming from mathematical
physics may confuse more than it enlightens.

8. Examples

While in section 3, we define an abstract programming language SWL, and proceed to give it proper
semantics, in this example section we will give examples coming from a concrete programming language
(Maple), in a subset which is easily translatable into SWL. We have a prototype implementation of what
we describe here for Maple (first described in [6]), as well asa Fortran 77 implementation (described
in [13]). This latter implementation is why we have chosen anabstract intermediate language (SWL)
instead of simply using a subset of Maple, even though our concrete examples in this paper use Maple.

Translating from Maple syntax or Fortran 77 syntax to SWL is atedious engineering problem. The
further translation to symbolic semantics is straightforward. Thankfully in Maple theinert form re-
turned byToInert makes the initial translation from Maple programs to SWL quite simple. This inert
form [30] is a fully faithful representation of the abstractsyntax tree of all Maple objects, including pro-
cedures, as a simple Maple data-structure. A lot more technology is required for Fortran 77, but again is
straightforward via leveraging standard compiler tools (such as ANTLR [32]).

Example 8.1. (Factorial)
We get back to our factorial example (Listing 3). While this example is extremely simple, it is outside
the reach of most other methods since the loop invariants arenot polynomial. On this code, our method
returns the explicit formulan!.

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1017

Listing 3. Factorial

f f := proc (n)
l o c a l j , f a c ;
j : = 1 ;
f a c : = 1 ;
whi le j <n do

j := j +1 ;
f a c := f a c∗ j ;

end do;
f a c ;

end proc :

Listing 4. Factorial variant

gg :=proc (a , b , n)
l o c a l j , f a c ;
j := a ;
f a c := b ;
whi le j <n do

j := j +1 ;
f a c := f a c∗ j ;

end do;
f a c ;

end proc :

Listing 5. Generalized binomial

b in := proc (u , k)
l o c a l r es , i ;

r e s := 1 ;
f o r i from 1 to k do

r e s := r e s ∗ (u− i + 1) / i ;
end do;
r e s ;

end proc :

Listing 6. Chebyshev polynomial

chebyshev :=proc (n)
l o c a l i , u0 , u1 , v ;

u0 := 1 ;
u1 := x ;
f o r i from 2 to n do

v := u1 ;
u1 := −u0+2∗x∗u1 ;
u0 := v ;

end do;
u1 ;

end proc :

Example 8.2. (Shifted factorial)
Since the method relies on recurrences, it is quite robust against minor code variations, unlike other

methods. In particular, the code in Listing 4 givesΓ(n+1)b
Γ(a+1) , as expected. But one can make further

modifications, say changingj := j+1 to j := j+c with c a new input, the result is now computed as

c(
−a+n

c
)Γ

(

n + c

c

)

bΓ

(

a + c

c

)−1

The previous examples also exhibit an additional benefit of this method for debugging code. If one is
expecting a particular function (say factorial) and the result computed is clearly different, one might be
able to see from the returned formula what the actual problemis. In listing 4 for example, only with
b/Γ(a + 1) = 1 will the result computed actually be factorial.

Other discrete functions can be dealt with too, and these functions can involve either discrete or
continuous parameters.

Example 8.3. (Generalized Binomial)
Listing 5 shows a routine that purports to compute

(

u
k

)

. Our program says that this computes

(−1)k Γ (−u + k)

Γ (−u) Γ (k + 1)
. (5)

1018 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

Listing 7. e1

exp1 := proc (n)
l o c a l r es , j , i ;

r e s := 1 ;
j := 1 ;
f o r i from 1 to n do

j := j / i ;
r e s := r e s + j ;

end do;
r e s ;

end proc :

Listing 8. BesselJ

B e s s e l := proc (z , nu , m: : p o s i n t)
l o c a l r es , i , t ;
(r es , t) := (0 , 1) ;
f o r i from 0 to m−1 do

r e s := r e s + t ;
t := − t ∗z ˆ 2 / (4∗ (i +nu +1)∗ (i + 1)) ;

end do;
r e s ;

end proc ;

Lemma 8.1 shows that these denote the same function.

Lemma 8.1. Equation 5=
(

u
k

)

holds for all positive integersk and allu ∈ R \ N. Furthermore, for all
n ∈ N andk ∈ N,

lim
x→n

(−1)k Γ (−x + k)

Γ (−x) Γ (k + 1)
=

(

n

k

)

.

Proof:
If we denote byEn the shift operator for the variablen andI the identity operator, then we have that
both functions satisfy the recurrencesEk + k−u

k+1I = 0 andEu + u+1
k−u−1I = 0, and are equal atk = 1 for

all u ∈ R \N, which proves the first assertion. The second part is proved by analytic continuation. ⊓⊔

Example 8.4. (Chebyshev polynomial)
Listing 6 shows a routine to compute the Chebyshev polynomials of the first-kind. It is worthwhile noting
that these polynomials satisfy a second-order linear recurrence, while single loops naturally encode first-
order recurrences. Thus the standard trick used to change annth order linear recurrence into a system of
n first-order (linear) recurrences is used. Our method returns

1

2

(

(

x +
√

x2 − 1
)−n

+
(

x−
√

x2 − 1
)−n

)

which is indeed the closed-form for the Chebyshev polynomials.

The next example is quite peculiar as the code is derived fromthe computation of aconstantwhich
comes from the evaluation of a holonomic function (in this case the simplest such function, the expo-
nential) at a point. Normally constants are outside the realm of holonomic techniques, since a variable is
needed with respect to which one can either take a differenceor a differential. However, sincee1 cannot
be computed exactly, one has to find an approximation. The simplest such approximation is to trun-
cate the power series forex after a certain number of terms. Holonomic techniques now apply directly,
because the computation in the inner-loop depend on the loopcountert, inducing a recurrence.

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1019

Example 8.5. (exp(1))
While our intuition is that Listing 7 shows a program that computese1, it in fact computes an approxi-
mation. More precisely, it computesexactly

e1Γ (n + 1, 1)

Γ (n + 1)

(where both theΓ and the2-argument incompleteΓ function appear). As expected, the error term
Γ (n + 1, 1)/Γ (n + 1) converges to1 very quickly with risingn. More intuitively, our program also
reports that this computes

1 +

n
∑

t=1

1

Γ(t + 1)

Example 8.6. (BesselJ)
Our system reports that this computesexactly

Γ (ν + 1)

zν



Jν (z) 2ν −

(

z2m+ν − s
(+)
2m+1+ν,ν (z)

)

(−1
4

)m

Γ (m + 1 + ν) Γ (m + 1)





whereJν is the Bessel function of the first kind, whiles(+) is known as Lommel’ss function. It also
reports that this is

m
∑

t=1

(−1)t−1 (

z2
)t−1

Γ(ν + 1)

4t−1Γ (t + ν) Γ(t)

What is interesting about the previous example is not what itcomputes exactly, but that we can
recognize (and with a bit more work, compute) that this is aTaylor approximationfor the non-singular
part of Bessel’s function at the origin.

It is worthwhile noting that the examples above are generally distinct from the ones of related work,
like that of Rodrı́guez-Carbonell and Kapur [33] and of Kov´acs and Jebelean [23, 24]. Below, we give
the examples from [23] and [33] which can be translated in to SWL.

Example 8.7. (Integer division)
This code needs a minor extension to SWL — returning multiplevalues. Given the code in Listing 9, we
return the explicit form

(lrem = x− y

⌊

x

y

⌋

, lquo =

⌊

x

y

⌋

).

Thefloor function appears courtesy of solving for the stopping condition, as the recurrences are trivial
with solutionslquot = t andlremt = x− yt.

Example 8.8. (Fibonacci)
Given the code (Listing 10) to compute the Fibonacci numbers, our system returns a fairly complex

expression in term of1/φ whereφ = (1+
√

5)
2 is the golden ratio instead of the expectedφn+φ̂n

√
5

. One can
nevertheless verify that the answer is equivalent to the usual closed-form for the Fibonacci numbers (and
derived automatically).

1020 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

Listing 9. Integer Division

d i v := proc (x , y)
l o c a l lquo , l rem ;
lquo := 0 ;
l rem := x ;
whi le (y<=lrem) do

l rem := l rem − y ;
lquo := lquo + 1 ;

end do;
(l rem , lquo) ;

end ;

Listing 10. Fibonacci

f i b o := proc (n)
l o c a l F , H, i ;
i := n ;
F := 1 ;
H := 1 ;
whi le i >1 do

H := H + F ;
F := H − F ;
i := i − 1 ;

end do
F ;

end ;

Listing 11. Square Root

S q r t := proc (n : : p o s i n t)
l o c a l a , s , t ;
a := 0 ; s := 1 ; t := 1 ;
whi le s<=n do

a := a + 1 ;
s := s + t + 2 ;
t := t + 2 ;

end ;
a ;

end proc ;

In direct contrast to ex. (4), the previous example is an instance (along with ex. (5)) where the
tools’ answer must be recognized as equivalent to the “correct” answer, rather than an instance of the
tool detecting a problem.

Example 8.9. (Square root)
The code in Listing 11 computes an approximation to the square root of a positive integern. In fact, it
computes exactly⌊√n⌋, where again the floor function appears courtesy of solving the stopping condi-
tion.

9. Conclusions and Future Work

We have described a symbolic execution system that can be used to analyze properties of programs. It
is especially well-suited to numerical programs which compute so-calledSpecial Functions. The most
important tool is the transformation of loops into explicitsystems of recurrence equations overtime.

For future work, we would like to loosen the restriction forwhile loop we have now. The most
promising line of investigation is to see if we can include branches in loops, but where the branch condi-
tion depends on amonotonicfunction of time.

We are also experimenting with the “pure” Blikle and Mazurkiewicz approach [4, 5, 26] using a
theorem prover Simplify [12] and the results look very promising.

References

[1] S. A. Abramov, J. J. Carette, K. O. Geddes, and H. Q. Le, Telescoping in the Context of Symbolic Summation
in Maple,Journal of Symbolic Computation38 (4), 2004, pp. 1303-1326.

[2] A. W. Appel, Modern Compiler Implementation: In ML, Cambridge University Press, New York, NY, USA,
1998.

[3] H. Bekić, Definable operations in general algebras and the theory of automata and flowcharts, Unpublished
Manuscript, IBM Laboratory, Vienna 1969.

J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation 1021

[4] A. Blikle, An analysis of programs by algebraic means, InA. Mazurkiewicz, Z Pawlak (eds),Mathemat-
ical Foundation of Computer Science, Banach Center Publications, Vol. 2, pp. 167–213, Polish Scientific
Publishers, Warsaw 1977.

[5] A. Blikle, A. Mazurkiewicz, An algebraic approach to thetheory of programs, algorithms, languages and
recursiveness,Proc. of 1st MFCS (Mathematical Foundations of Computer Science), Jabłonna, Poland 1972.

[6] J. Carette, R. Janicki, Y. Zhai, Program Verification by Calculating Relations,Proc. of 15th IASTED ASM’06
(Applied Simulation and Modeling), Rhodos, Greece 2006, pp.150-156, Acta Press.

[7] T. E. Cheatham, J. A. Townley, Symbolic Evaluation of Programs: A look at Loop Analysis,Proc. of ACM
Symposium on Symbolic and Algebraic Computation, 1976, pp. 90-96.

[8] F. Chyzak, B .Salvy, Non-commutative Elimination in OreAlgebras Proves Multivariate Holonomic Identi-
ties,Journal of Symbolic Computation26 (2), 1998, pp. 187-227.

[9] F. Chyzak, B .Salvy, Gröbner Bases, Symbolic Summationand Symbolic Integration, in B. Buchberger,
F. Winkler (eds.),Gröbner Bases and Applications, London Mathematical Society Lecture Notes Series, Vol.
251, Cambridge University Press 1998, pp. 32-60.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. K. Zadeck, Efficiently computing static single assign-
ment form and the control dependence graph,ACM Trans. Program. Lang. Syst., 13, 4 (1991), 451-490.

[11] J. W. DeBakker, D. Scott, A Theory of Programs, Unpublished Manuscript, IBM Laboratory, Vienna 1969.

[12] D. Detlefs, G. Nelson, J. B. Saxe, Simplify: A Theorem Prover for Program Checking,Journal of ACM, 53,3
(2005), 365-373.

[13] O. Dragon, Reverse Engineering of Scientific Computation FORTRAN Code, Master Thesis, Dept. of Com-
puting and Software, McMaster University, Hamilton, Canada 2006.

[14] R. W. Floyd, Assigning Meaning to Programs,Proc. of 19th Symposium on Applied Mathematics, 1967, pp.
19-32.

[15] S. M. German and B. Wegbreit, A Synthesizer of InductiveAssertions,IEEE Trans. Software Eng., vol. 1
(1), 1975, pp. 68-75.

[16] D. Goldberg, What every computer scientist should knowabout floating-point arithmetic,ACM Comput.
Surv.23 (1), 1991, pp. 5-48.

[17] C. A. R. Hoare, An Axiomatic Basis of Computer Programming,Comm. of ACM12 (1969), 576-580.

[18] R. Janicki, Analysis of Coroutines by Means of Vectors of Coroutines,Fundamenta Informaticae, 2, 2 (1979),
289-316.

[19] W. Kahan, Pracniques: further remarks on reducing truncation errors,Commun. of ACM, 8 (1), 1965.

[20] E. Kaltofen, Greatest Common Divisors of Polynomials Given by Straight-Line Programs,Journal of the
ACM, 35 (1), 1988, pp. 231-264.

[21] M. Karr, Affine Relationships Among Variables of a Program,Acta Informatica, 6 (1976), 133-151.

[22] S. Katz and Z. Manna, A Closer Look at Termination,Acta Informatica, 5 (1975), 333-352.

[23] L. I. Kovács, T. Jebelean, Automated Generation of Loop Invariants by Recurrence Solving inTheorema,
Proc. of SNASC’04(Symbolic and Numeric Algorithms for Scientific Computing), 2004.

[24] L. I. Kovács, T. Jebelean, Finding Polynomial Invariants for Imperative Loops in the Theorema System,Proc.
of Verify’06 Workshop, IJCAR’06, The 2006 Federated Logic Conference, pp. 52-67.

1022 J. Carette, R. Janicki / Computing Properties of Programs bySymbolic Computation

[25] D. Kozen, Kleene Algebras with tests,Transactions on Programming Languages and Systems3, 19 (1997),
427-443.

[26] A. Mazurkiewicz, Proving Algorithms by Tail Function,Information and Control, 18 (1971) 793-798.

[27] A. Mazurkiewicz, Iteratively Computable Relations,Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.,
20 (1972), 793-798.

[28] A. Mazurkiewicz, Recursive Algorithms and Formal Languages,Bull. Acad. Polon. Sci., Ser. Sci. Math.
Astronom. Phys., 20 (1972), 799-803.

[29] L. Meunier, B. Salvy, ESF: An Automatically Generated Encyclopedia of Special Functions,Proc. of IS-
SAC’03, Philadelphia 2003. ACM Press. pp. 199-205.

[30] M. B. Monagan and K. O. Geddes and K. M. Heal and G. Labahn and S. M. Vorkoetter,Maple Programming
Guide, Springer Verlag, 1998.

[31] Reverse Engineering at McMaster,http://www.cas.mcmaster.ca/∼carette/ReverseEngineering

[32] T. J. Parr,ANTLR, ANother Tool for Language Recognition, http://www.antlr.org/

[33] E. Rodrı́guez-Carbonell, D. Kapur, Program Verification Using Automatic Generation of Invariants, Proc. of
ICTAC’04, Lecture Notes in Computer Science3407, Springer 2005, pp. 325-340.

[34] B. Salvy, P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic func-
tions in one variable,ACM Transactions on Mathematical Software, 20 (2), 1994, pp. 164-177.

[35] D. Schmidt,Denotational Semantics, Allyn and Bacon, 1986.

[36] B. Scholz, T. Fahringer,Advanced Symbolic Analysis for Compilers. Springer-Berlin, 2003.

[37] J. V. Tucker, J. I. Zucker,Abstract versus concrete computation on metric partial algebras,ACM Trans. Com-
put. Logic5 (4), 2004, 611-668.

[38] B. Wegbreit, The Synthesis of Loop Predicates,Commun. of ACM17, 2 (1974), 102-112.

[39] S. Wolfram,The Mathematica Book, Cambridge University Press, 1999.

[40] Y. Zhai, An Analysis of Programs by Symbolic Computations, Master Thesis, Dept. of Computing and
Software, McMaster University, Hamilton, Canada 2006.

[41] W. Zhou, J. Carette, D. J. Jeffrey and M. B. Monagan, Hierarchical representations with signatures for large
expression managemen, Proc. of Artificial Intelligence andSymbolic Computation,Lecture Notes in Com-
puter Science4120, Springer 2006, pp. 254-268.

