Symbolic Evaluation of Hadamard-Toffoli Quantum Circuits

Jacques Carette, Amr Sabry, Gerardo Ortiz

January 16, 2023

The Idea

Introduction

Idea

Superposition

Symbol

BIG PICTU

Evample

C C

oo.twa.

Design

valuation

Running

Complexity

Conclusion

Cost Models

Traditional partial evaluation and symbolic evaluation techniques apply to an interesting class of quantum circuits with surprising effectiveness!

Reversible gates

Introduction

Reversible Superposition Symbolic

Big Pict

Example

Software

Design

Lvaluatic

Timings

Canalusi

Cost Models

So, writing inputs/outputs horizontally:

$$\begin{array}{c|cccc} |0111\rangle & \Rightarrow & |0111\rangle \\ & \Rightarrow & |0111\rangle \\ & \Rightarrow & |0101\rangle \\ & \Rightarrow & |0100\rangle \\ \\ |1100\rangle & \Rightarrow & |1110\rangle \\ & \Rightarrow & |1111\rangle \\ & \Rightarrow & |1101\rangle \\ & \Rightarrow & |1101\rangle \\ & \Rightarrow & |1100\rangle \\ & \Rightarrow & |1111\rangle \\ \end{array}$$

Superpositions

Introduction

Reversible Superposition

Symbolic Big Pictu

Retrodictive

Software

Jortival

Design

Evaluation

Running

Complex

Conclusio

Cost Models

$$a_{0} = |0\rangle - H$$
 m_{0} m_{1} m_{1} m_{2} m_{3} m_{4} m_{5} m_{1} m_{5} m_{1} m_{5} m_{1} m_{5} $m_$

$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

So the top two wires are in the state

$$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\otimes\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=\frac{1}{2}(|00\rangle+|10\rangle+|01\rangle+|11\rangle)$$

Superpositions

Superposition

$$a_1 = |0|$$

$$egin{aligned} egin{aligned} eta_0 &= \ket{0} \cdot egin{aligned} egin{aligned} eta & eta \ eta_1 &= \ket{0} \cdot egin{aligned} eta & eta \ eta & eta \end{aligned}$$

$$b_0 =$$

$$b_0 = |0\rangle \longrightarrow 0$$
 $b_1 = |0\rangle \longrightarrow 0$

$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

Thus for the whole circuit:

$$\begin{array}{ll} |0000\rangle & \Rightarrow & \frac{1}{2}(|0000\rangle + |0100\rangle + |1000\rangle + |1100\rangle) \\ & \Rightarrow & \frac{1}{2}(|0000\rangle + |0100\rangle + |1010\rangle + |1110\rangle) \\ & \Rightarrow & \frac{1}{2}(|0000\rangle + |0100\rangle + |1011\rangle + |1111\rangle) \\ & \Rightarrow & \frac{1}{2}(|0000\rangle + |0110\rangle + |1011\rangle + |1101\rangle) \\ & \Rightarrow & \frac{1}{2}(|0000\rangle + |0111\rangle + |1011\rangle + |1100\rangle) \end{array}$$

Symbolic Execution (new)

Introduction

Idea

Superposition

Symbolic

Big Pictu

Lxampie

Softwar

Design

Evaluatio

Running

Complexi

Conclusio

Cost Models

Replace $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ by a symbolic variable:

Maintain formula in algebraic normal form (ANF). So

$$|xy00\rangle \Rightarrow |xyx0\rangle$$

$$\Rightarrow |xyxx\rangle$$

$$\Rightarrow |xy(x \oplus y)x\rangle$$

$$\Rightarrow |xy(x \oplus y)(x \oplus y)\rangle$$

Quantum Circuits

Introduction

Idea

Superposition

Big Pictu Retrodictive

Retrodictive

Softwar

Requireme

Design

_ .

Timings Complexity

Conclusion

- U_f is a classical reversible circuit representing f, i.e. $U_f(\mathbf{x}, \mathbf{y}) = |\mathbf{x} (\mathbf{y} \oplus \mathbf{f}(\mathbf{x}))\rangle$.
- H is the Hadamard gate; introduces quantum parallelism to evaluate U_f for many inputs simultaneously.
- QFT is the Quantum Fourier Transform used to analyze the spectral properties of the output.

Quantum Circuits

Introduction

Idea

Superposition

Retrodictive

Retrodictive

Software

Requiremen

Evaluatio

Timings Complexity

Conclusion

- U_f is a classical reversible circuit representing f, i.e. $U_f(\mathbf{x}, \mathbf{y}) = |\mathbf{x} (\mathbf{y} \oplus \mathbf{f}(\mathbf{x}))\rangle$.
- H is the Hadamard gate; introduces quantum parallelism to evaluate U_f for many inputs simultaneously.
- QFT is the Quantum Fourier Transform used to analyze the spectral properties of the output.

Quantum Circuits Retrodictive Evaluation

Introduction

Idea

Superposition

Big Picture
Retrodictive

Example

Software

Requiremen

Evaluation

Timings Complexity

Conclusion

- U_f is a classical reversible circuit representing f, i.e. $U_f(\mathbf{x}, \mathbf{y}) = |\mathbf{x} (\mathbf{y} \oplus \mathbf{f}(\mathbf{x}))\rangle$.
- H is the Hadamard gate; introduces *quantum parallelism* to evaluate U_f for many inputs simultaneously.
- QFT is the Quantum Fourier Transform used to analyze the spectral properties of the output.

Examples

Introduction

Idea

Superposition

Symboli

Big Pictui

Retrodictive

Examples

Software

Requiremen

...

Lvaiuatioi

Timings

Complexi

Conclusion

- Deutsch
- 2 Deutsch-Jozsa
- 3 Bernstein-Varizani
- 4 Simon
- Grover
- 6 Shor

Examples

Introductio

Idea

Superposition

Symboli

Big Pictu

Retrodictive

Examples

Jortward

rvedaneme

Evaluatio

Running

Complexi

Conclusion

- Deutsch
- 2 Deutsch-Jozsa
- 3 Bernstein-Varizani
- 4 Simon
- Grover
- 6 Shor

Examples: Deutsch and Deutsch-Josza

Examples

Definition

A boolean function is **balanced** if it outputs the same number of 0/1 outputs.

Deutsch:

Problem

Given $f: \mathbb{B} \to \mathbb{B}$, decide if f is constant or balanced.

Deutsch-Josza:

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$, where f is known to be constant or balanced, decide which one it is.

Examples: Grover and Shor

Introduction

Idea

Superpositi

Symboli

Big Pictur

Examples

_ _

Software

Requireme

Design

Evaluatio

Running

Complexi

Conclusion

Extras Cost Models

Grover:

Problem

Given $f: \mathbb{B}^n \to \mathbb{B}$ where there exists a unique u such that f(u) = 1. Find u.

Shor:

Problem

Factor a given N. Do this by using $f(x) = a^x \mod N$ for suitable a and $f: \mathbb{B}^Q \to \mathbb{B}^n$ with $Q = \lceil \log_2(N^2) \rceil$, $n = \lceil \log_2 N \rceil$.

Requirements

Introduction

Reversible

Superpositi Symbolic

Big Pictur Retrodictive

Example

Requirements

Docien

Evaluation

Timings

Conclusion

Cost Models

Variabilities:

- multiple representations of boolean values,
- 2 multiple representations of boolean formulae,
- **3** different evaluation means (directly, symbolically, forwards, backwards, retrodictive).

Possible to implement:

- 4 a reusable representation of our circuits,
- a reusable representation of the inputs, outputs and ancillae,
- **6** a synthesis algorithm for $\mathbb{B}^n \to \mathbb{B}$ functions
- 7 a reusable library of circuits

Also, non-functional characteristics to hold:

evaluation of reasonably-sized circuits should be reasonably efficient.

Design

```
class (Show v, Enum v) => Value v where

zero :: v
one :: v
one :: v -> v
sing Picture
Retrodictive
Examples

Software
Requirements
Design
Running

class (Show v, Enum v) => Value v where
v where
v where
v where
v one :: v
one :: v
one :: v
one :: v -> v
one :: v
one :: v -> v
one :: v
one
```

Implemented four times.

Design

```
class (Show v, Enum v) => Value v where
  zero :: v
  one
  snot :: v -> v
  sand :: v -> v -> v
  sxor :: v -> v -> v
  -- has a default implementation
  snand :: [v] \rightarrow v -- n-ary and
  snand = foldr sand one
Implemented four times.
data VarInFormula f v = FR
  { fromVar :: v -> f
  , fromVars :: Int -> v -> [ f ]
```


Introduction

Idea

Reversible

Symbol

Big Pictu

Evample

Software

Requirer

Evaluatio

Running

Complexi

Conclusio

Cost Models

```
First, naïve implementation:
newtype Ands = Ands { lits :: [String] }
  deriving (Eq, Ord)

(&&&) :: Ands -> Ands -> Ands
(Ands lits1) &&& (Ands lits2) =
  Ands (lits1 ++ lits2)

newtype Formula = Formula { ands :: [Ands]}
```



```
Second, using sets of ints and occurrence maps:
           type Literal = Int
           newtype Ands = Ands { lits :: IS.IntSet }
            {-# INLINABLE compAnds #-}
            compAnds :: Ands -> Ands -> Ordering
            compAnds (Ands a1) (Ands a2) =
              compare (IS.toAscList a1) (IS.toAscList a2)
            (\&\&\&) :: Ands -> Ands -> Ands
Design
            (Ands lits1) &&& (Ands lits2) =
              Ands (IS.union lits1 lits2)
            -- raw XOR formulas
           type XORFU = Map.Map Ands Int
            -- Normalized XOR formulas, i.e occur 0 or 1 time
           newtype Formula = Formula { ands :: MS.MultiSet Ands }
```



```
Third, using bitmaps and occurrence maps:
           type Literal = Natural
           newtype Ands = Ands { lits :: Literal }
            {-# INLINABLE compAnds #-}
            compAnds :: Ands -> Ands -> Ordering
            compAnds (Ands a1) (Ands a2) = compare a1 a2
            (\&\&\&) :: Ands -> Ands -> Ands
            (Ands lits1) &&& (Ands lits2) = Ands (lits1 . | . lits2)
Design
           type Occur = Int
            -- Raw XOR formulas
            type XORFU = Map.Map Ands Occur
            -- Normalized XOR formulas, i.e occur 0 or 1 time
           type XORF = MS.MultiSet Ands
```


Running Deutsch-Josza

Introduction

Idea

Superposition

Big Pictu

Retrodictive

. .

Jortware

Design

valuation

Running Timings

C l

Cook Modele

- Retrodictive once on output measurement 0
- Output symbolic formula that decides $f(|\mathbf{x}\rangle) = 0$.
- f constant $\Rightarrow 0 = 0$ or 1 = 0 regardless of circuit size.

Running Deutsch-Josza

Introduction

Idea

Superposition

Big Pictur

Example

Software

Requireme

Evaluatio

Running
Timings

Conclusio

Cost Models

- Retrodictive once on output measurement 0
- Output symbolic formula that decides $f(|\mathbf{x}\rangle) = 0$.
- f constant $\Rightarrow 0 = 0$ or 1 = 0 regardless of circuit size.

Sample outputs:

- $x_0 = 0$,
- $x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 = 0$, and
- $1 \oplus x_3x_5 \oplus x_2x_4 \oplus x_1x_5 \oplus x_0x_3 \oplus x_0x_2 \oplus x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_1x_3x_5 \oplus x_0x_3x_5 \oplus x_0x_1x_4 \oplus x_0x_1x_2 \oplus x_2x_3x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_4 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5 \oplus x_0x_1x_2x_3x_5 \oplus x_0x_1x_2x_3x_4 = 0.$

How to decide? If it mentions a variable, it's balanced. We tested all 12872 functions $\mathbb{B}^6 \to \mathbb{B}$.

Running Deutsch-Josza

Introduction

Idea

Superposition

Big Pictur

Example

Sortwar

Design

Running

Timings

Conclusio

Cost Models

- Retrodictive once on output measurement 0
- Output symbolic formula that decides $f(|\mathbf{x}\rangle) = 0$.
- f constant $\Rightarrow 0 = 0$ or 1 = 0 regardless of circuit size.

Sample outputs:

- $x_0 = 0$,
- $x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 = 0$, and
- $1 \oplus x_3x_5 \oplus x_2x_4 \oplus x_1x_5 \oplus x_0x_3 \oplus x_0x_2 \oplus x_3x_4x_5 \oplus x_2x_3x_5 \oplus x_1x_3x_5 \oplus x_0x_3x_5 \oplus x_0x_1x_4 \oplus x_0x_1x_2 \oplus x_2x_3x_4x_5 \oplus x_1x_3x_4x_5 \oplus x_1x_2x_4x_5 \oplus x_1x_2x_3x_5 \oplus x_0x_3x_4x_5 \oplus x_0x_2x_4x_5 \oplus x_0x_2x_3x_5 \oplus x_0x_1x_4x_5 \oplus x_0x_1x_3x_5 \oplus x_0x_1x_3x_4 \oplus x_0x_1x_2x_4 \oplus x_0x_1x_2x_4x_5 \oplus x_0x_1x_2x_3x_5 \oplus x_0x_1x_2x_3x_5 \oplus x_0x_1x_2x_3x_4 = 0.$

How to decide? If it mentions a variable, it's balanced. We tested all 12872 functions $\mathbb{B}^6 \to \mathbb{B}$.

Running Grover

Introduction

Idea

Superposition

D' D'

Retrodictive

Examples

Software

Requireme

Running

Timings

Complexity

Conclusion

Cost Models

Recall: guess the position of the single 1 bit.

```
n=4, w in the range \{0...15\}
u=0
1 \oplus x_3 \oplus x_2 \oplus x_1 \oplus x_0 \oplus x_2x_3 \oplus x_1x_3 \oplus x_1x_2 \oplus x_0x_3 \oplus x_0x_2 \oplus x_0x_1 \oplus x_1x_2x_3 \oplus x_0x_2x_3 \oplus x_0x_2 \oplus x_0x_1 \oplus x_0x_2 \oplus x_0x_1 \oplus x_0x_2 \oplus x_0x_2 \oplus x_0x_2 \oplus x_0x_1 \oplus x_0x_2 \oplus x
```

u = 2 $x_1 \oplus x_1 x_3 \oplus x_1 x_2 \oplus x_0 x_1 \oplus x_1 x_2 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3$ u = 2

u = 3 $x_0x_1 \oplus x_0x_1x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3$

 $u = 4 \qquad x_2 \oplus x_2 x_3 \oplus x_1 x_2 \oplus x_0 x_2 \oplus x_1 x_2 x_3 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3$

u = 5 $x_0x_2 \oplus x_0x_2x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3$

u = 6 $x_1x_2 \oplus x_1x_2x_3 \oplus x_0x_1x_2 \oplus x_0x_1x_2x_3$

 $u=7 \qquad x_0x_1x_2 \oplus x_0x_1x_2x_3$

 $u = 8 \qquad x_3 \oplus x_2 x_3 \oplus x_1 x_3 \oplus x_0 x_3 \oplus x_1 x_2 x_3 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 x_3$

 $u = 9 \qquad x_0 x_3 \oplus x_0 x_2 x_3 \oplus x_0 x_1 x_3 \oplus x_0 x_1 x_2 x_3$ $u = 10 \qquad x_1 x_2 \oplus x_1 x_2 x_3 \oplus x_0 x_1 x_2 \oplus x_0 x_1 x_2 x_3$

u = 10 $x_1x_3 \oplus x_1x_2x_3 \oplus x_0x_1x_3 \oplus x_0x_1x_2x_3$

u = 11 $x_0 x_1 x_3 \oplus x_0 x_1 x_2 x_3$

u = 12 $x_2x_3 \oplus x_1x_2x_3 \oplus x_0x_2x_3 \oplus x_0x_1x_2x_3$

u = 13 $x_0x_2x_3 \oplus x_0x_1x_2x_3$ u = 14 $x_1x_2x_3 \oplus x_0x_1x_2x_3$

u = 14 $x_1 x_2 x_3 \oplus x_0 x_1 x_2 x_3$

 $u=15 \qquad x_0x_1x_2x_3$

Shor

Introduction

Idea

Superpositio

Big Pictur

Examples

Requiremen

Design

Evaluation

Running Timings

Complexity

Conclusion

Cost Models

Problem

Factor a given N. Do this by using $f(x) = a^x \mod N$ for suitable a and $f: \mathbb{B}^Q \to \mathbb{B}^n$ with $Q = \lceil \log_2(N^2) \rceil$, $n = \lceil \log_2 N \rceil$.

Factoring 15:

Base		Solution			
a = 11	$x_0 = 0$				$x_0 = 0$
a = 4, 14	$1 \oplus x_0 = 1$	$x_0 = 0$			$x_0 = 0$
a = 7, 13	$1 \oplus x_1 \oplus x_0 x_1 = 1$	$x_0 x_1 = 0$	$x_0 \oplus x_1 \oplus x_0 x_1 = 0$	$x_0 \oplus x_0 x_1 = 0$	$x_0=x_1=0$
a = 2, 8	$1 \oplus x_0 \oplus x_1 \oplus x_0 x_1 = 1$	$x_0x_1 = 0$	$x_1 \oplus x_0 x_1 = 0$	$x_0 \oplus x_0 x_1 = 0$	$x_0=x_1=0$

Auto-generated circuits: 56,538 generalized Toffoli gates.

Shor

Introduction

Idea

Reversible Superpositio

Big Pictur

Examples

Requiremen

_ .

Running

Timings Complexity

Conclusion

Cost Models

Problem

Factor a given N. Do this by using $f(x) = a^x \mod N$ for suitable a and $f : \mathbb{B}^Q \to \mathbb{B}^n$ with $Q = \lceil \log_2(N^2) \rceil$, $n = \lceil \log_2 N \rceil$.

Factoring 15:

Base		Solution			
a = 11	$x_0 = 0$				$x_0 = 0$
a = 4, 14	$1 \oplus x_0 = 1$	$x_0 = 0$			$x_0 = 0$
a = 7, 13	$1 \oplus x_1 \oplus x_0 x_1 = 1$	$x_0 x_1 = 0$	$x_0 \oplus x_1 \oplus x_0 x_1 = 0$	$x_0 \oplus x_0 x_1 = 0$	$x_0=x_1=0$
a = 2, 8	$1 \oplus x_0 \oplus x_1 \oplus x_0 x_1 = 1$	$x_0x_1 = 0$	$x_1 \oplus x_0 x_1 = 0$	$x_0 \oplus x_0 x_1 = 0$	$x_0=x_1=0$

Auto-generated circuits: 56,538 generalized Toffoli gates.

For 3*65537=196611 (4,328,778 gates), 16 small equations that refer to just the four variables x_0 , x_1 , x_2 , and x_3 constraining them to be all 0, i.e., asserting that the period is 16.

Timings: Deutsch-Jozsa

Introduction Idea

Superpositio

Big Pictu

Example

Software

Requireme

D.....

Timings

Conclusio

Conclusion

Figure: Retrodictive execution on 3 balanced functions at different sizes

Timings: Grover on different values

Figure: Retrodictive execution of the Grover algorithm on different "secret" values *u* at different sizes

Introduction

Idea

Superpositi

Big Pictu

Example

Softwar

Design

Evaluatio

Running

Timings

Conclusio

Timings: Grover with different representations

Software

Requireme

Evaluation

Running

Complexity

Conclusion

Cost Models

Figure: Retrodictive execution of the Grover algorithm on secret value u=0 at two sizes but using different ANF representations

Reversible

Superposition Symbolic

Retrodictive

Example

Software

Docion

valuation

Timings Complexity

Conclusio

Cost Models

Complexity

Problem: circuit with T generalized Toffoli gates over n + m qubits split into two registers (A,B).

- Design oracle / circuit.
- 2 Let $A = |00...0\rangle$ and $B = |00...0\rangle$ and run classically. $\mathcal{O}(T)$. Leaves A intact, produce b in B.
- 3 Run backwards (symbolically) with $A = |x_{n-1}...x_1x_0\rangle$ and $B = |b\rangle$. Worst case, equations sized $\mathcal{O}(2^n)$, so $\mathcal{O}(Tm2^n)$.
- **4** Answer by inspecting/solving resulting m equations.

ldea Reversible

Superpositio Symbolic

Big Picture Retrodictive

Example

Software

Evaluation

Running

Complexity

_ .

Cost Models

Complexity

Problem: circuit with T generalized Toffoli gates over n + m qubits split into two registers (A,B).

- 1 Design oracle / circuit.
- 2 Let $A = |00...0\rangle$ and $B = |00...0\rangle$ and run classically. $\mathcal{O}(T)$. Leaves A intact, produce b in B.
- 3 Run backwards (symbolically) with $A = |x_{n-1} \dots x_1 x_0\rangle$ and $B = |b\rangle$. Worst case, equations sized $\mathcal{O}(2^n)$, so $\mathcal{O}(Tm2^n)$.
- **4** Answer by inspecting/solving resulting m equations.

Bottlenecks:

- step (3) at worst case $\mathcal{O}(Tm2^n)$,
- step (4) "solve", which is NP-complete.

However:

 Sometimes 'typical' case has expected run-time depending on bit-size of the information contained in the answer.

Conclusion

Introduction

Reversible Superposition Symbolic

Retrodictive

LAMITIPIE

Jortwar

Design

Evaluation

Timings Complexity

Conclusion

- Different algorithms need different analyses to extract answer.
- (Not shown in slides) Shor seems to need qutrits/qudits in general.
- For a number of classical quantum algorithms, classical but symbolic execution works just as well.
- Even better: symbolic execute once instead of "enough" times to get probabilistic answer.
- Symbolic execution sometimes is really bad.

Conclusion

Introduction

Reversible Superposition Symbolic

Big Picture Retrodictive

Lxample

Softwar

Design

Evaluation

Running
Timings
Complexity

Conclusion

- Different algorithms need different analyses to extract answer.
- (Not shown in slides) Shor seems to need qutrits/qudits in general.
- For a number of classical quantum algorithms, classical but symbolic execution works just as well.
- Even better: symbolic execute once instead of "enough" times to get probabilistic answer.
- Symbolic execution sometimes is really bad.
- Speculation: some common quantum algorithms might not need quantum after all.

Cost Models

Introduction

Idea

Reversible Superpositio Symbolic

Big Pictur

Example

SULLWAR

Design

Lvaluatioi

Timings Complexity

Conclusion

- White-box model: We implement U_f and the cost of implementing it and the cost of using it is counted as part of the overall complexity
- Black-box model: "Someone" implements U_f and gives us access to it; the complexity analysis only counts the number of times U_f is used. There are different cases based on what kind of access we are given:
 - Query U_f on a classical input
 - Query U_f on a quantum superposition
 - Query U_f on a symbolic formula (NEW!)