
A Machine-Checked Proof of Birkhoff’s Variety
Theorem in Martin-Löf Type Theory
William DeMeo #

New Jersey Institute of Technology, Newark, NJ, USA

Jacques Carette #

McMaster University, Hamilton, Canada

Abstract
The Agda Universal Algebra Library is a project aimed at formalizing the foundations of universal
algebra, equational logic and model theory in dependent type theory using Agda. In this paper
we draw from many components of the library to present a self-contained, formal, constructive
proof of Birkhoff’s HSP theorem in Martin-Löf dependent type theory. This achieves one of the
project’s initial goals: to demonstrate the expressive power of inductive and dependent types for
representing and reasoning about general algebraic and relational structures by using them to
formalize a significant theorem in the field.

2012 ACM Subject Classification Theory of computation → Logic and verification; Computing
methodologies → Representation of mathematical objects; Theory of computation → Type theory

Keywords and phrases Agda, constructive mathematics, dependent types, equational logic, formal
verification, Martin-Löf type theory, model theory, universal algebra

Digital Object Identifier 10.4230/LIPIcs.TYPES.2021.4

Related Version Full Version: https://arxiv.org/abs/2101.10166

Supplementary Material Software (Agda Sources): https://github.com/ualib/agda-algebras
archived at swh:1:dir:29817e5c87bb55467269dad672f7f4b4152733d7

Funding William DeMeo: partially supported by ERC Consolidator Grant No. 771005.

Acknowledgements This work would not have been possible without the wonderful Agda language
and the Agda Standard Library, developed and maintained by The Agda Team [21]. We thank the
three anonymous referees for carefully reading the manuscript and offering many excellent suggestions
which resulted in a vast improvement in the overall presentation. One referee went above and beyond
and provided us with a simpler formalization of free algebras which led to simplifications of the
proof of the main theorem. We are extremely grateful for this.

1 Introduction

The Agda Universal Algebra Library (agda-algebras) [8] formalizes the foundations of universal
algebra in intensional Martin-Löf type theory (MLTT) using Agda [15, 18]. The library includes
a collection of definitions and verified theorems originated in classical (set-theory based)
universal algebra and equational logic, but adapted to MLTT.

The first major milestone of the project is a complete formalization of Birkhoff’s variety
theorem (also known as the HSP theorem) [4]. To the best of our knowledge, this is the first
time Birkhoff’s celebrated 1935 result has been formalized in MLTT.1

Our first attempt to formalize Birkhoff’s theorem suffered from two flaws.2 First, we
assumed function extensionality in MLTT; consequently, it was unclear whether the formal-
ization was fully constructive. Second, an inconsistency could be contrived by taking the

1 An alternative formalization based on classical set-theory was achieved in [13].
2 See the Birkhoff.lagda file in the ualib/ualib.gitlab.io repository (15 Jan 2021 commit 71f1738) [6].

© William DeMeo and Jacques Carette;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Types for Proofs and Programs (TYPES 2021).
Editors: Henning Basold, Jesper Cockx, and Silvia Ghilezan; Article No. 4; pp. 4:1–4:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:williamdemeo@gmail.com
https://orcid.org/0000-0003-1832-5690
mailto:carette@mcmaster.ca
https://orcid.org/0000-0001-8993-9804
https://doi.org/10.4230/LIPIcs.TYPES.2021.4
https://arxiv.org/abs/2101.10166
https://github.com/ualib/agda-algebras
https://archive.softwareheritage.org/swh:1:dir:29817e5c87bb55467269dad672f7f4b4152733d7
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://agda.github.io/agda-stdlib/
https://ualib.org/agda-algebras
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://github.com/ualib/ualib.github.io/blob/71f173858701398d56224dd79d152c380c0c2b5e/src/lagda/UALib/Birkhoff.lagda
https://github.com/ualib/ualib.github.io
https://github.com/ualib/ualib.github.io/tree/71f173858701398d56224dd79d152c380c0c2b5e
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 A Machine-Checked Proof of Birkhoff’s Theorem

type X, representing an arbitrary collection of variable symbols, to be the two element type
(see §7.1 for details). To resolve these issues, we developed a new formalization of the HSP
theorem based on setoids and rewrote much of the agda-algebras library to support this
approach. This enabled us to avoid function extensionality altogether. Moreover, the type X
of variable symbols was treated with more care using the context and environment types
that Andreas Abel uses in [1] to formalize Birkhoff’s completeness theorem. These design
choices are discussed further in §2.2–2.3.

What follows is a self-contained formal proof of the HSP theorem in Agda. This is achieved
by extracting a subset of the agda-algebras library, including only the pieces needed for the
proof, into a single literate Agda file.3 For spaces reasons, we elide some inessential parts, but
strive to preserve the essential content and character of the development. Specifically, routine
or overly technical components, as well as anything that does not seem to offer insight into
the central ideas of the proof are omitted. (The file src/Demos/HSP.lagda mentioned above
includes the full proof.)

In this paper, we highlight some of the more challenging aspects of formalizing universal
algebra in type theory. To some extent, this is a sobering glimpse of the significant technical
hurdles that must be overcome to do mathematics in dependent type theory. Nonetheless,
we hope to demonstrate that MLTT is a relatively natural language for formalizing universal
algebra. Indeed, we believe that researchers with sufficient patience and resolve can reap
the substantial rewards of deeper insight and greater confidence in their results by using
type theory and a proof assistant like Agda. On the other hand, this paper is probably not
the best place to learn about the latter, since we assume the reader is already familiar with
MLTT and Agda. In summary, our main contribution is to show that a straightforward but
very general representation of algebraic structures in dependent type theory is quite practical,
as we demonstrate by formalizing a major seminal result of universal algebra.

2 Preliminaries

2.1 Logical foundations
To best emulate MLTT, we use {-# OPTIONS –without-K –exact-split –safe #-}; without-K
disables Streicher’s K axiom; exact-split directs Agda to accept only definitions behaving like
judgmental equalities; safe ensures that nothing is postulated outright. (See [19, 20, 22].)

We also use some definitions from Agda’s standard library (ver. 1.7). As shown in
Appendix §A, these are imported using the open import directive and they include some
adjustments to “standard” Agda syntax. In particular, we use Type in place of Set, the infix
long arrow symbol, _−→_, in place of Func (the type of “setoid functions,” discussed in
§2.3), and the symbol _⟨$⟩_ in place of f (application of the map of a setoid function); we
use fst and snd, and sometimes |_| and ∥_∥, to denote the first and second projections out of
the product type _×_.

2.2 Setoids
A setoid is a pair consisting of a type and an equivalence relation on that type. Setoids are
useful for representing a set with an explicit, “local” notion of equivalence, instead of relying
on an implicit, “global” one as is more common in set theory. In reality, informal mathematical

3 src/Demos/HSP.lagda in the agda-algebras repository: github.com/ualib/agda-algebras

https://ualib.org/agda-algebras
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ualib.org/agda-algebras
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/ualib/agda-algebras/blob/af4ab7a3bb415649dad398b4f43f3b79aeaddbfc/src/Demos/HSP.lagda
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/axiom+K+%28type+theory%29
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/ualib/agda-algebras/blob/af4ab7a3bb415649dad398b4f43f3b79aeaddbfc/src/Demos/HSP.lagda
https://ualib.org/agda-algebras
https://github.com/ualib/agda-algebras

W. DeMeo and J. Carette 4:3

practice relies on equivalence relations quite pervasively, taking great care to define only
functions that preserve equivalences, while eliding the details. To be properly formal, such
details must be made explicit. While there are many different workable approaches, the one
that requires no additional meta-theory is based on setoids, which is why we adopt it here.
While in some settings setoids are found by others to be burdensome, we have not found
them to be so for universal algebra.

The agda-algebras library was first developed without setoids, relying on propositional
equality instead, along with some experimental, domain-specific types for equivalence classes,
quotients, etc. This required postulating function extensionality,4 which is known to be
independent from MLTT [9, 10]; this was unsatisfactory as we aimed to show that the theorems
hold directly in MLTT without extra axioms. The present work makes no appeal to functional
extensionality or classical axioms like Choice or Excluded Middle.

2.3 Setoid functions

A setoid function is a function from one setoid to another that respects the underlying
equivalences. If A and B are setoids, we use A −→ B to denote the type of setoid functions
from A to B. We define the inverse of such a function in terms of the image of the function’s
domain, as follows.

module _ {A : Setoid α ρa}{B : Setoid β ρb} where
open Setoid B using (_≈_ ; sym) renaming (Carrier to B)

data Image_∋_ (f : A −→ B) : B → Type (α ⊔ β ⊔ ρb) where
eq : {b : B} → ∀ a → b ≈ f ⟨$⟩ a → Image f ∋ b

An inhabitant of the Image f ∋ b type is a point a : Carrier A, along with a proof p : b ≈ f a,
that f maps a to b. Since a proof of Image f ∋ b must include a concrete witness a : Carrier A,
we can actually compute a range-restricted right-inverse of f. Here is the definition of Inv
accompanied by a proof that it gives a right-inverse.

Inv : (f : A −→ B){b : B} → Image f ∋ b → Carrier A
Inv _ (eq a _) = a

InvIsInverser : {f : A −→ B}{b : B}(q : Image f ∋ b) → f ⟨$⟩ (Inv f q) ≈ b
InvIsInverser (eq _ p) = sym p

If f : A −→ B then we call f injective provided ∀(a0 a1 : A), f ⟨$⟩ a0 ≈B f ⟨$⟩ a1 implies
a0 ≈A a1; we call f surjective provided ∀(b : B) ∃(a : A) such that f ⟨$⟩ a ≈B b. We omit
the straightforward Agda definitions.

Factorization of setoid functions5

Any (setoid) function f : A −→ B factors as a surjective map toIm : A −→ Im f followed by
an injective map fromIm : Im f −→ B.

4 the axiom asserting that two point-wise equal functions are equal
5 The code in this paragraph was suggested by an anonymous referee.

TYPES 2021

https://ualib.org/agda-algebras
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php

4:4 A Machine-Checked Proof of Birkhoff’s Theorem

module _ {A : Setoid α ρa}{B : Setoid β ρb} where

Im : (f : A −→ B) → Setoid _ _
Carrier (Im f) = Carrier A
≈s (Im f) b1 b2 = f ⟨$⟩ b1 ≈ f ⟨$⟩ b2 where open Setoid B

isEquivalence (Im f) = record { refl = refl ; sym = sym; trans = trans }
where open Setoid B

toIm : (f : A −→ B) → A −→ Im f
toIm f = record { f = id ; cong = cong f }

fromIm : (f : A −→ B) → Im f −→ B
fromIm f = record { f = λ x → f ⟨$⟩ x ; cong = id }

fromIm-inj : (f : A −→ B) → IsInjective (fromIm f)
fromIm-inj _ = id

toIm-surj : (f : A −→ B) → IsSurjective (toIm f)
toIm-surj _ = eq _ (refls B)

3 Basic Universal Algebra

We now develop a working vocabulary in MLTT corresponding to classical, single-sorted,
set-based universal algebra. We cover a number of important concepts, but limit ourselves
to those required to prove Birkhoff’s HSP theorem. In each case, we give a type-theoretic
version of the informal definition, followed by its Agda implementation.

This section is organized into the following subsections: §3.1 defines a general type of
signatures of algebraic structures; §3.2 does the same for structures and their products; §3.3
defines homomorphisms, monomorphisms, and epimorphisms, presents types that codify
these concepts, and formally verifies some of their basic properties; §3.5–3.6 do the same for
subalgebras and terms, respectively.

3.1 Signatures
An (algebraic) signature is a pair S = (F , ρ) where F is a collection of operation symbols
and ρ : F → N is an arity function which maps each operation symbol to its arity. Here,
N denotes the arity type. Heuristically, the arity ρ f of an operation symbol f ∈ F may be
thought of as the number of arguments that f takes as “input.” We represent signatures as
inhabitants of the following dependent pair type.

Signature:(OV:Level)→Type(lsuc(O⊔V))

SignatureOV=Σ[F∈TypeO](F→TypeV)

Recalling our syntax for the first and second projections, if S is a signature, then | S |
denotes the set of operation symbols and ∥ S ∥ denotes the arity function. Thus, if f : | S |
is an operation symbol in the signature S, then ∥ S ∥ f is the arity of f.

We need to augment our Signature type so that it supports algebras over setoid domains.
To do so, following Abel [1], we define an operator that translates an ordinary signature into a
setoid signature, that is, a signature over a setoid domain. This raises a minor technical issue:

https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory
https://wiki.portal.chalmers.se/agda/pmwiki.php

W. DeMeo and J. Carette 4:5

given operations f and g, with arguments u : ∥ S ∥ f → A and v : ∥ S ∥ g → A, respectively,
and a proof of f ≡ g (intensional equality), we ought to be able to check whether u and v
are pointwise equal. Technically, u and v appear to inhabit different types; of course, this is
reconciled by the hypothesis f ≡ g, as we see in the next definition (borrowed from [1]).

EqArgs : {S : Signature O V}{ξ : Setoid α ρa}
→ ∀ {f g} → f ≡ g → (∥ S ∥ f → Carrier ξ) → (∥ S ∥ g → Carrier ξ) → Type (V ⊔ ρa)

EqArgs {ξ = ξ} ≡.refl u v = ∀ i → u i ≈ v i where open Setoid ξ using (_≈_)

This makes it possible to define an operator which translates a signature for algebras over
bare types into a signature for algebras over setoids. We denote this operator by ⟨_⟩.

⟨_⟩ : Signature O V → Setoid α ρa → Setoid _ _

Carrier (⟨ S ⟩ ξ) = Σ[f ∈ | S |] (∥ S ∥ f → ξ .Carrier)
≈s (⟨ S ⟩ ξ)(f , u)(g , v) = Σ[eqv ∈ f ≡ g] EqArgs{ξ = ξ} eqv u v

refle (isEquivalence (⟨ S ⟩ ξ)) = ≡.refl , λ i → refls ξ

syme (isEquivalence (⟨ S ⟩ ξ)) (≡.refl , g) = ≡.refl , λ i → syms ξ (g i)
transe (isEquivalence (⟨ S ⟩ ξ)) (≡.refl , g)(≡.refl , h) = ≡.refl , λ i → transs ξ (g i) (h i)

3.2 Algebras
An algebraic structure A = (A, FA) in the signature S = (F, ρ), or S-algebra, consists of

a type A, called the domain of the algebra;
a collection FA := { fA | f ∈ F, fA : (ρ f → A) → A } of operations on A;
a (potentially empty) collection of identities satisfied by elements and operations of A.

Our Agda implementation represents algebras as inhabitants of a record type with two
fields – a Domain setoid denoting the domain of the algebra, and an Interp function denoting
the interpretation in the algebra of each operation symbol in S. We postpone introducing
identities until §4.

record Algebra α ρ : Type (O ⊔ V ⊔ lsuc (α ⊔ ρ)) where
field Domain : Setoid α ρ

Interp : ⟨ S ⟩ Domain −→ Domain

Thus, for each operation symbol in S we have a setoid function f whose domain is a power of
Domain and whose codomain is Domain. Further, we define some syntactic sugar to make
our formalizations easier to read and reason about. Specifically, if A is an algebra, then

D[A] denotes the Domain setoid of A,
U[A] is the underlying carrier of (the Domain setoid of) A, and
f ˆ A denotes the interpretation of the operation symbol f in the algebra A.

We omit the straightforward formal definitions (see [7] for details).

Universe levels of algebra types

Types belong to universes, which are structured in Agda as follows: Type ℓ : Type (suc
ℓ), Type (suc ℓ) : Type (suc (suc ℓ)),6 While this means that Type ℓ has type Type
(suc ℓ), it does not imply that Type ℓ has type Type (suc (suc ℓ)). In other words, Agda’s

6 suc ℓ denotes the successor of ℓ in the universe hierarchy.

TYPES 2021

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

4:6 A Machine-Checked Proof of Birkhoff’s Theorem

universes are non-cumulative. This can be advantageous as it becomes possible to treat
size issues more generally and precisely. However, dealing with explicit universe levels can
be daunting, and the standard literature (in which uniform smallness is typically assumed)
offers little guidance. While in some settings, such as category theory, formalizing in Agda
works smoothly with respect to universe levels (see [12]), in universal algebra the terrain
is bumpier. Thus, it seems worthwhile to explain how we make use of universe lifting and
lowering functions, available in the Agda Standard Library, to develop domain-specific tools
for dealing with Agda’s non-cumulative universe hierarchy.

The Lift operation of the standard library embeds a type into a higher universe. Special-
izing Lift to our situation, we define a function Lift-Alg with the following interface.

Lift-Alg : Algebra α ρa → (ℓ0 ℓ1 : Level) → Algebra (α ⊔ ℓ0) (ρa ⊔ ℓ1)
Lift-Alg takes an algebra parametrized by levels a and ρa and constructs a new algebra whose
carrier inhabits Type (α ⊔ ℓ0) and whose equivalence inhabits Rel Carrier (ρa ⊔ ℓ1). To be
useful, this lifting operation should result in an algebra with the same semantic properties as
the one we started with. We will see in §3.4 that this is indeed the case.

Product Algebras

We define the product of a family of algebras as follows. Let ι be a universe and I : Type ι

a type (the “indexing type”). Then A : I → Algebra α ρa represents an indexed family of
algebras. Denote by

d
A the product of algebras in A (or product algebra), by which we mean

the algebra whose domain is the Cartesian product Π i : I , D[A i] of the domains of the
algebras in A, and whose operations are those arising from pointwise interpretation in the
obvious way: if f is a J-ary operation symbol and if a : Π i : I , J → D[A i] is, for each
i : I, a J-tuple of elements of the domain D[A i], then we define the interpretation of f in

d
Aby

(f ˆ d
A) a := λ (i : I) → (f ˆ A i)(a i).

Here is the formal definition of the product algebra type in Agda.

module _ {ι : Level}{I : Type ι } where
d

: (A : I → Algebra α ρa) → Algebra (α ⊔ ι) (ρa ⊔ ι)

Domain (
d

A) = record { Carrier = ∀ i → U[A i]
; _≈_ = λ a b → ∀ i → (_≈s_ D[A i]) (a i)(b i)
; isEquivalence =

record { refl = λ i → refle (isEquivalence D[A i])
; sym = λ x i → syme (isEquivalence D[A i])(x i)
; trans = λ x y i → transe (isEquivalence D[A i])(x i)(y i) }}

Interp (
d

A) ⟨$⟩ (f , a) = λ i → (f ˆ (A i)) (flip a i)
cong (Interp (

d
A)) (≡.refl , f=g) = λ i → cong (Interp (A i)) (≡.refl , flip f=g i)

Evidently, the carrier of the product algebra type is indeed the (dependent) product of the
carriers in the indexed family. The rest of the definitions are the “pointwise” versions of the
underlying ones.

3.3 Structure preserving maps and isomorphism
Throughout the rest of the paper, unless stated otherwise, A and B will denote S-algebras
inhabiting the types Algebra α ρa and Algebra β ρb, respectively.

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://agda.github.io/agda-stdlib/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

W. DeMeo and J. Carette 4:7

A homomorphism (or “hom”) from A to B is a setoid function h : D[A] −→ D[B]
that is compatible with all basic operations; that is, for every operation symbol f : | S | and
all tuples a : ∥ S ∥ f → U[A], we have h ⟨$⟩ (f ˆ A) a ≈ (f ˆ B) λ x → h ⟨$⟩ (a x).

It is convenient to first formalize “compatible” (compatible-map-op), representing the
assertion that a given setoid function h : D[A] −→ D[B] commutes with a given operation
symbol f, and then generalize over operation symbols to yield the type (compatible-map) of
compatible maps from (the domain of) A to (the domain of) B.

module _ (A : Algebra α ρa)(B : Algebra β ρb) where

compatible-map-op : (D[A] −→ D[B]) → | S | → Type _
compatible-map-op h f = ∀ {a} → h ⟨$⟩ (f ˆ A) a ≈ (f ˆ B) λ x → h ⟨$⟩ (a x)

where open Setoid D[B] using (_≈_)

compatible-map : (D[A] −→ D[B]) → Type _
compatible-map h = ∀ {f} → compatible-map-op h f

Using these we define the property (IsHom) of being a homomorphism, and finally the type
(hom) of homomorphisms from A to B.

record IsHom (h : D[A] −→ D[B]) : Type (O ⊔ V ⊔ α ⊔ ρb) where
constructor mkhom
field compatible : compatible-map h

hom : Type _
hom = Σ (D[A] −→ D[B]) IsHom

Thus, an inhabitant of hom is a pair (h , p) consisting of a setoid function h, from the domain
of A to that of B, along with a proof p that h is a homomorphism.

A monomorphism (resp. epimorphism) is an injective (resp. surjective) homomorphism.
The agda-algebras library defines predicates IsMon and IsEpi for these, as well as mon and
epi for the corresponding types.

record IsMon (h : D[A] −→ D[B]) : Type (O ⊔ V ⊔ α ⊔ ρa ⊔ ρb) where
field isHom : IsHom h

isInjective : IsInjective h
HomReduct : hom
HomReduct = h , isHom

mon : Type _
mon = Σ (D[A] −→ D[B]) IsMon

As with hom, the type mon is a dependent product type; each inhabitant is a pair consisting
of a setoid function, say, h, along with a proof that h is a monomorphism.

record IsEpi (h : D[A] −→ D[B]) : Type (O ⊔ V ⊔ α ⊔ β ⊔ ρb) where
field isHom : IsHom h

isSurjective : IsSurjective h
HomReduct : hom
HomReduct = h , isHom

epi : Type _
epi = Σ (D[A] −→ D[B]) IsEpi

TYPES 2021

https://ualib.org/agda-algebras

4:8 A Machine-Checked Proof of Birkhoff’s Theorem

Composition of homomorphisms

The composition of homomorphisms is again a homomorphism, and similarly for epimorphisms
and monomorphisms. The proofs of these facts are straightforward so we omit them, but
give them the names ◦-hom and ◦-epi so we can refer to them below.

Two structures are isomorphic provided there are homomorphisms from each to the other
that compose to the identity. We define the following record type to represent this concept.

module _ (A : Algebra α ρa) (B : Algebra β ρb) where
open Setoid D[A] using () renaming (_≈_ to _≈A_)
open Setoid D[B] using () renaming (_≈_ to _≈B_)

record _∼=_ : Type (O ⊔ V ⊔ α ⊔ ρa ⊔ β ⊔ ρb) where
constructor mkiso
field to : hom A B

from : hom B A
to∼from : ∀ b → | to | ⟨$⟩ (| from | ⟨$⟩ b) ≈B b
from∼to : ∀ a → | from | ⟨$⟩ (| to | ⟨$⟩ a) ≈A a

The agda-algebras library also includes formal proof that the to and from maps are bijections
and that _∼=_ is an equivalence relation, but we suppress these details.

Homomorphic images

We have found that a useful way to encode the concept of homomorphic image is to produce
a witness, that is, a surjective hom. Thus we define the type of surjective homs and also
record the fact that an algebra is its own homomorphic image via the identity hom.7

IsHomImageOf : (B : Algebra β ρb)(A : Algebra α ρa) → Type _
B IsHomImageOf A = Σ[φ ∈ hom A B] IsSurjective | φ |

IdHomImage : {A : Algebra α ρa} → A IsHomImageOf A
IdHomImage {α = α}{A = A} = id , λ {y} → Image_∋_.eq y refl

where open Setoid D[A] using (refl)

Factorization of homomorphisms

Another theorem in the agda-algebras library, called HomFactor, formalizes the following
factorization result: if g : hom A B, h : hom A C, h is surjective, and ker h ⊆ ker g, then
there exists φ : hom C B such that g = φ ◦ h. A special case of this result that we use
below is the fact that the setoid function factorization we saw above lifts to factorization of
homomorphisms. Moreover, we associate a homomorphism h with its image – which is (the
domain of) a subalgebra of the codomain of h – using the function HomIm defined below.8

module _ {A : Algebra α ρa}{B : Algebra β ρb} where

HomIm : (h : hom A B) → Algebra _ _
Domain (HomIm h) = Im | h |
Interp (HomIm h) ⟨$⟩ (f , la) = (f ˆ A) la
cong (Interp (HomIm h)) {x1 , x2} {.x1 , y2} (≡.refl , e) =

7 Here and elsewhere we use the shorthand ov α := O ⊔ V ⊔ α, for any level α.
8 The definition of HomIm was provided by an anonymous referee.

https://ualib.org/agda-algebras
https://ualib.org/agda-algebras

W. DeMeo and J. Carette 4:9

begin
| h | ⟨$⟩ (Interp A ⟨$⟩ (x1 , x2)) ≈⟨ h-compatible ⟩

Interp B ⟨$⟩ (x1 , λ x → | h | ⟨$⟩ x2 x) ≈⟨ cong (Interp B) (≡.refl , e) ⟩
Interp B ⟨$⟩ (x1 , λ x → | h | ⟨$⟩ y2 x) ≈˘⟨ h-compatible ⟩

| h | ⟨$⟩ (Interp A ⟨$⟩ (x1 , y2)) ■
where open Setoid D[B] ; open SetoidReasoning D[B]

open IsHom ∥ h ∥ renaming (compatible to h-compatible)

toHomIm : (h : hom A B) → hom A (HomIm h)
toHomIm h = toIm | h | , mkhom (refls D[B])

fromHomIm : (h : hom A B) → hom (HomIm h) B
fromHomIm h = fromIm | h | , mkhom (IsHom.compatible ∥ h ∥)

3.4 Lift-Alg is an algebraic invariant
The Lift-Alg operation neatly resolves the technical problem of universe non-cumulativity
because isomorphism classes of algebras are closed under Lift-Alg.

module _ {A : Algebra α ρa}{ℓ : Level} where
Lift-∼=l : A ∼= (Lift-Algl A ℓ)
Lift-∼=l = mkiso ToLiftl FromLiftl (ToFromLiftl{A = A}) (FromToLiftl{A = A}{ℓ})
Lift-∼=r : A ∼= (Lift-Algr A ℓ)
Lift-∼=r = mkiso ToLiftr FromLiftr (ToFromLiftr{A = A}) (FromToLiftr{A = A}{ℓ})

Lift-∼= : {A : Algebra α ρa}{ℓ ρ : Level} → A ∼= (Lift-Alg A ℓ ρ)
Lift-∼= = ∼=-trans Lift-∼=l Lift-∼=r

3.5 Subalgebras
We say that A is a subalgebra of B and write A ≤ B just in case A can be homomorphically
embedded in B; in other terms, A ≤ B iff there exists an injective hom from A to B.

≤ : Algebra α ρa → Algebra β ρb → Type _
A ≤ B = Σ[h ∈ hom A B] IsInjective | h |

The subalgebra relation is reflexive, by the identity monomorphism (and transitive by
composition of monomorphisms, hence, a preorder, though we won’t need this fact here).

≤-reflexive : {A : Algebra α ρa} → A ≤ A
≤-reflexive = id , id

We conclude this subsection with a simple utility function that converts a monomorphism
into a proof of a subalgebra relationship.

mon→≤ : {A : Algebra α ρa}{B : Algebra β ρb} → mon A B → A ≤ B
mon→≤ {A = A}{B} x = mon→intohom A B x

3.6 Terms
Fix a signature S and let X denote an arbitrary nonempty collection of variable symbols.
Such a collection is called a context. Assume the symbols in X are distinct from the operation
symbols of S, that is X ∩ | S | = ∅. A word in the language of S is a finite sequence of
members of X ∪ | S |. We denote the concatenation of such sequences by simple juxtaposition.

TYPES 2021

4:10 A Machine-Checked Proof of Birkhoff’s Theorem

Let S0 denote the set of nullary operation symbols of S. We define by induction on n the
sets T n of words over X ∪ | S | as follows: T 0 := X ∪ S0 and T n+1 := T n ∪ Tn, where Tn

is the collection of all f t such that f : | S | and t : ∥ S ∥ f → T n. An S-term is a term in
the language of S and the collection of all S-terms in the context X is Term X :=

⋃
n T n.

In type theory, this translates to two cases: variable injection and applying an operation
symbol to a tuple of terms. This represents each term as a tree with an operation symbol
at each node and a variable symbol at each leaf g; hence the constructor names (g for
“generator” and node for “node”) in the following inductively defined type.

data Term (X : Type χ) : Type (ov χ) where
g : X → Term X
node : (f : | S |)(t : ∥ S ∥ f → Term X) → Term X

The term algebra

We enrich the Term type to a setoid of S-terms, which will ultimately be the domain of an
algebra, called the term algebra in the signature S. This requires an equivalence on terms.

module _ {X : Type χ } where

data _≃_ : Term X → Term X → Type (ov χ) where
rfl : {x y : X} → x ≡ y → (g x) ≃ (g y)
gnl : ∀ {f}{s t : ∥ S ∥ f → Term X} → (∀ i → (s i) ≃ (t i)) → (node f s) ≃ (node f t)

Below we denote by ≃-isEquiv the easy (omitted) proof that _≃_ is an equivalence relation.
For a given signature S and context X, we define the algebra T X, known as the term

algebra in S over X. The domain of T X is Term X and, for each operation symbol f : | S |,
we define f ˆ T X to be the operation which maps each tuple t : ∥ S ∥ f → Term X of terms
to the formal term f t.

TermSetoid : (X : Type χ) → Setoid _ _
TermSetoid X = record { Carrier = Term X ; _≈_ = _≃_ ; isEquivalence = ≃-isEquiv }

T : (X : Type χ) → Algebra (ov χ) (ov χ)
Algebra.Domain (T X) = TermSetoid X
Algebra.Interp (T X) ⟨$⟩ (f , ts) = node f ts
cong (Algebra.Interp (T X)) (≡.refl , ss≃ts) = gnl ss≃ts

Environments and interpretation of terms

Fix a signature S and a context X. An environment for A and X is a setoid whose carrier is
a mapping from the variable symbols X to the domain U[A] and whose equivalence relation
is pointwise equality. Our formalization of this concept is the same as that of [1], which Abel
uses to formalize Birkhoff’s completeness theorem.

module Environment (A : Algebra α ℓ) where
open Setoid D[A] using (_≈_ ; refl ; sym ; trans)

Env : Type χ → Setoid _ _
Env X = record { Carrier = X → U[A]

; _≈_ = λ ρ τ → (x : X) → ρ x ≈ τ x
; isEquivalence = record { refl = λ _ → refl

; sym = λ h x → sym (h x)
; trans = λ g h x → trans (g x)(h x) }}

W. DeMeo and J. Carette 4:11

The interpretation of a term evaluated in a particular environment is defined as follows.

J_K : {X : Type χ}(t : Term X) → (Env X) −→ D[A]
J g x K ⟨$⟩ ρ = ρ x
J node f args K ⟨$⟩ ρ = (Interp A) ⟨$⟩ (f , λ i → J args i K ⟨$⟩ ρ)
cong J g x K u≈v = u≈v x
cong J node f args K x≈y = cong (Interp A)(≡.refl , λ i → cong J args i K x≈y)

Two terms are proclaimed equal if they are equal for all environments.

Equal : {X : Type χ}(s t : Term X) → Type _
Equal {X = X} s t = ∀ (ρ : Carrier (Env X)) → J s K ⟨$⟩ ρ ≈ J t K ⟨$⟩ ρ

Proof that Equal is an equivalence relation, and that the implication s ≃ t → Equal s t holds
for all terms s and t, is also found in [1]. We denote the latter by ≃→Equal in the sequel.

Compatibility of terms

We need to formalize two more concepts involving terms. The first (comm-hom-term) is the
assertion that every term commutes with every homomorphism, and the second (interp-prod)
is the interpretation of a term in a product algebra.

module _ {X : Type χ}{A : Algebra α ρa}{B : Algebra β ρb}(hh : hom A B) where
open Environment A using (J_K)
open Environment B using () renaming (J_K to J_KB)
open Setoid D[B] using (_≈_ ; refl)
private hfunc = | hh | ; h = _⟨$⟩_ hfunc

comm-hom-term : (t : Term X) (a : X → U[A]) → h (J t K ⟨$⟩ a) ≈ J t KB ⟨$⟩ (h ◦ a)
comm-hom-term (g x) a = refl
comm-hom-term (node f t) a = begin

h(J node f t K ⟨$⟩ a) ≈⟨ compatible ∥ hh ∥ ⟩
(f ˆ B)(λ i → h(J t i K ⟨$⟩ a)) ≈⟨ cong(Interp B)(≡.refl , λ i → comm-hom-term(t i) a) ⟩
J node f t KB ⟨$⟩ (h ◦ a) ■ where open SetoidReasoning D[B]

module _ {X : Type χ}{ι : Level} {I : Type ι} (A : I → Algebra α ρa) where
open Setoid D[

d
A] using (_≈_)

open Environment using (J_K ; ≃→Equal)

interp-prod : (p : Term X) → ∀ ρ → (J
d

A K p) ⟨$⟩ ρ ≈ λ i → (J A i K p) ⟨$⟩ λ x → (ρ x) i
interp-prod (g x) = λ ρ i → ≃→Equal (A i) (g x) (g x) ≃-isRefl λ _ → (ρ x) i
interp-prod (node f t) = λ ρ → cong (Interp (

d
A)) (≡.refl , λ j k → interp-prod (t j) ρ k)

4 Equational Logic

4.1 Term identities, equational theories, and the |= relation
An S-term equation (or S-term identity) is an ordered pair (p , q) of S-terms, also denoted
by p ≈ q. We define an equational theory (or algebraic theory) to be a pair T = (S , E)
consisting of a signature S and a collection E of S-term equations.9

9 Some authors reserve the term theory for a deductively closed set of equations, that is, a set of equations
that is closed under entailment.

TYPES 2021

4:12 A Machine-Checked Proof of Birkhoff’s Theorem

We say that the algebra A models the identity p ≈ q and we write A |= p ≈ q if for
all ρ : X → D[A] we have J p K ⟨$⟩ ρ ≈ J q K ⟨$⟩ ρ. In other words, when interpreted in
the algebra A, the terms p and q are equal no matter what values are assigned to variable
symbols occurring in p and q. If K is a class of algebras of a given signature, then we write
K ||= p ≈ q and say that K models the identity p ≈ q provided A |= p ≈ q for every A ∈ K.

module _ {X : Type χ} where
|=≈_ : Algebra α ρa → Term X → Term X → Type _
A |= p ≈ q = Equal p q where open Environment A

||=≈_ : Pred (Algebra α ρa) ℓ → Term X → Term X → Type _
K ||= p ≈ q = ∀ A → K A → A |= p ≈ q

We represent a set of term identities as a predicate over pairs of terms, and we denote by
A E the assertion that A models p ≈ q for all (p , q) ∈ E.

_ _ : (A : Algebra α ρa) → Pred(Term X × Term X)(ov χ) → Type _
A E = ∀ {p q} → (p , q) ∈ E → Equal p q where open Environment A

An important property of the binary relation |= is algebraic invariance (i.e., invariance under
isomorphism). We formalize this result as follows.

module _ {X : Type χ}{A : Algebra α ρa}(B : Algebra β ρb)(p q : Term X) where

|=-I-invar : A |= p ≈ q → A ∼= B → B |= p ≈ q
|=-I-invar Apq (mkiso fh gh f∼g g∼f) ρ = begin

J p K ⟨$⟩ ρ ≈˘⟨ cong J p K (f∼g ◦ ρ) ⟩
J p K ⟨$⟩ (f ◦ (g ◦ ρ)) ≈˘⟨ comm-hom-term fh p (g ◦ ρ) ⟩
f(J p KA ⟨$⟩ (g ◦ ρ)) ≈⟨ cong | fh | (Apq (g ◦ ρ)) ⟩
f(J q KA ⟨$⟩ (g ◦ ρ)) ≈⟨ comm-hom-term fh q (g ◦ ρ) ⟩
J q K ⟨$⟩ (f ◦ (g ◦ ρ)) ≈⟨ cong J q K (f∼g ◦ ρ) ⟩
J q K ⟨$⟩ ρ ■
where private f = _⟨$⟩_ | fh | ; g = _⟨$⟩_ | gh |

open Environment A using () renaming (J_K to J_KA)
open Environment B using (J_K) ; open SetoidReasoning D[B]

If K is a class of S-algebras, the set of identities modeled by K, denoted Th K, is called the
equational theory of K. If E is a set of S-term identities, the class of algebras modeling E,
denoted Mod E, is called the equational class axiomatized by E. We codify these notions in
the next two definitions.

Th : {X : Type χ} → Pred (Algebra α ρa) ℓ → Pred(Term X × Term X) _
Th K = λ (p , q) → K ||= p ≈ q

Mod : {X : Type χ} → Pred(Term X × Term X) ℓ → Pred (Algebra α ρa) _
Mod E A = ∀ {p q} → (p , q) ∈ E → Equal p q where open Environment A

4.2 The Closure Operators H, S, P and V
Fix a signature S, let K be a class of S-algebras, and define

H K := the class of all homomorphic images of members of K;
S K := the class of all subalgebras of members of K;
P K := the class of all products of members of K.

W. DeMeo and J. Carette 4:13

H, S, and P are closure operators (expansive, monotone, and idempotent). A class K of
S-algebras is said to be closed under the taking of homomorphic images provided H K ⊆ K.
Similarly, K is closed under the taking of subalgebras (resp., arbitrary products) provided
S K ⊆ K (resp., P K ⊆ K). The operators H, S, and P can be composed with one another
repeatedly, forming yet more closure operators. We represent these three closure operators
in type theory as follows.

module _ {α ρa β ρb : Level} where
private a = α ⊔ ρa

H : ∀ ℓ → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra β ρb) _
H _ K B = Σ[A ∈ Algebra α ρa] A ∈ K × B IsHomImageOf A

S : ∀ ℓ → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra β ρb) _
S _ K B = Σ[A ∈ Algebra α ρa] A ∈ K × B ≤ A

P : ∀ ℓ ι → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra β ρb) _
P _ ι K B = Σ[I ∈ Type ι] (Σ[A ∈ (I → Algebra α ρa)] (∀ i → A i ∈ K) × (B ∼=

d
A))

Identities modeled by an algebra A are also modeled by every homomorphic image of A
and by every subalgebra of A. We refer to these facts as |=-H-invar and |=-S-invar; their
definitions are similar to that of |=-I-invar. An identity satisfied by all algebras in an indexed
collection is also satisfied by the product of algebras in the collection. We refer to this fact
as |=-P-invar.

A variety is a class of S-algebras that is closed under the taking of homomorphic images,
subalgebras, and arbitrary products. If we define V K := H (S (P K)), then K is a variety
iff V K ⊆ K. The class V K is called the varietal closure of K. Here is how we define V
in type theory. (The explicit universe level declarations that appear in the definition are
needed for disambiguation.)

module _ {α ρa β ρb γ ρc δ ρd : Level} where
private a = α ⊔ ρa ; b = β ⊔ ρb

V : ∀ ℓ ι → Pred(Algebra α ρa) (a ⊔ ov ℓ) → Pred(Algebra δ ρd) _
V ℓ ι K = H{γ}{ρc}{δ}{ρd} (a ⊔ b ⊔ ℓ ⊔ ι) (S{β}{ρb} (a ⊔ ℓ ⊔ ι) (P ℓ ι K))

The classes H K, S K, P K, and V K all satisfy the same term identities. We will only
use a subset of the inclusions needed to prove this assertion.10 First, the closure operator H
preserves the identities modeled by the given class; this follows almost immediately from the
invariance lemma |=-H-invar.

module _ {X : Type χ}{K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)}{p q : Term X} where
H-id1 : K ||= p ≈ q → H{β = α}{ρa}ℓ K ||= p ≈ q
H-id1 σ B (A , kA , BimgA) = |=-H-invar{p = p}{q} (σ A kA) BimgA

The analogous preservation result for S is a consequence of the invariance lemma |=-S-invar;
the converse, which we call S-id2, has an equally straightforward proof.

S-id1 : K ||= p ≈ q → S{β = α}{ρa}ℓ K ||= p ≈ q
S-id1 σ B (A , kA , B≤A) = |=-S-invar{p = p}{q} (σ A kA) B≤A

10 The others are included in the Setoid.Varieties.Preservation module of the agda-algebras library.

TYPES 2021

https://ualib.org/Setoid.Varieties.Preservation.html
https://ualib.org/agda-algebras

4:14 A Machine-Checked Proof of Birkhoff’s Theorem

S-id2 : S ℓ K ||= p ≈ q → K ||= p ≈ q
S-id2 Spq A kA = Spq A (A , (kA , ≤-reflexive))

The agda-algebras library includes analogous pairs of implications for P, H, and V, called
P-id1, P-id2, H-id1, etc. whose formalizations we suppress.

5 Free Algebras

5.1 The absolutely free algebra
The term algebra T X is the absolutely free S-algebra over X. That is, for every S-algebra A,
the following hold.

Every function from X to U[A] lifts to a homomorphism from T X to A.
That homomorphism is unique.

Here we formalize the first of these properties by defining the lifting function free-lift and its
setoid analog free-lift-func, and then proving the latter is a homomorphism.11

module _ {X : Type χ}{A : Algebra α ρa}(h : X → U[A]) where
free-lift : U[T X] → U[A]
free-lift (g x) = h x
free-lift (node f t) = (f ˆ A) λ i → free-lift (t i)

free-lift-func : D[T X] −→ D[A]
free-lift-func ⟨$⟩ x = free-lift x
cong free-lift-func = flcong where

open Setoid D[A] using (_≈_) renaming (reflexive to reflexiveA)
flcong : ∀ {s t} → s ≃ t → free-lift s ≈ free-lift t
flcong (_≃_.rfl x) = reflexiveA (≡.cong h x)
flcong (_≃_.gnl x) = cong (Interp A) (≡.refl , λ i → flcong (x i))

lift-hom : hom (T X) A
lift-hom = free-lift-func ,

mkhom λ{_}{a} → cong (Interp A) (≡.refl , λ i → (cong free-lift-func){a i} ≃-isRefl)

It turns out that the interpretation of a term p in an environment η is the same as the
free lift of η evaluated at p. We apply this fact a number of times in the sequel.

module _ {X : Type χ} {A : Algebra α ρa} where
open Setoid D[A] using (_≈_ ; refl)
open Environment A using (J_K)

free-lift-interp : (η : X → U[A])(p : Term X) → J p K ⟨$⟩ η ≈ (free-lift{A = A} η) p
free-lift-interp η (g x) = refl
free-lift-interp η (node f t) = cong (Interp A) (≡.refl , (free-lift-interp η) ◦ t)

5.2 The relatively free algebra
Given an arbitrary class K of S-algebras, we cannot expect that T X belongs to K. Indeed,
there may be no free algebra in K. Nonetheless, it is always possible to construct an algebra
that is free for K and belongs to the class S (P K). Such an algebra is called a relatively

11 For the proof of uniqueness, see the Setoid.Terms.Properties module of the agda-algebras library.

https://ualib.org/agda-algebras
https://ualib.org/Setoid.Terms.Properties.html
https://ualib.org/agda-algebras

W. DeMeo and J. Carette 4:15

free algebra over X (relative to K). There are several informal approaches to defining this
algebra. We now describe the approach on which our formal construction is based and then
we present the formalization.

Let F[X] denote the relatively free algebra over X. We represent F[X] as the quotient
T X / ≈ where x ≈ y if and only if h x = h y for every homomorphism h from T X into
a member of K. More precisely, if A ∈ K and h : hom (T X) A, then h factors as T X
h
↠ HomIm h

⊆
↣ A and T X / ker h ∼= HomIm h ≤ A; that is, T X / ker h is (isomorphic

to) an algebra in S K. Letting ≈ :=
⋂

{θ ∈ Con T X | T X / θ ∈ S K }, observe that
F[X] := T X / ≈ is a subdirect product of the algebras {T X / ker h } as h ranges over all
homomorphisms from T X to algebras in K. Thus, F[X] ∈ P (S K) ⊆ S (P K). As we have
seen, every map ρ : X → U[A] extends uniquely to a homomorphism h : hom (T X) A and
h factors through the natural projection T X → F[X] (since ≈ ⊆ ker h) yielding a unique
homomorphism from F[X] to A extending ρ.

In Agda we construct F[X] as a homomorphic image of T X in the following way. First,
given X we define C as the product of pairs (A, ρ) of algebras A ∈ K along with environments
ρ : X → U[A]. To do so, we contrive an index type for the product; each index is a triple
(A, p, ρ) where A is an algebra, p is proof of A ∈ K, and ρ : X → U[A] is an arbitrary
environment.

module FreeAlgebra (K : Pred (Algebra α ρa) ℓ) where
private c = α ⊔ ρa ; ι = ov c ⊔ ℓ

I : {χ : Level} → Type χ → Type (ι ⊔ χ)
I X = Σ[A ∈ Algebra α ρa] A ∈ K × (X → U[A])

C : {χ : Level} → Type χ → Algebra (ι ⊔ χ)(ι ⊔ χ)
C X =

d
{I = I X} |_|

We then define F[X] to be the image of a homomorphism from T X to C as follows.

homC : (X : Type χ) → hom (T X) (C X)
homC X =

d
-hom-co _ (λ i → lift-hom (snd ∥ i ∥))

F[_] : {χ : Level} → Type χ → Algebra (ov χ) (ι ⊔ χ)
F[X] = HomIm (homC X)

Observe that if the identity p ≈ q holds in all A ∈ K (for all environments), then
p ≈ q holds in F[X]; equivalently, the pair (p , q) belongs to the kernel of the natural
homomorphism from T X onto F[X]. This natural epimorphism is defined as follows.

module FreeHom {K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)} where
private c = α ⊔ ρa ; ι = ov c ⊔ ℓ

open FreeAlgebra K using (F[_] ; homC)

epiF[_] : (X : Type c) → epi (T X) F[X]
epiF[X] = | toHomIm (homC X) | , record { isHom = ∥ toHomIm (homC X) ∥

; isSurjective = toIm-surj | homC X | }

homF[_] : (X : Type c) → hom (T X) F[X]
homF[X] = IsEpi.HomReduct ∥ epiF[X] ∥

Before formalizing the HSP theorem in the next section, we need to prove the following
important property of the relatively free algebra: For every algebra A, if A Th (V K),
then there exists an epimorphism from F[A] onto A, where A denotes the carrier of A.

TYPES 2021

https://wiki.portal.chalmers.se/agda/pmwiki.php

4:16 A Machine-Checked Proof of Birkhoff’s Theorem

module _ {A : Algebra (α ⊔ ρa ⊔ ℓ)(α ⊔ ρa ⊔ ℓ)}{K : Pred(Algebra α ρa)(α ⊔ ρa ⊔ ov ℓ)} where
private c = α ⊔ ρa ⊔ ℓ ; ι = ov c
open FreeAlgebra K using (F[_] ; C)
open Setoid D[A] using (refl ; sym ; trans) renaming (Carrier to A ; _≈_ to _≈A_)

F-ModTh-epi : A ∈ Mod (Th K) → epi F[A] A
F-ModTh-epi A∈ModThK = φ , isEpi where

φ : D[F[A]] −→ D[A]
⟨$⟩ φ = free-lift{A = A} id
cong φ {p} {q} pq = Goal

where
lift-pq : (p , q) ∈ Th K

lift-pq B x ρ = begin
J p K ⟨$⟩ ρ ≈⟨ free-lift-interp {A = B} ρ p ⟩
free-lift ρ p ≈⟨ pq (B , x , ρ) ⟩
free-lift ρ q ≈˘⟨ free-lift-interp{A = B} ρ q ⟩
J q K ⟨$⟩ ρ ■

where open SetoidReasoning D[B] ; open Environment B using (J_K)

Goal : free-lift id p ≈A free-lift id q
Goal = begin

free-lift id p ≈˘⟨ free-lift-interp {A = A} id p ⟩
J p K ⟨$⟩ id ≈⟨ A∈ModThK {p = p} {q} lift-pq id ⟩
J q K ⟨$⟩ id ≈⟨ free-lift-interp {A = A} id q ⟩
free-lift id q ■

where open SetoidReasoning D[A] ; open Environment A using (J_K)

isEpi : IsEpi F[A] A φ

isEpi = record { isHom = mkhom refl ; isSurjective = eq (g _) refl }

F-ModThV-epi : A ∈ Mod (Th (V ℓ ι K)) → epi F[A] A
F-ModThV-epi A∈ModThVK = F-ModTh-epi λ {p}{q} → Goal {p}{q}

where
Goal : A ∈ Mod (Th K)
Goal {p}{q} x ρ = A∈ModThVK{p}{q} (V-id1 ℓ {p = p}{q} x) ρ

6 Birkhoff’s Variety Theorem

Let K be a class of algebras and recall that K is a variety provided it is closed under
homomorphisms, subalgebras and products; equivalently, V K ⊆ K. (Observe that K ⊆ V
K holds for all K since V is a closure operator.) We call K an equational class if it is the
class of all models of some set of identities.

Birkhoff’s variety theorem, also known as the HSP theorem, asserts that K is an equational
class if and only if it is a variety. In this section, we present the statement and proof of this
theorem – first in a style similar to what one finds in textbooks (e.g., [3, Theorem 4.41]),
and then formally in the language of MLTT.

6.1 Informal proof
(⇒) Every equational class is a variety. Indeed, suppose K is an equational class axiomatized
by term identities E; that is, A ∈ K iff A E. Since the classes H K, S K, P K and K all
satisfy the same set of equations, we have V K ||= p ≈ q for all (p , q) ∈ E, so V K ⊆ K.

https://ncatlab.org/nlab/show/Martin-L%C3%B6f+dependent+type+theory

W. DeMeo and J. Carette 4:17

(⇐) Every variety is an equational class.12 Let K be an arbitrary variety. We will describe
a set of equations that axiomatizes K. A natural choice is to take Th K and try to prove
that K = Mod (Th K). Clearly, K ⊆ Mod (Th K). To prove the converse inclusion, let
A ∈ Mod (Th K). It suffices to find an algebra F ∈ S (P K) such that A is a homomorphic
image of F, as this will show that A ∈ H (S (P K)) = K.

Let X be such that there exists a surjective environment ρ : X → U[A].13 By the lift-hom
lemma, there is an epimorphism h : T X → U[A] that extends ρ. Put F[X] := T X/≈
and let g : T X → F[X] be the natural epimorphism with kernel ≈. We claim ker g ⊆ ker h.
If the claim is true, then there is a map f : F[X] → A such that f ◦ g = h, and since h is
surjective so is f. Therefore, A ∈ H (F X) ⊆ Mod (Th K) completing the proof.

It remains to prove the claim ker g ⊆ ker h. Let u, v be terms and assume g u = g v.
Since T X is generated by X, there are terms p, q such that u = J T X K p and v = J T X K q.
Therefore, J F[X] K p = g (J T X K p) = g u = g v = g (J T X K q) = J F[X] K q, so
K ||= p ≈ q; thus, (p , q) ∈ Th K. Since A ∈ Mod (Th K), we obtain A |= p ≈ q, which
implies that h u = (J A K p) ⟨$⟩ ρ = (J A K q) ⟨$⟩ ρ = h v, as desired.

6.2 Formal proof
(⇒) Every equational class is a variety. We need an arbitrary equational class, which we
obtain by starting with an arbitrary collection E of equations and then defining K = Mod E,
the class axiomatized by E. We prove that K is a variety by showing that K = V K. The
inclusion K ⊆ V K, which holds for all classes K, is called the expansive property of V.

module _ (K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)) where
V-expa : K ⊆ V ℓ (ov (α ⊔ ρa ⊔ ℓ)) K

V-expa {x = A}kA = A , (A , (⊤ , (λ _ → A), (λ _ → kA), Goal), ≤-reflexive), IdHomImage
where
open Setoid D[A] using (refl)
open Setoid D[

d
(λ _ → A)] using () renaming (refl to refl

d
)

to
d

: D[A] −→ D[
d

(λ _ → A)]
to

d
= record { f = λ x _ → x ; cong = λ xy _ → xy }

from
d

: D[
d

(λ _ → A)] −→ D[A]
from

d
= record { f = λ x → x tt ; cong = λ xy → xy tt }

Goal : A ∼=
d

(λ x → A)
Goal = mkiso (to

d
, mkhom refl

d
) (from

d
, mkhom refl) (λ _ _ → refl) (λ _ → refl)

Observe how A is expressed as (isomorphic to) a product with just one factor (itself), that
is, the product

d
(λ x → A) indexed over the one-element type ⊤.

For the inclusion V K ⊆ K, recall lemma V-id1 which asserts that K ||= p ≈ q implies
V ℓ ι K ||= p ≈ q; whence, if K is an equational class, then V K ⊆ K, as we now confirm.

module _ {ℓ : Level}{X : Type ℓ}{E : {Y : Type ℓ} → Pred (Term Y × Term Y) (ov ℓ)} where
private K = Mod{α = ℓ}{ℓ}{X} E – an arbitrary equational class

EqCl⇒Var : V ℓ (ov ℓ) K ⊆ K

EqCl⇒Var {A} vA {p} {q} pEq ρ = V-id1 ℓ {K} {p} {q} (λ _ x τ → x pEq τ) A vA ρ

By V-expa and Eqcl⇒Var, every equational class is a variety.

12 The proof we present here is based on [3, Theorem 4.41].
13 Informally, this is done by assuming X has cardinality at least max(| U[A] |, ω). Later we will see how

to construct an X with the required property in type theory.

TYPES 2021

4:18 A Machine-Checked Proof of Birkhoff’s Theorem

(⇐) Every variety is an equational class. To fix an arbitrary variety, start with an arbitrary
class K of S-algebras and take the varietal closure, V K. We prove that V K is precisely the
collection of algebras that model Th (V K); that is, V K = Mod (Th (V K)). The inclusion
V K ⊆ Mod (Th (V K)) is a consequence of the fact that Mod Th is a closure operator.

module _ (K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)){X : Type (α ⊔ ρa ⊔ ℓ)} where
private c = α ⊔ ρa ⊔ ℓ ; ι = ov c

ModTh-closure : V{β = β}{ρb}{γ}{ρc}{δ}{ρd} ℓ ι K ⊆ Mod{X = X} (Th (V ℓ ι K))
ModTh-closure {x = A} vA {p} {q} x ρ = x A vA ρ

Our proof of the inclusion Mod (Th (V K)) ⊆ V K is carried out in two steps.

1. Prove F[X] ≤ C X.
2. Prove that every algebra in Mod (Th (V K)) is a homomorphic image of F[X].

From 1 we have F[X] ∈ S (P K)), since C X is a product of algebras in K. From this and 2
will follow Mod (Th (V K)) ⊆ H (S (P K)) (= V K), as desired.

1. To prove F[X] ≤ C X, we construct a homomorphism from F[X] to C X and then
show it is injective, so F[X] is (isomorphic to) a subalgebra of C X.

open FreeHom {ℓ = ℓ}{K}
open FreeAlgebra K using (homC ; F[_] ; C)
homFC : hom F[X] (C X)
homFC = fromHomIm (homC X)

monFC : mon F[X] (C X)
monFC = | homFC | , record { isHom = ∥ homFC ∥

; isInjective = λ {x}{y}→ fromIm-inj | homC X | {x}{y} }
F≤C : F[X] ≤ C X
F≤C = mon→≤ monFC

open FreeAlgebra K using (I)

SPF : F[X] ∈ S ι (P ℓ ι K)
SPF = C X , ((I X) , (|_| , ((λ i → fst ∥ i ∥) , ∼=-refl))) , F≤C

2. Every algebra in Mod (Th (V K)) is a homomorphic image of F[X]. Indeed,

module _ {K : Pred(Algebra α ρa) (α ⊔ ρa ⊔ ov ℓ)} where
private c = α ⊔ ρa ⊔ ℓ ; ι = ov c

Var⇒EqCl : ∀ A → A ∈ Mod (Th (V ℓ ι K)) → A ∈ V ℓ ι K

Var⇒EqCl A ModThA = F[U[A]] , (SPF{ℓ = ℓ} K , Aim)
where
open FreeAlgebra K using (F[_])
epiFlA : epi F[U[A]] (Lift-Alg A ι ι)
epiFlA = F-ModTh-epi-lift{ℓ = ℓ} λ {p q} → ModThA{p = p}{q}

φ : Lift-Alg A ι ι IsHomImageOf F[U[A]]
φ = epi→ontohom F[U[A]] (Lift-Alg A ι ι) epiFlA

Aim : A IsHomImageOf F[U[A]]
Aim = ◦-hom | φ |(from Lift-∼=), ◦-IsSurjective _ _ ∥ φ ∥(fromIsSurjective(Lift-∼={A = A}))

By ModTh-closure and Var⇒EqCl, we have V K = Mod (Th (V K)) for every class K of
S-algebras. Thus, every variety is an equational class.

This completes the formal proof of Birkhoff’s variety theorem. ◀

W. DeMeo and J. Carette 4:19

7 Conclusion

7.1 Discussion

How do we differ from the classical, set-theoretic approach? Most noticeable is our avoidance
of all size issues. By using universe levels and level polymorphism, we always make sure
we are in a large enough universe. So we can easily talk about “all algebras such that . . . ”
because these are always taken from a bounded (but arbitrary) universe.

Our use of setoids introduces nothing new: all the equivalence relations we use were
already present in the classical proofs. The only “new” material is that we have to prove
that functions respect those equivalences.

Our first attempt to formalize Birkhoff’s theorem was not sufficiently careful in its handling
of variable symbols X. Specifically, this type was unconstrained; it is meant to represent the
informal notion of a “sufficiently large” collection of variable symbols. Consequently, we
postulated surjections from X onto the domains of all algebras in the class under consideration.
But then, given a signature S and a one-element S-algebra A, by choosing X to be the empty
type ⊥, our surjectivity postulate gives a map from ⊥ onto the singleton domain of A. (For
details, see the Demos.ContraX module which constructs the counterexample in Agda.)

7.2 Related work

There have been a number of efforts to formalize parts of universal algebra in type theory
besides ours. The Coq proof assistant, based on the Calculus of Inductive Constructions,
was used by Capretta, in [5], and Spitters and Van der Weegen, in [17], to formalized the
basics of universal algebra and some classical algebraic structures. In [11] Gunther et al
developed what seemed (prior to the agda-algebras library) the most extensive library of
formalized universal algebra to date. Like agda-algebras, [11] is based on dependent type
theory, is programmed in Agda, and goes beyond the basic isomorphism theorems to include
some equational logic. Although their coverage is less extensive than that of agda-algebras,
Gunther et al do treat multi-sorted algebras, whereas agda-algebras is currently limited to
single-sorted structures.

As noted by Abel [1], Amato et al, in [2], have formalized multi-sorted algebras with
finitary operators in UniMath. The restriction to finitary operations was due to limitations
of the UniMath type theory, which does not have W-types nor user-defined inductive types.
Abel also notes that Lynge and Spitters, in [14], formalize multi-sorted algebras with finitary
operators in Homotopy type theory ([16]) using Coq [23]. HoTT’s higher inductive types
enable them to define quotients as types, without the need for setoids. Lynge and Spitters
prove three isomorphism theorems concerning subalgebras and quotient algebras, but do not
formalize universal algebras nor varieties. Finally, in [1], Abel gives a new formal proof of
the soundness and completeness theorem for multi-sorted algebraic structures.

References

1 Andreas Abel. Birkhoff’s Completeness Theorem for multi-sorted algebras formalized in Agda.
CoRR, abs/2111.07936, 2021. arXiv:2111.07936.

2 Gianluca Amato, Marco Maggesi, and Cosimo Perini Brogi. Universal Algebra in UniMath.
CoRR, abs/2102.05952, 2021. arXiv:2102.05952.

3 Clifford Bergman. Universal Algebra: fundamentals and selected topics, volume 301 of Pure
and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2012.

TYPES 2021

https://github.com/ualib/agda-algebras/blob/af4ab7a3bb415649dad398b4f43f3b79aeaddbfc/src/Demos/ContraX.lagda
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ualib.org/agda-algebras
https://ualib.org/agda-algebras
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://ualib.org/agda-algebras
https://ualib.org/agda-algebras
http://arxiv.org/abs/2111.07936
http://arxiv.org/abs/2102.05952

4:20 A Machine-Checked Proof of Birkhoff’s Theorem

4 G Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical
Society, 31(4):433–454, October 1935.

5 Venanzio Capretta. Universal Algebra in Type Theory. In Theorem proving in higher order
logics (Nice, 1999), volume 1690 of Lecture Notes in Comput. Sci., pages 131–148. Springer,
Berlin, 1999. doi:10.1007/3-540-48256-3_10.

6 William DeMeo. The Agda Universal Algebra Library. GitHub.com, 2020. Ver. 1.0.0. Source
code: gitlab.com/ualib/ualib.gitlab.io.

7 William DeMeo and Jacques Carette. A Machine-checked Proof of Birkhoff’s Variety Theorem
in Martin-Löf Type Theory. CoRR, abs/2101.10166, 2021. Source code: github.com/ualib/agda-
algebras/. doi:10.48550/ARXIV.2101.10166.

8 William DeMeo and Jacques Carette. The Agda Universal Algebra Library (agda-algebras). Git-
Hub.com, 2021. Ver. 2.0.1. Source code: agda-algebras-v.2.0.1.zip. Documentation: ualib.org.
GitHub repo: github.com/ualib/agda-algebras. doi:10.5281/zenodo.5765793.

9 Martín Hötzel Escardó. Introduction to Univalent Foundations of mathematics with Agda.
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/, May 2019. Accessed
on 30 Nov 2021.

10 Martín Hötzel Escardó. Introduction to Univalent Foundations of mathematics with Agda.
CoRR, abs/1911.00580, 2019. arXiv:1911.00580.

11 Emmanuel Gunther, Alejandro Gadea, and Miguel Pagano. Formalization of Universal
Algebra in Agda. Electronic Notes in Theoretical Computer Science, 338:147–166, 2018.
The 12th Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2017).
doi:10.1016/j.entcs.2018.10.010.

12 Jason Z. S. Hu and Jacques Carette. Formalizing Category Theory in Agda. In Proceedings of
the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2021, pages 327–342, New York, NY, USA, 2021. Association for Computing Machinery.
doi:10.1145/3437992.3439922.

13 Artur Korniłowicz. Birkhoff theorem for many sorted algebras, 1999.
14 Andreas Lynge and Bas Spitters. Universal Algebra in HoTT. In Proceedings of the 25th

International Conference on Types for Proofs and Programs (TYPES 2019), 2019. URL:
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7.

15 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden, September 2007.

16 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Lulu and The Univalent Foundations Program, Institute for Advanced Study,
2013. URL: https://homotopytypetheory.org/book.

17 Bas Spitters and Eelis Van der Weegen. Type classes for mathematics in type theory. CoRR,
abs/1102.1323, 2011. arXiv:1102.1323.

18 The Agda Team. Agda Language Reference, 2021. URL: https://agda.readthedocs.io/en/
v2.6.1/language/index.html.

19 The Agda Team. Agda Language Reference section on Axiom K, 2021. URL: https://agda.
readthedocs.io/en/v2.6.1/language/without-k.html.

20 The Agda Team. Agda Language Reference section on Safe Agda, 2021. URL: https:
//agda.readthedocs.io/en/v2.6.1/language/safe-agda.html#safe-agda.

21 The Agda Team. The Agda Standard Library, 2021. URL: https://github.com/agda/
agda-stdlib.

22 The Agda Team. Agda Tools Documentation section on Pattern matching and equal-
ity, 2021. URL: https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.
html#pattern-matching-and-equality.

23 The Coq Development Team. The Coq proof assistant reference manual. LogiCal Project,
2004. Version 8.0. URL: http://coq.inria.fr.

https://doi.org/10.1007/3-540-48256-3_10
https://gitlab.com/ualib/ualib.gitlab.io
https://github.com/ualib/agda-algebras/blob/master/src/Demos/HSP.lagda
https://github.com/ualib/agda-algebras/blob/master/src/Demos/HSP.lagda
https://doi.org/10.48550/ARXIV.2101.10166
https://zenodo.org/record/5765793/files/ualib/agda-algebras-v.2.0.1.zip?download=1
https://ualib.org
https://github.com/ualib/agda-algebras
https://doi.org/10.5281/zenodo.5765793
https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/
http://arxiv.org/abs/1911.00580
https://doi.org/10.1016/j.entcs.2018.10.010
https://doi.org/10.1145/3437992.3439922
http://www.ii.uib.no/~bezem/abstracts/TYPES_2019_paper_7
https://homotopytypetheory.org/book
http://arxiv.org/abs/1102.1323
https://agda.readthedocs.io/en/v2.6.1/language/index.html
https://agda.readthedocs.io/en/v2.6.1/language/index.html
https://agda.readthedocs.io/en/v2.6.1/language/without-k.html
https://agda.readthedocs.io/en/v2.6.1/language/without-k.html
https://agda.readthedocs.io/en/v2.6.1/language/safe-agda.html#safe-agda
https://agda.readthedocs.io/en/v2.6.1/language/safe-agda.html#safe-agda
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.html#pattern-matching-and-equality
https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.html#pattern-matching-and-equality
http://coq.inria.fr

W. DeMeo and J. Carette 4:21

A Imports from the Agda Standard Library

We import a number of definitions from Agda’s standard library (ver. 1.7), as shown below.
Notice that these include some adjustments to “standard” Agda syntax; in particular, we
use Type in place of Set, the infix long arrow symbol, _−→_, in place of Func (the type of
“setoid functions,” discussed in §2.3 below), and the symbol _⟨$⟩_ in place of f (application
of the map of a setoid function); we use fst and snd, and sometimes |_| and ∥_∥, to denote
the first and second projections out of the product type _×_.

– Import 16 definitions from the Agda Standard Library.
open import Data.Unit.Polymorphic using (⊤ ; tt)
open import Function using (id ; _◦_ ; flip)
open import Level using (Level)
open import Relation.Binary using (Rel ; Setoid ; IsEquivalence)
open import Relation.Binary.Definitions using (Reflexive ; Symmetric ; Transitive ; Sym ; Trans)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Relation.Unary using (Pred ; _⊆_ ; _∈_)

– Import 23 definitions from the Agda Standard Library and rename 12 of them.
open import Agda.Primitive renaming (Set to Type) using (_⊔_ ; lsuc)
open import Data.Product renaming (proj1 to fst) using (_×_ ; _,_ ; Σ ; Σ-syntax)

renaming (proj2 to snd)
open import Function renaming (Func to _−→_) using ()
open _−→_ renaming (f to _⟨$⟩_) using (cong)
open IsEquivalence renaming (refl to refle)

renaming (sym to syme)
renaming (trans to transe) using ()

open Setoid renaming (refl to refls)
renaming (sym to syms)
renaming (trans to transs)
renaming (_≈_ to _≈s_) using (Carrier ; isEquivalence)

– Assign handles to 3 modules of the Agda Standard Library.
import Function.Definitions as FD
import Relation.Binary.PropositionalEquality as ≡
import Relation.Binary.Reasoning.Setoid as SetoidReasoning

private variable α ρa β ρb γ ρc δ ρd ρ χ ℓ : Level ; Γ ∆ : Type χ

TYPES 2021

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php

	1 Introduction
	2 Preliminaries
	2.1 Logical foundations
	2.2 Setoids
	2.3 Setoid functions

	3 Basic Universal Algebra
	3.1 Signatures
	3.2 Algebras
	3.3 Structure preserving maps and isomorphism
	3.4 Lift-Alg is an algebraic invariant
	3.5 Subalgebras
	3.6 Terms

	4 Equational Logic
	4.1 Term identities, equational theories, and the ⊧ relation
	4.2 The Closure Operators H, S, P and V

	5 Free Algebras
	5.1 The absolutely free algebra
	5.2 The relatively free algebra

	6 Birkhoff's Variety Theorem
	6.1 Informal proof
	6.2 Formal proof

	7 Conclusion
	7.1 Discussion
	7.2 Related work

	A Imports from the Agda Standard Library

