Fundamenta Informaticae XXI (2006) 1001-1022 1001
10S Press

Computing Properties of Numerical Imperative Programs by
Symbolic Computation

Jacques Caretté Ryszard Janickif
Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada L8S 4K1

{carette,janicki}@mcmaster.ca

Abstract. We show how properties of an interesting class of impergtiegrams can be calculated
by means of relational modeling and symbolic computatiome eas of [5, 26] are implemented
using symbolic computations basedMaple[30].

1. Introduction

In the late sixties and early seventies, a technique fofigations and analysis of computer programs
based on a calculus of functions and relations was prop¢3ed, 5, 11, 14, 18, 26, 27, 28] and others).
The initial ideas were due to Robert W. Floyd [14], thé most advanced and sophisticated version
was based on the approach proposed by Antoni Mazurkiewi§26hand Andrzej Blikle and Antoni
Mazurkiewicz in [5] (see also [4, 18, 27, 28]).

The technigue was based on calculafliag Functiondefined in [26] as a tool to modebntinuations
If a program terminates, its meaning is defined by the valu@adf Function from its beginning. A
novelty was to use the Calculus of Relations even for egtileterministic programs. For terminating
iterative programs the approach could be regarded as aqassit® (and a special case) of Kozen’'s
Kleene Algebras with Tests [25].

Despite many theoretical and methodological advantagestifier emphasizesalculationinstead of
provingas in the more popular method of Hoare [17]), the techniqeenleser become widely accepted,
probably because of the huge amount of symbolic computatibat need to be performed for even

*Partially Supported by NSERC of Canada Grant RPG262084-03.
TPartially Supported by NSERC of Canada Grant.

1002 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

relatively simple cases, even though in most cases thesatasr easy predicate calculus computations
albeit with formulas a couple of pages long.

The situation has dramatically changed today, as we hayepaverful tools supporting symbolic
computation such dglaple [30] andMathematicg39], and relatively easy to use theorem provers such
asSimplify[12]. The problem is still non-trivial, as the most generases are undecidable, but for many
practical cases an efficient solution seems to be feasible.

We were motivated by the approach of Blikle and Mazurkievdord we show an example of such
a computation in Section 2. But instead of expressing wmalatias predicates, we represent them as
symbolic recurrence relatiorend then use a technique cal®gnbolic executianThe main idea behind
symbolic execution is to use symbolic expressions as ingluieg and to simulate the execution of the
program statements on this symbolic input. Symbolic exenutas wide range of potential applications,
however, it has fallen out of favour for proving propertidgpmgrams. This is because naive symbolic
execution can lead to exponential blow-ups (or worse [4BRpcent work, amongst which one can find
[23, 33, 36], has shown how useful this can be when used inaltad situations.

Our symbolic analysis can be seen as a kind of compiler whachr@anslate the input programs into
a symbolic expression, and then transform this expressionain output expression. From our point of
view, recursion and looping are essentially equivalend, smwe will mainly restrict ourselves to loops
as the source of our main difficulties. The basic techniquel irs such cases is to find “loop invariants”
proposed by C. A. R. Hoare in 1969 [17]. Unfortunately findihgm is often problematic and research
on how to find them in some automatic manner, after some véeyesting early work [15, 21, 22, 38]
has only just restarted [23, 33].

We will show that for many frequently occurring loops, fingimvariants is not necessary as the
symbolic expression for the output can be generated etlpliy solving the recurrence equations gen-
erated from the loop. Even if, due to structural complexita toop, finding loop invariants is necessary,
the technique we have proposed might often help substgntial

Since we do not represent relations as predicates but asofigmdrurrence relations over particular
rings, this induces a definite restriction on the structditb®programs that can be thus handled. Despite
this restriction, our method is still applicable to a largeigety of numerical programs. In fact, this was
a big part of the first author's original motivation — how toatlevith exactly that class of numerical
programs. The intuition here came from a branch of mathesétiat deals witlholonomic functions
and sequenceahere there exists very powerful theoretical results, aé agsbeing the foundation for
quite practical work [8, 9, 29, 34]. From that work, we knevattltertain kinds of programs which
correspond strongly to holonomic objects should be coralyiésolvable”. It was even fairly clear what
those programs should look like, as packages like Magles can produce code from recurrences [34].

While influenced by axiomatic semantics [17], our techngjoees much more tdenotational se-
mantic$ as well as borrowing some ideas from operational semantics.

Some preliminary results in this direction were first présdnn [6]. More complete versions were
presented by both authors at conferences (by the first aatlaoronference in honour of Sergei Abramov
where the holonomic and closed-form aspects were emploasiad by the second author at a conference
in honour of Antoni Mazurkiewicz where the semantics andtiehs with Tail Functions were empha-
sized). Prototypes were implemented first by Y. Zhai [40]Ntaple, and subsequently by O. Dragon

1The paper [26] was not initially appreciated by the denotel semantics community, but since the mid eighties it elyi
credited as being one of the first papers on “continuati¢8s]

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1003

[13] for Fortran 77. It is planned that these prototypes bdemaore widely available [31].

We assume a reader has some basic knowledge of programmiggatzes semantics, computer
algebra and symbolic computation.

The next section provides the intuition (based on relajiamsl the initial motivation for the work.
In section 3, we formally define the problem we are going teesolvhile in section 4 we give precise
semantics to our programming language. In section 5 we theeinecurrences to the symbolic semantics,
and then deal with issues of termination in section 6. Sectigives a brief overview of how to obtain
closed forms, and section 8 gives a variety of examples ctabfiwith our method, as implemented.
Lastly we close with some conclusion and some further wotketdone on this method.

2. Intuition and Motivation

The example below (based on [4, 5, 27]) provides the initiativation and illustrates well the main
ideas. In principle we first translate a program intelational expressiomnd then we will try to obtain
the program properties by analyzing this relational exgioes A classical approach to the latter part
involves substantial use of tipgedicate calculus
Consider the well-known procedure factorial, written imaedl subset of Maple [30]:
factorial :=proc(n:: posint)
local i, fac;
i:=1;
fac:=1;
while i < n do
begin
ii=i+1;
fac:=facxi;
end;
return fac
end proc;

Sincen does not change its value in the above program we may corisidgra constant, so we may
assume the above program has two integer variabdesifac. DefineD = Z x Z, whereZ is the set
of integers, and denote the elementdbas (i, fac). Each assignment statement can be modeled by a
functionF; : D — D, i =1,2,4,5, in the following manner:

"i:=1" corresponds td" (i, fac) = (1, fac),

"fac:=1" corresponds td+; (i, fac) = (i,1),

"i:=i+1" corresponds td(:,fac) = (i + 1,fac), and

"fac:=fac*i" maps toF;(i,fac) = (i,fac- 7).
The test"i<n" can be modeled by two partial identity functiorf, Is : D — D, wherel; models
"i<n", and/; models its complement, i.¢i>n". More precisely,

"i<n" corresponds tds (i, fac), and

"i>n" corresponds tds(i, fac), where (L denotesundefinedl

) I5(i, fac) =)
1 otherwise 1 otherwise

. .) . s
Ig(i,fac):{(l’fac) ifi<n {(z,fac) ifi>n

As we had mentioned previously, for terminating programtheuit recursion the approach could be

1004 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

regarded as a predecessor (and a special case) of Kleenera@dgsith Tests [25], so we can use the
following scheme.

Let R, Ry, Ry be relations (each function is a relation!) that model thegpem statements, S1,
S2, respectively. LeT be a test modeled by partial identitiés and I, and let the symbolss” and “*”
denote the (forward) composition of relations, and travesiand reflexive closure of relations (Kleene
star), respectively.

Then:

"S1;82" is modeled byR; o Ro,
"if T then S1 else S2"is modeled byIr o Ry) U (I7 o Ry), and
"while T do S"is modeled by(Ir o R)* o I7.

Using this scheme one can easily model the above programitiggithe following (symbolic) relational
expression:
F:F10F20(130F4OF5)*O[_3

There are many methods of transforming programs fiketorial into relational expressions. In the
original paper [26] a technique called “label elimination&s proposed, solving appropriate equations
was proposed in [4, 5]. Both techniques can be applied torseeuprograms, however for recursive
programs they do not always guarantee obtaining a closatiamhl expression. For non-recursive pro-
grams without goto” the direct translation of program statements into refaicexpressions seems to
be the easiest method. Since the loépr” can easily be simulated bywhile” and “if-then-else”,

this method covers the loopgdsr” as well.

The techniques proposed in [4, 5, 26] can be applied to nterdaistic programs as well, how-
ever the method described in this paper and implementedriprototypes ([40, 13]) are restricted to
deterministic programs, which means that all “atomic fefet’ corresponding to simple assignment
statementsK;, Fb, Fy, F5 for factorial) are functions, i.e. all “atomic relations” in the final retaal
expression are also functions.

If R, and R, are (possibly partial) functions, calculatifyy = R; o Ry is easy: R(z1,...,x,) =
Ry(Ry(z1,...,x,)). If at least one ofR;, Ry is not a function, in general, we have to use the rule:
(21, e, n)R10R2(21, .0y 2n) <= Y1, Yn) (@1, ooy) R1 (Y1, ooy Yn) A (Y1 ooy Yn) R2 (21,5 -y 20)-
Nevertheless, it might happen th&{ o Rs is a function even if both?; and R, are not. In general
R1 U Ry is not a function, even if bottR; and R, are functions. SimilarlyR* = (J;° R' is almost
never a function, even iR is a function, since ifR is a function, ther(x1, ..., z,)R*(y1, ..., yn) <
3i > 0. (y1,..,yn) = R¥(w1,...,7,), and this may happen for many, even infinite numbei’'sf
However the following folklore result can easily be proved.

Lemma 2.1.

1. For any test, if R; andR; are functions theii/7 o Ry) U (I1 o Ry) is always &unction
2. For any test, if R is a function, ther{I7 o R)* o I is either aunctionor the empty relation.
3. Forany test, if Ris a function andIr o R)* o I # 0, then

((Ir o R)* o Iy (x) = R (x)

wherek(x) is the smalles§ such thatfr (R’ (x1, ..., z,)) (x) # L. O

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1005

Lemma 2.1(3) is particularly helpful (x) can (easily) be calculated, for instance if a closed formula
for k(x) can be obtained, which happens quite often (in particulat é& loops), but not always.

Also, despite the above results, calculating functionsrin@del even simple programs is very labour
consuming and error prone. To illustrate this technique wiecalculate the functionf” = Fy o F5 o
(I3 0 Fy o Fy)* o I3 that models our simple prografactorial. The most difficult part is to calculate
the function(I3 o Fy o F5)* o Is.

DefineG = I3 0 Fyo FsandH = G* o I3, SOF = Fy o F o H. First note that Fy o F3)(i, fac) =
F>(Fy(i,fac)) = (1,1), soF(i,fac) = H(Fy(F1(i,fac))) = H(1,1). For the functionG we have:

G@m@:uywuw@@qugumg@m@»:{f*Lm°“+”)”i<”

ifi>n
Similarly :
G2(i.fac) = G(G(ifac)) = 4 U T 2faC- (i 1) (1 +2)) i+ 1<n
| | L ifi+1>n
Hence :
GI (4, fac) = (i+jfac-(i+1)-(i4+2)-...-(i+j) Hitj—1<n
| ifi+j—1>n

Notice that this last step requires a small amount of humgeninity to “see” the pattern (although
we will show how this can be automated in some cases). Frommaeth1(3) it followsH (i, fac) =
G* (i, fac) wherek = k(i, fac) is the smalles§ such thatl3(G7 (i, fac)) # L. In this case we can easily
show that there is only one sugtand thatk (i, fac) = n — i. First note that/3(G7 (i, fac)) # L implies
G’(i,fac) # L, i.e. G/(i,fac) = (i + j,fac) andi + j — 1 < n. Furthermorel3(i + j,fac) # L
impliesi +j > n. Fromi+ j — 1 < nandi + j > n we immediately get + j = n,0rj = n — 4.
Hencek(i,fac) = n — i, i.e.

H(i,fac) = G"'(i,fac) = (n,fac- (i + 1) - (i +2) ... - n).

This meansF'(i,fac) = H(1,1) = (n,n!), so the program is correct (in the sense of partial cor-
rectness with respect to the specification thatc N.factorial(n) = n!), although this last step still
requires a non-trivial proof. To make this technique felasfor bigger, more realistic programs, we
need a tool that would be able to do all those symbolic calicuia. The reasoning presented above rely
heavily on Lemma 2.1(3) and is rather typical for human bgingany steps and observations are not
easy to mechanize, which suggest that perhaps we shoul@ékiaddor a different approach.

Our prototypes [40, 13] will take the text of the prograiactorial as an input (in Maple and
Fortran 77 respectively) and will return the text!™ as the main output. In the next sections we will
show how it can be done with some help frdfaple [30]. The main idea is not to represent relations
as predicates but to instead translate them into symbotiamence relationsNote the Maple prototype
[40] can deal with limited recursion as well, while the Fartrf77 prototype [13] can deal with vector and
matrix algebra.

1006 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

3. Formal description of the problem

Consider the following small core for a programming langu&yVL (for Simple While Language

E = Var real or integer variable
| ¢ integer literal
| E+FE|ExE|E—FE|E/E|E"i arithmetic operations
B = E=E|E<O0 bool from expressions
| BandB|BorB|notB boolean operations
S = Var:=F variable assignment
| S; 8 sequencing
S u= S
| while Bdo Send while loop
P = proc(Var*) {local Vart} S’ ; return E end procedure

with the obvious operational and denotational semahtiosl we use standard regular expressions in the
definition of P for brevity. SWL is not meant to be a practical programminglaage, but rather a core
language into which one can easily translate other progr&orsexample, a practical programming lan-
guage would allow expressions lifgy > F> as boolean expressions; in SWL, this has to be represented
asF, — F; < 0. What is important to note about this language is that it dxaly real or integer (but not
boolean) variables, and more importantly, no conditibnBlrthermore, we can only define single-level
procedures, as neither the syntax for statemgmsr expression® allow procedure invocatidn, and

the only control-flow mechanism is théhile loop. While this may seem like an incredibly impoverished
language, it is still rich enough to encode the programsespionding to holonomic objects. In fact, if
our target is just to deal with holonomic objects, this laaggl is is more general than needed, as sim-
ple holonomic objects require only a single loop. Convergbiis small programming language can be
trivially mapped injectively in various programming larages, notablg, Fortran, andMaple.

There is a natural programming concept which involves igigift the while loop. More precisely,
each time through the body of the loop, tbep countgoes up by one. A loop may or may not include
an explicit counter variable, but there is neverthelessbatract “loop counter”, and all the explicit state
variables changed in the body of a loop “depend” on this lamyter. Our task then will be to introduce
an actual loop counter variable, and then to make the depeadef each state variable on this loop
counter explicit. This will be the key to turningvehile loop into a recurrence.

Before we give a formal statement of the problem we are istecein, it is illustrative to consider a
simpler version, which can be solved completely.

Definition 3.1.
A programp is said to bevalid if all (local) variables are initialized before they aredea O

2A complete denotational semantics for SWL can be found iniGed
SAlthough one can still encode a condition via two while locgusd a boolean via integers
“we can easily allow calls to procedures which return polyiabfanctions of their parameters

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1007

Suppose that we denote [jy] the mathematical function that a programomputes (i.e. its denota-
tional semantics, given for SWL in section 4). It is alreadg\eto see the following:

Proposition 3.1. Let p be a program in thevhile-free fragment of SWL. Then i denotes a valid
program,[p] denotes a rational function of its inputs. If furthermore grogram is division-free, then if
p denotes a valid program, it in fact denotes a polynomialsoifiputs. d

The above proposition is easily proved by structural inidecon the syntax of programs.

Note that we are dealing withbstract computatio37], as we are really interested in modeling
the algebraic situation over the reals. A common implentemtavould use floating point numbers to
model the reals, which will introduce all sorts of additibsamplications not present in the algebraic
model, and we will not concern ourselves with these issues. hé/e justify this by saying that it is
the use of floating point which is an implementation-timeragpnation to the real specifications. Thus
we use the usual algebraic domains (the ring of inteleand the field of real®) as the basis for our
models. However we should note that standard tricks fromermigal analysis, like Kahan’'s summation
algorithm [16, 19], are algebraically “invisible”, and thwe can also deal with programs written using
good numerical analysis methods.

In denotational semantics, one normally uses continuoostitns on CPOs as denotations. We are
instead trying to recover the algebraic meaning as implésdeim a program. In other words, we are
really interested in eithesequencesr functionsover combinations o, andR. That said, we are not
particularly interested isomputationakepresentations of these (as that is our starting point);abber
in classical mathematical expressions which denote the saathematical object. Certain closed forms
tend to be preferred by humans, but a reasonable systemme&iJiequations with initial conditions is
often mathematically much more tractable. This is easgeskplain via an example, to be followed by
an explicit definition.

Example 3.1. (Factorial again)
Consider the following SWL procedure:

proc(n) local r, i;

r = 1,

i = 1;

while i—1 < n do
r = r % i;
=1+ 1;

end;

return r;

end proc

Let us call this procedurg. As we have seen before,

n! n>0
1 otherwise

[[fﬂ:/\n.{

where we) notation for function from the\-calculus ([35] for its use in denotational semantics). &lor
interestingly for us, we have that

vte N[fI(t+1) = (t + 1) - [f1(®), [f](0) =1 1)

1008 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

which, when solved in explicit terms, gets us backtoEven more interesting is that is quite a good
representation fof as overZ they are equivalent — if one is defined, then they are both eefand
equal, and if one is undefined, they are both undefined.

The factorial procedure is special in that one can providesed-form for it, as well as being able
to see the exact termination conditions. While we do not eixfjebe able to do this for all procedures,
even in a fragment of SWL, we would like to extract two piecémfiormation from such procedures:

1. An explicit system of recurrence equations, includiriahconditions, for eachwhile loop and,
2. An explicit equation for the termination condition.

Referring back to ex. (3.1), we can show that the body of théevitop satisfies
r(t+1) =r(t)-i(t),i(t+1) =i(t) + 1,7(0) = 1,i(0) =1
(where we use as loop-counter, or “time”), and the termination conditieads
te =min{t € N | i(t) — 1 =n},

were we use. to denote the time at which the loop ends. In this particud&ecwe can see how to solve
the recurrence foi(t) to geti(t) = t + 1, upon which substitution into the equation ferleads us to
t. = n, from which we easily get the recurrence (1). Our task theo mmake this precise.

Problem 1. Given an SWL procedurg, return an explicit system of equations satisfied by all thees
(local) variables of. This system of equations should encode both correctnesteamination condi-
tions. If possible, these equations should be solved iredidarm.

We could in fact be even more specific about what kinds of egmtve will get (recurrence equa-
tions for loops and minimum equations for termination), &sitve wish to later expand SWL, the above
statement will be sufficient. We often want closed forms;dnde we have in our hands systems of recur-
rences, we can leverage the tremendous power of today’s @emdlgebra Systems to find these closed
forms®. Furthermore, as this technology improves, we should betatdutomatically benefit from these
improvements. This is why we focus on obtaining systems aga#gns, and then define our solution as
a two-step process of first getting recurrence equatiorsthaan to finding potential closed-forms.

Note that our problem has a well-defined input language (S\WIsemi-formally defined interme-
diate language (systems of equations), and a very inforoiplub language (closed forms). In the rest
of this paper, we will endeavour to give a formal definitiom fioe intermediate language, but leave the
definition of “closed form” completely open, as we wish to ldeato use whatever future technology
comes along for solving our equations. In this way, our sofuis very modular.

Example 3.2. (Factorial revisited)

We made some claims about inverting the process of gengatirtedures from holonomic equations. If
we give eq. 1 to the Maple routinégfun [rectoproc] (which given a linear recurrence equation with
polynomial coefficients will return a procedure for compgtthen! term), andLREtools [REtoproc]

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1009

Listing 1. gfun[rectoproc] Listing 2. LREtools[REtoproc]

pgl := proc (n) pg2 := proc (n::nonnegint)
local i1, locO, locl; local i, u0, ul;
locO := 1; uo = 1,
for i1 from 0 to n-1 do for i to n—1 do
locl := (il+1)«locO; ul := i*xu0;
locO := locl uo = ul
end do; end do;
locO nxu0
end proc end proc
Figure 1. automatic factorials

(which does the same but via a different algorithm), we obthé procedures given in fig. 1. For both
of these programs, we obtain closed-fofitn. + 1) andnI'(n) respectively. As is well-knownl" is
the unigue convex continuous function which interpolatésand it satisfies the functional equation
I'(k + 1) = kT'(k). From these, we see that these results are equivalertoio the positive integers, as
required.

4. Semantics

Figure 2 presents a subset of the (standard) operationalngexsfor SWL. Note that it is very important
to distinguish between the syntactiof the program text from the semanticof the underlying domain
(Z or R).

o(E1) = E|

o(E2) = E)

o(E{+E)) = Ej+E)

o(E) = false

o(v1+vg) = v1 + vg

o(E) = true o(S) = o1

o(while Edo Send) = o

o(while E'do S end) = o;(while £ do S end)

Figure 2. Fragment of the operational semantics for SWL

In the aboveg denotes &tore an assignment of values to identifiers (variablég)is an expression
andw; is a value. A store represents thiate associated to an imperative program. We extend the
definition of this function to the whole language in two wagipplied to an expressiafi, we recursively
evaluate to get a value; applied to a statemgnive get a new store. The main reason to present the
operational semantics here is that we model most of our sitearn the denotational semantics of

SHowever, it seems that what “closed forms” means dependseouser. When giving talks about this work, some people loved
to see the exact special functions coming out, while othensted to see unevaluated sums. Our prototype now returhs bot
Sgfun is a Maple package revolving around generating functiomsleREtools is a package for dealing with linear recur-
rence equations.

1010 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

languagesexceptfor while loops, where we model the operational semantics much moselgl It is
important to note that this is quite close in spirit to whatlise in [26].

We next present the denotational semantics for SWL. Eactastyn construct in SWL denotes a
mathematical function from stores to stores. The semanfitse constructs withoutvhile loops and
procedures is given in fig. 3, whege represents the overriding union operator. Note that to ntiade
presentation simpler, we elide the ster&om all definitions which do not explicitly use it.

[Var]o = o(Var) [<] = 9

[Er + E5] = [E1] + [£7] [E1 * Eo] = [E1] = [E3]
[E1 - E5] = [B1] - [£7] [E1 1 Eo] = [E1]/[E]
[E; "] = [E® [not E1] = —[E]

[[El or Eg]] = [[Elﬂ V [[Eg]] [[El and EQH = [[Elﬂ VAN [[EQH
[E1 = E,] = [Ed] =[E] [£1 <0] = [Ei] <0
[Var:=FE]Joc = o®{Var < [E]} [S1; So]lo = [S2]([S1]o)

Figure 3. Denotational semantics for SWL

Finally, we get to the thorny issue of the semantics ofthée loop. This is defined as follows:

go[S] [B]o = true

[while B do S end]o = FIX F whereFg =<
id [B]o = false

whereFIX denotes the least fixed point of the operatomwith respect to the information ordering on
functions. Further details can be found in [35]. The sencandf a procedure can then be defined as

[proc(z1,z2, ..., xy,) {local iy,ls, ..., 1} S; return E end] = Axy, ..., 2. [E]([S]os.)

whereo, ; denotes the state where identifiers . .., z,, andi,. .., [, are in the range. In other words,
the semantics of a procedure is a function from the valuel @sahputs to the value of expressidnas
evaluated in the environment gotten from “runnirfgystarting fromo . ; (as expected).

What we really want to do is to:

1. Go from denotational semanticsspmbolic semantic86],
2. Replace the denotational semanticsvbfle with a semantics closer to its operational semantics,
3. Introduce explicit loop counters.

Luckily, these last two requirements work very well togethé/e will explain how this is done in the
next section. We finish this section with a quick introdustim symbolic semantics. In the case of
constructs withoutvhile loops and procedures, this is given in fig. 4, whérepresents the overriding
union operator over symbolic values.

The basic idea is very simple — so simple in fact that for maatiitioners of Computer Algebra,
the difference with denotational semantics is difficult &hbm. Instead of working with theemantic
theory of state-transformers (basically partial funcsiprwe will work one step removed, that is with a

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1011

[Var]o = o(Var) I<] = i

[E1 + Es] = [E1] +[E2] [E1* Eo] = [Ex] * [E2]

[E1 - E5] = [E:] - [E2] [E1] Eo] =[]/ [E2]

[[El - Z]] = [[Elﬂ - [[Zﬂ [[I’]Ot El]] = not [[El]]

[[El or EQ]] = [[Elﬂ or [[EQH [[El and Eg]] = [[El]] and [[Eg]]

[E1 = E,] = [E:]=[E2] [E1 <] = [E1] <0
NVar=Elo = 6, {Var — [E]o})) [S1:Sle = oS [So]([Si]o))

Figure 4. Symbolic semantics for SWL

syntactictheory. These are commonly known as “expressions” in CoenpAigebra. However the main
point of expressions is that they serve two rdles: they @asymtactically manipulated, and they are
denotations of mathematical functions. In other wordsiglie (in semantics) a large difference between
the expression +sin(x) and the mathematical function denotedMay: R.z +sin(z). The firstis really
an abstract syntax tree (one can also think in terms of LIBRpsessions), while the second lives in the
function spac® — R. Of course, we have a canonical map from the expression deitstation, which

is probably why these two concepts are so often seen as “the’sdHowever, there isi0 reasonable
converse mapping! Most functions € R — R do not have finite expressions which dengteThis
structural property of possessing a finite expression ig gewerful, and is part of the success of our
method. In fig. 4, we give the symbolic semantics for SWL. Aglfi@ rest of this paper we will only use
symbolicsemantics, we will re-use tHg notation for this semantics. Itis important to note thattthees
involved are quite different: the symbolic semantics of apression is always ayntactic expression
There is still a store involved, but now it is a functierwith symbolic valuesr(Var) such that

v (Var,v) €0

o =0(o’,Var — v)
o'(Var) o =46(c',z +— v) andz # Var
Var otherwise

o(Var) = 2)

In other words, given the empty stosg = () (where we represent a store as a set of identifier-value
pairs), we have thdtr + y]| o9 = = + y, while in the storer; = {(y,3)}, [z + y] o1 = x + 3. There
is a simple correspondence between denotational and syns@oshantics — Theorem 5.1 in section 5
makes this precise.

The semantics of statements also changes: instead of béimgtion from stores to stores, it now
becomes a function frorstore representatioto store representatian

Definition 4.1. A store representatiois a symbolic expression which can be evaluated to a unique st
(of symbolic expressions). O

We will use both explicit store representatiorns = {(y,3)}) and implicit representationg{ =
d(o1,09)). We need to add just one more ingredient before we can move @turrences for loops —

1012 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

names for store representations. If we were to use the syerdmrhantics defined in fig. 4 directly, even
for straight-line programs we would frequently get expdisrblow-up in the sizes of our expressions
[20, example p. 10]. To preserve the structure of the sttdiglh program, as is also done by [36], each
statement producesremedstore representation, which is used in further computatidio prevent the
blow-up of expressions, instead of computingyar), we also use a symbolic representation for this step.
That is we modify[Var]o from beingo(Var) to €(co, Var) (where we picke to represenevaluatior). For
example,

({}i— e({}3)

s1 = 0(so, 7 < €(so,7) - €(50,17))

So = 5(81,’i — E(Sl,i) + 1)

which is also one of the ideas in MaplésrgeExpressions package, which helps to produce dramatic
improvements in certain large symbolic computations [4&E(also [20] for related work).

i
r
i

3; S0 =
r

* 0
+ 1;

5. Recurrences

The heart of this work is to re-use a very old idea: a loop ete=ca certain number of times, which
implicitly defines a non-negative integer “loop counter”.e\thus reflect the number of iterations of a
loop as a variable that we can manipulate. We then expressethantics of the loop body as a state
transformer from the state at timeo the state at timé-+ 1. A loop terminates at the first non-negative
time (if it exists) that the loop condition becomes true. W@ wse “iteration counter” and “time”
interchangeably, as we move between the traditional caenmgience view and the dynamical system
view of code.

To do this requires not only that we have a fresh name for tewg variable (easy via a standard
gensyn trick), we need to re-express the semantics of the body o éxplicitly in terms of this new
variable. Schematically, we want to perform the followingnsformation:

while Condition do
state := F(state) = ser1 = F(sy)
end
wherestate should be thought of as a state vector @hds a vector-functionHopefully the reader will
be struck by the resemblance between this last equationhanihil Functionof Mazurkiewicz [26]

What we get as a result is that our loop bodies always end upl#ting to a first-order, generally
non-linear, polynomial recurrences on the iteration ceufime). While this is certainly the correct
intuition, one cannot simply add subscripts in the appaiprplaces in the symbolic semantics of fig. 4
and get something semantically meaningful. If our programese always written as explicit vector
functions, this would be the case. But consider the follgndnde fragment

while Condition do
i =i+ 1;
r* i;
i+ 1;
q + r/(i—-2);

r
i
q
end

Clearly thei in the second line refers to thieewvalue ofi, so that as a vector function this needs to be

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1013

[Var] o = o(Var(t))
[Var := E],o0 = §(o,{Var(t+1) « [E]o})
Let B, = [B]wo
S; = [S]w

[while B do S end]o = e =min({t > 0| B} = true})

/L(Slgt =6, €(§> J))

[proc(z) {local I} S; return Eend] = [E]([S]o%,)

Figure 5. Symbolic semantics — inside while loops, and pitaoes

translated to

it4+1 i+ 2
rev1 | = | e (e +1) |- 3
qt+1 qe+ 7Tt %

But is this always possible? Yes it is, but there is a cost:laseto expand every definition of a variable
into the expression using only tintevalues. Since at the start of a loop, all variables in theestattor
will have such values, it is a matter of propagating theseutjin. This is easy, but there is a huge potential
for expression growth. Some program transformations cémrhitigate this, but at the potential cost of
additional state variables. In particular, conversion t&ti€ Single Assignment (SAS) [2] improves the
situation somewhat.

Another question is, why is the resulting system non-liniéséine original system is holonomie
Essentially because the most natural way of coding someesktprograms is to use implicit formulas
for what are simply polynomials, because they can be cordpuere easily that way. So instead of
having am + 2 in a coefficient, there will be ai, with 4,1 = i), + 1,49 = 2. Similarly, even though
Yoo "f—, can be represented using a single recurrence, a progragsesping this will typically have
— one for each ot, i!, * and the sum itself. The resulting system is non-linear, bstdvery natural
hierarchical structure in which it every “higher” varialidepends linearly on “lower” ones.

The first3 equations in fig. 5 gives the semantics for a while loop, wioelg those aspects which
differ from those in fig. 4 are given, and wheres afreshvariable. We use the symbfl],, for clarity,
where the subscripb is meant to indicate that this is tlener semantics of a loop. In fig. 5, we use
§'to denote those state variables which are assigned to dilmengxecution of the loop bodys; is the
semantics of a sequence of assignments; but if we unravel tiviameans, it really encodes a set of
Var(t 4+ 1) < [E]o which can readily be seen to be recurrence equatipris.a symbolic constructor
that we use to pack up the results. The first argument encbdesdurrences,= ¢ gives the termination
condition and (3, o) records the initial conditions of the relevant state vdaablmplicit in this notation
is that au encodes a change to all the state variable$ as a simultaneous assignment. In other words,
u represents running the “whole loop” and records the fin& stpon eventual termination. Going back

"Holonomic systems are, by definition, linear

1014 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

to ex. (3.1), we would get that the semantics ofiele loop are

p(6(O({},r(t+1) — r(t) «i(t)),i(t + 1) — i(t) + 1),
t =min{t e N | i(t) — 1 =n},
e({r,i},{r(0) = 1,i(0) = 1}))

Note thate may or may not be given in closed form. Just as important, evBil(t) will depend on
some of the variables ig, it is frequently the case that it does not depend on all aith&herefore
only part of the solution of the system of recurren®éss needed for determining termination. The last
equation in fig. 5 gives the semantics for whole procedurderaywe user to abbreviater, ..., z,
and similarly forl. U;J here denotes an environment where explicitly the idendifiearefree in other
words,undefined Thus we will see (a subset of) those variables appear frdeiresult. Equation 2 can
be completed as follows:

v (Var,v) €0
v o =0(o’,Var — v)
o(Var) = o'(Var) o=96(c',x — v) andz # Var (4)
(S)©)(Var) o = u(Si,t = e, €(5,0))
| Var otherwise

where F(*) denotes the-times iterate ofF". The i case can be “optimized” ¥ar ¢ 5 sincesS, is the
identity in that case.

While SWL does not allow nested loops, one can easily see whiald be need to be done to allow
this. Changing the syntax is trivial; more complex would lhe thanges to the symbolic semantics. The
semantics of an inner-most loop would remain unchangedwBat is[x].,? When this can be given in
closed-form, the interpretation is straightforward. Bubther cases, it is quite unclear when it is even
useful to try to write out a mixed system encoding the nestifgs is the main reason we have chosen
to leave SWL with only single loops at this point.

A further point to notice is that a lot of programs, espeygidtiose that come from numerical pro-
grams, have a particular triangular structure visible erércurrences. This structure is clearly visible in
eg. 3. Given such a triangular structure, it is much easiget@ closed-form, as each recurrence can be
solved independently in order of data flow dependence. Wecanhment further on this in Section 8.

We are now in a position to relate traditional denotatiorhantics to symbolic semantics. Since
we use the same notation for both kinds of semantics, in therém below we use a superscript
for denotational and superscriftfor symbolic. BelowL is the natural information ordering on partial
functions, whereg C f means thatf is defined everywhereg is (and equal tg; there), and may be
defined on a bigger set than

Theorem 5.1. Let p be a valid SWL program, and the sequence of input variablespfThen we have
that[p]” C AV.[p]°.

Proof:
[Sketch] At the level of procedures, it is clear that one seedake the free variables f]® and abstract
them out, thus thaV. Then proof proceeds by structural induction on the progsgmax. The main

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1015

lemmas required relate the actiondfon stores and on store representations, and the behaviour of the
least-fixed-point operatdfIX versus the encoding @f. The reason we only g€t is related to the fact
that symbolic equations preserve definedness, but may eeswwe singularities (like that present in
x/x). 0

6. Termination

As mentioned above, rewriting the semantics as a systencafrences can make it quite clear when
termination depends on only a subset of the quantities ctedpuror example, this is always the case
for for loops encoded using @hile, as well as when an explicit but variable number of terms of a
sequence are needed. When termination depends on a moréeganiferia, for example that a term
has gotten smaller than a certainfinding a closed-form for the termination condition becemeuch
harder, and is naturally undecidable in the general casm (evthis restricted language).

It is worthwhile to examine a little closer whatin({¢t > 0 | B; = true}) really means. It says
that thesemanticof a loop is related to thérst timet > 0 that the boolean conditioB becomesrue.
Using thisstopping timen the solution to the recurrenc¥ (along with the initial conditions) gives the
full semantics. This should be intuitively clear — we clainatt this is in fact much more intuitive than
either the denotational semantics given as an operatorfiged in a CPO [35], or when using relational
semantics [25], as the Kleene closure of the relationaimersf S’. The correspondence in fact is much
closer to that of the operational semantics (see fig. 2).

Another aspect to consider is what happens wBgis particularly simple. For example, assume
that B; is u(t) < 0 for some integer-valued state varialde While solving B; = true may look like a
satisfaction (SAT) problem, this is not a very fruitful waydpproach the problem. What is much more
important is the behaviour of(t) as a function of. In particular, if we could determine that for> 0,
u(t) is monotonically decreasing and0) > 0, then we can immediately deduce termination (although
not in general in closed form). On the other hand, iffor 0, «(0) > 0 butw(t) is non-decreasing, then
we have an immediate proof of non-termination. In this céds,the analytic properties ofu(t) which
are of interest, not its discrete properties. This should beh source of (semi-)decision procedures for
loop termination, and we hope to get back to this problem @nfthure. Let us record the discussion
above more formally.

Proposition 6.1. Consider the semantics for a while loop given in fig. 5. Therhase that:

1. If B is of the formFE; < 0 for some integer-valued expressiéh Fy > 0 and E; is a monotoni-
cally decreasing function af then there exists a leassuch thatt; < 0.

2. If By is of the formE; < 0 for some real-valued continuous expressigrEy > 0, lim;_,o, F; < 0
andE; is a monotonically decreasing functionithen there exists a leassuch thatk; < 0.

Proof:
The first item is because the positive integers are a distteteorder with no infinite descending chains.
The second is a rephrasing of the intermediate value theorem O

Of course, there are dual versions of the above statemettisthvé inequalities reversed and with
increasing functions. It is also easy to formalize the negatatements. While these conditions might
seem quite special, they are nevertheless very useful tavitbgoractical problems.

1016 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

Interestingly, we can obtain most of our results without nyimrg about termination at all. In other
words, our method (like that of [33]) cleanly splits the pess into one of dealing with invariantisst,
and then dealing with termination. In other words, we ar@milag that the symbolic semantics given
in the previous section araodular. In fact, 3 different aspects are completely separated: the recirenc
relations from the body of the loop, the termination cormuditiand the initial conditions.

In our examples, termination will turn out to be either veagg or essentially impossible. More pre-
cisely, we'll either have a termination condition which isth explicit and monotonic (over the positive
integers), or a completely implicit equation which is eitim®t monotonic or whose monotonicity is a
difficult theorem.

7. Closed-forms

Obtaining closed forms is in many ways the easiest part! iBHiecause of the tremendous pre-existing
technology already in place for dealing with recurrences] especially those with polynomial coeffi-
cients. See [1] for a survey of some of these technologies.

As mentioned before, the basic algorithm involves sortimg recurrence equations in data depen-
dence order , solving each such system, substituting inetmaining equations, and iterating. Explicit
initial conditions are always given, as this can sometinigsificantly improve the solving process.
Solving for the termination condition relies solely on Maplsolve command being able to invert the
termination condition.

We do not always compute full closed-forms, as sometimesna @ua product better expresses
the intent of some code, while the occurrence of a strangaadanction coming from mathematical
physics may confuse more than it enlightens.

8. Examples

While in section 3, we define an abstract programming langu#\yL, and proceed to give it proper
semantics, in this example section we will give examplesingrfrom a concrete programming language
(Maple), in a subset which is easily translatable into SWEk.Nsve a prototype implementation of what
we describe here for Maple (first described in [6]), as weladsortran 77 implementation (described
in [13]). This latter implementation is why we have choserabstract intermediate language (SWL)
instead of simply using a subset of Maple, even though oucred@ examples in this paper use Maple.

Translating from Maple syntax or Fortran 77 syntax to SWL iedious engineering problem. The
further translation to symbolic semantics is straightfmmev Thankfully in Maple thanert form re-
turned byToInert makes the initial translation from Maple programs to SWLtggimple. This inert
form [30] is a fully faithful representation of the abstragntax tree of all Maple objects, including pro-
cedures, as a simple Maple data-structure. A lot more tdognas required for Fortran 77, but again is
straightforward via leveraging standard compiler toolgfsas ANTLR [32]).

Example 8.1. (Factorial)

We get back to our factorial example (Listing 3). While thigeple is extremely simple, it is outside
the reach of most other methods since the loop invariantaarpolynomial. On this code, our method
returns the explicit formula!.

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation

Listing 3. Factorial

1017

Listing 4. Factorial variant

ff:=proc(n) gg:=proc(a, b, n)
local j, fac; local j, fac;
j:=1; j:=a;
fac:=1; fac:=b;
while j<n do while j<n do

ji=j+1; ji=j+1;
fac:=facxj; fac:=facxj;
end do; end do;
fac; fac,
end proc: end proc:

Listing 5. Generalized binomial

Listing 6. Chebyshev polynomial
chebyshev:proc(n)

bin := proc(u, k) local |,._u0,. ul, v;
. uo = 1;
local res, i, o
res ‘= 1 ul =X
for i from 1 to k do for i fr_om 2 to n do
res := resx (u—i+1)/i; v = uls
o ’ ul := —u0+2¢x*ul;
end do; -
res - ud := v;
end roé' end do;
proc: ul;
end proc:

Example 8.2. (Shifted factorial)

Since the method relies on recurrences, it is quite robusinagminor code variations, unlike other

methods. In particular, the code in Listing 4 gi

+1)b

e R expected. But one can make further

modifications, say changinig=j+1 to j:=j+c with ¢ a new input, the result is now computed as

-1
C(fajn)r <n+c> N <CL+C>
C C

The previous examples also exhibit an additional benefibhisfiethod for debugging code. If one is
expecting a particular function (say factorial) and thauttesomputed is clearly different, one might be
able to see from the returned formula what the actual prolidentn listing 4 for example, only with
b/T'(a + 1) = 1 will the result computed actually be factorial.

Other discrete functions can be dealt with too, and thesetifums can involve either discrete or
continuous parameters.

Example 8.3. (Generalized Binomial)
Listing 5 shows a routine that purports to comp(@. Our program says that this computes

~1)*D (—u + k)
L(—u)T(k+1)"

—~

®)

1018 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

Listing 7. ¢* Listing 8. BesselJ
?;E; 'r_egroc-(n)-. Bessel :=proc(z, nu, m::posint)
o '.J’ . local res, i, t:
res - b (res,t) := (0,1);
{‘o;_ilf’rom 1 to n do for i from 0 to m-1 do
Lo g res := res + t;
b -Jll’ . t = —txz"2/(4x(i+nu+L)x(i+1));
res := res + j; _
. end do;
fgg.do, res;
end proc: end proc;

Lemma 8.1 shows that these denote the same function.

Lemma 8.1. Equation 5= (}j,) holds for all positive integers and allu € R \ N. Furthermore, for all
n € Nandk € N,

lim

oo T (—2)T (k+1)

(~D*T (= + k) <Z>

Proof:

If we denote byF,, the shift operator for the variable and/ the identity operator, then we have that
both functions satisfy the recurrencEs + ’,jﬁ[=0andFE, + k““ I =0, and are equal @t = 1 for
allw € R\ N, which proves the first assertion. The second part is proyexhblytic continuation. O

Example 8.4. (Chebyshev polynomial)

Listing 6 shows a routine to compute the Chebyshev polynigroighe first-kind. It is worthwhile noting
that these polynomials satisfy a second-order linear renae, while single loops naturally encode first-
order recurrences. Thus the standard trick used to chang® arder linear recurrence into a system of
n first-order (linear) recurrences is used. Our method return

;<<m+m>‘“+<x_ mz_ly")

which is indeed the closed-form for the Chebyshev polyntsnia

The next example is quite peculiar as the code is derived thentomputation of @onstantwhich
comes from the evaluation of a holonomic function (in thise#he simplest such function, the expo-
nential) at a point. Normally constants are outside themexlholonomic techniques, since a variable is
needed with respect to which one can either take a differenasdifferential. However, since€' cannot
be computed exactly, one has to find an approximation. Thelseghsuch approximation is to trun-
cate the power series fef after a certain number of terms. Holonomic techniques naulyagiirectly,
because the computation in the inner-loop depend on thedoomptert, inducing a recurrence.

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1019

Example 8.5. (exp(1))
While our intuition is that Listing 7 shows a program that gartese’, it in fact computes an approxi-
mation. More precisely, it computesactly

e'l'(n+1,1)
I'(n+1)

(where both thd® and the2-argument incompleté function appear). As expected, the error term
I'(n+1,1)/T (n+ 1) converges td very quickly with risingn. More intuitively, our program also

reports that this computes
n
1
1 -
+Zﬁw+n

Example 8.6. (BesselJ)
Our system reports that this compueesctly

<Z2m+V 3§J7:1)+1+w (2)) (41)m

F'm+14+v)I'(m+1)

I'v+1)
ZV

Jy (2)2" —

where.J, is the Bessel function of the first kind, whilé™) is known as Lommel's function. It also
reports that this is

ﬁé) (2) T T+ 1)

Lo AT (t+ 1) T (1)

What is interesting about the previous example is not whabiihputes exactly, but that we can
recognize (and with a bit more work, compute) that this &glor approximatiorfor the non-singular
part of Bessel's function at the origin.

It is worthwhile noting that the examples above are generdifitinct from the ones of related work,
like that of Rodriguez-Carbonell and Kapur [33] and of Kos and Jebelean [23, 24]. Below, we give
the examples from [23] and [33] which can be translated inkLS

Example 8.7. (Integer division)
This code needs a minor extension to SWL — returning multiplees. Given the code in Listing 9, we

return the explicit form
(Irem =z —y {EJ , lquo = {EJ).
Yy Yy

Thefloor function appears courtesy of solving for the stopping comali as the recurrences are trivial
with solutionslquo, = ¢t andlrem; = z — yt.

Example 8.8. (Fibonacci)
Given the code (Listing 10) to compute the Fibonacci numbeus system returns a fairly complex

expression in term of /¢ where¢ = 1+f) is the golden ratio instead of the expec%d\;— One can
nevertheless verify that the answer is equwalent to thaludased-form for the Fibonacci numbers (and
derived automatically).

1020 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

Listing 10. Fibonacci

Listing 9. Integer Division fiho := proc(n) Listing 11. Square Root
div := proc(x, y) local F, H, i; Sqrt := proc(n::posint)
local Iquo, Irem; i = n; local a, s, t;
lquo := O; F := 1; a = 0; s :=1; t := 1,
Irem := x; H:= 1; while s<=n do
while (y<=lrem) do while i>1 do a = a + 1;

I[rem := Irem — y; H:=H+ F; s = s +t+ 2;

lquo := Ilquo + 1; F:=H-F; t =t + 2;
end do; =0 = 1; end;

(Irem, Iquo); end do a;
end; F; end proc;

end;

In direct contrast to ex. (4), the previous example is anaimst (along with ex. (5)) where the
tools’ answer must be recognized as equivalent to the “ctiremswer, rather than an instance of the
tool detecting a problem.

Example 8.9. (Square root)

The code in Listing 11 computes an approximation to the sgu@ot of a positive integet. In fact, it
computes exactly/n |, where again the floor function appears courtesy of soliegstopping condi-
tion.

9. Conclusions and Future Work

We have described a symbolic execution system that can lobetosmalyze properties of programs. It
is especially well-suited to numerical programs which caiepso-calledSpecial FunctionsThe most
important tool is the transformation of loops into expligyjistems of recurrence equations ctere

For future work, we would like to loosen the restriction fdiile loop we have now. The most
promising line of investigation is to see if we can includarrhes in loops, but where the branch condi-
tion depends on monotonicfunction of time.

We are also experimenting with the “pure” Blikle and Mazekicz approach [4, 5, 26] using a
theorem prover Simplify [12] and the results look very preimg.

References

[1] S.A. Abramov, J. J. Carette, K. O. Geddes, and H. Q. LeeSaping in the Context of Symbolic Summation
in Maple,Journal of Symbolic Computati@8 (4), 2004, pp. 1303-1326.

[2] A. W. Appel, Modern Compiler Implementation: In MICambridge University Press, New York, NY, USA,
1998.

[3] H. Beki€, Definable operations in general algebras duedtheory of automata and flowcharts, Unpublished
Manuscript, IBM Laboratory, Vienna 1969.

J. Carette, R. Janicki/ Computing Properties of Program$kgnbolic Computation 1021

[4] A. Blikle, An analysis of programs by algebraic means AnMazurkiewicz, Z Pawlak (eds)Mathemat-
ical Foundation of Computer SciencBanach Center Publications, Vol. 2, pp. 167-213, Poliskrsific
Publishers, Warsaw 1977.

[5] A. Blikle, A. Mazurkiewicz, An algebraic approach to thieeory of programs, algorithms, languages and
recursivenes®roc. of 1st MFCS (Mathematical Foundations of Computeesd, Jablonna, Poland 1972.

[6] J. Carette, R. Janicki, Y. Zhai, Program Verification bgl€lilating RelationsProc. of 15th IASTED ASM’'06
(Applied Simulation and ModelingiRhodos, Greece 2006, pp.150-156, Acta Press.

[7] T. E. Cheatham, J. A. Townley, Symbolic Evaluation of ghams: A look at Loop Analysi®2roc. of ACM
Symposium on Symbolic and Algebraic Computatl®76, pp. 90-96.

[8] F. Chyzak, B .Salvy, Non-commutative Elimination in Okégebras Proves Multivariate Holonomic Identi-
ties,Journal of Symbolic Computatic&®6 (2), 1998, pp. 187-227.

[9] F. Chyzak, B .Salvy, Grobner Bases, Symbolic Summatiod Symbolic Integration, in B. Buchberger,
F. Winkler (eds.)Grobner Bases and Applicatiofisondon Mathematical Society Lecture Notes Series, Vol.
251, Cambridge University Press 1998, pp. 32-60.

[10] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, F. kKdetk, Efficiently computing static single assign-
ment form and the control dependence gral®M Trans. Program. Lang. SysL.3, 4 (1991), 451-490.

[11] J. W. DeBakker, D. Scott, A Theory of Programs, Unpuidid Manuscript, IBM Laboratory, Vienna 1969.

[12] D. Detlefs, G. Nelson, J. B. Saxe, Simplify: A TheorenoWsr for Program Checkingpurnal of ACM 53,3
(2005), 365-373.

[13] O. Dragon, Reverse Engineering of Scientific CompataBORTRAN Code, Master Thesis, Dept. of Com-
puting and Software, McMaster University, Hamilton, Caa2606.

[14] R. W. Floyd, Assigning Meaning to Prograni&pc. of 19th Symposium on Applied Mathemati&67, pp.
19-32.

[15] S. M. German and B. Wegbreit, A Synthesizer of Inductssertions|EEE Trans. Software Engvol. 1
(1), 1975, pp. 68-75.

[16] D. Goldberg, What every computer scientist should kradwout floating-point arithmeticACM Comput.
Surv.23 (1), 1991, pp. 5-48.

[17] C. A.R. Hoare, An Axiomatic Basis of Computer Programg)iComm. of ACML2 (1969), 576-580.

[18] R.Janicki, Analysis of Coroutines by Means of Vectdr€oroutinesFundamenta Informatica®, 2 (1979),
289-316.

[19] W. Kahan, Pracniques: further remarks on reducingdation errorsCommun. of ACM3 (1), 1965.

[20] E. Kaltofen, Greatest Common Divisors of Polynomialsea by Straight-Line Programdpurnal of the
ACM, 35 (1), 1988, pp. 231-264.

[21] M. Karr, Affine Relationships Among Variables of a Pragr,Acta Informatica6 (1976), 133-151.
[22] S. Katz and Z. Manna, A Closer Look at Terminatiéwta Informatica5 (1975), 333-352.

[23] L. I. Kovacs, T. Jebelean, Automated Generation of Ldvariants by Recurrence Solving Theorema
Proc. of SNASC’'04Symbolic and Numeric Algorithms for Scientific Computingp04.

[24] L.I. Kovacs, T. Jebelean, Finding Polynomial Invautsfor Imperative Loops in the Theorema Syst@&mc.
of Verify’'06 WorkshoplJCAR’06, The 2006 Federated Logic Conference, pp. 52-67.

1022 J. Carette, R. Janicki/ Computing Properties of Program$kggnbolic Computation

[25] D. Kozen, Kleene Algebras with tesfBransactions on Programming Languages and Sys&m$ (1997),
427-443,

[26] A. Mazurkiewicz, Proving Algorithms by Tail Functiomformation and Contrgl18 (1971) 793-798.

[27] A. Mazurkiewicz, Iteratively Computable Relatioi&yll. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys.
20 (1972), 793-798.

[28] A. Mazurkiewicz, Recursive Algorithms and Formal Larges,Bull. Acad. Polon. Sci., Ser. Sci. Math.
Astronom. Phys20 (1972), 799-803.

[29] L. Meunier, B. Salvy, ESF: An Automatically Generateddyclopedia of Special FunctionByoc. of IS-
SAC’03 Philadelphia 2003. ACM Press. pp. 199-205.

[30] M. B. Monagan and K. O. Geddes and K. M. Heal and G. Labaitths M. VorkoetterMaple Programming
Guide Springer Verlag, 1998.

[31] Reverse Engineering at McMastet,tp: //www.cas.mcmaster.ca/~carette/ReverseEngineering
[32] T.J. ParrANTLR, ANother Tool for Language Recognitiatitp: //www.antlr.org/

[33] E. Rodriguez-Carbonell, D. Kapur, Program VerifioatlJsing Automatic Generation of Invariants, Proc. of
ICTAC’04, Lecture Notes in Computer Scier®407, Springer 2005, pp. 325-340.

[34] B. Salvy, P. Zimmermann, Gfun: a Maple package for th@imalation of generating and holonomic func-
tions in one variableACM Transactions on Mathematical Softwa2® (2), 1994, pp. 164-177.

[35] D. Schmidt,Denotational Semantic&llyn and Bacon, 1986.
[36] B. Scholz, T. Fahringer\dvanced Symbolic Analysis for Compile8pringer-Berlin, 2003.

[37] J. V. Tucker, J. I. Zucker,Abstract versus concrete gotation on metric partial algebra&CM Trans. Com-
put. Logic5 (4), 2004, 611-668.

[38] B. Wegbreit, The Synthesis of Loop Predica@smmun. of ACM.7, 2 (1974), 102-112.
[39] S. Wolfram,The Mathematica BogkCambridge University Press, 1999.

[40] Y. Zhai, An Analysis of Programs by Symbolic Computatsp Master Thesis, Dept. of Computing and
Software, McMaster University, Hamilton, Canada 2006.

[41] W. Zhou, J. Carette, D. J. Jeffrey and M. B. Monagan, &liehical representations with signatures for large
expression managemen, Proc. of Artificial Intelligence Sgythbolic Computationl.ecture Notes in Com-
puter Sciencd120, Springer 2006, pp. 254-268.

