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Traditional partial evaluation and symbolic evaluation
techniques apply to an interesting class of quantum
- circuits with surprising effectiveness!
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= Superpositions
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Ho) = L0+ 211 = L(j0)+ 1)

o So the top two wires are in the state
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= Superpositions

w
a0 = |0) @ mo
e a1 =(0) ’@ mi
. by = |0) —&——&—— 1o
by = |0) o & n
HIO) = J5100+ 10 = J5(10)+ 1)
| Thus for the whole circuit:
|0000) + |0100) + |1000) + |1100

o 0000) = 5(/0000) ) ) ))

£(/0000) + [0100) + |1010) + |1110))
£(10000) + |0100) + [1011) + |1111))
3(/0000) + [0110) + [1011) + |1101))
£(/0000) + [0111) + [1011) + |1100))
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= Symbolic Execution (new)

L
Replace %(\0> +|1)) by a symbolic variable:
o 10) {H| X
0) {H] - Y
“ 0) —&——0 0) ~&——
|0) ® b |0) < S
o Maintain formula in algebraic normal form (ANF).

Runing So
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= Quantum Circuits
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S ® Ur is a classical reversible circuit representing f, i.e.
Ur(x,y) =[x (y @ f(x)))-

® H is the Hadamard gate; introduces quantum parallelism

to evaluate Ur for many inputs simultaneously.

® QFT is the Quantum Fourier Transform used to analyze
the spectral properties of the output.
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= Quantum Circuits
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S ® Ur is a classical reversible circuit representing f, i.e.
Ur(x,y) =[x (y @ f(x)))-

® H is the Hadamard gate; introduces quantum parallelism

to evaluate Ur for many inputs simultaneously.

® QFT is the Quantum Fourier Transform used to analyze
the spectral properties of the output.
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Retrodictive
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Quantum Circuits Retrodictive Evaluation
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® Ur is a classical reversible circuit representing f, i.e.
Ur(x,y) =[x (y @ f(x))).

® H is the Hadamard gate; introduces quantum parallelism
to evaluate Uy for many inputs simultaneously.

® QFT is the Quantum Fourier Transform used to analyze
the spectral properties of the output.
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S

Definition
A boolean function is balanced if it outputs the same number
of 0/1 outputs.

Retrodictive

Examples

Deutsch:

Problem
Given f : B — B, decide if f is constant or balanced.

o Deutsch-Josza:
Problem
Cost Model Given f : B" — B, where f is known to be constant or

balanced, decide which one it is.
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Examples: Grover and Shor

Grover:

Problem

Given f : B" — B where there exists a unique u such that

f(u)=1. Find u.

Shor:

Problem
Factor a given N. Do this by using f(
suitable a and f : BY — B" with Q =

n = [log, NI.

x) =
[log

a* mod N for

2 (V?)1,
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Requirements
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Requirements

Variabilities:
@ multiple representations of boolean values,
® multiple representations of boolean formulae,

@ different evaluation means (directly, symbolically,
forwards, backwards, retrodictive).

Possible to implement:
O a reusable representation of our circuits,
@ a reusable representation of the inputs, outputs and
ancillae,
@ a synthesis algorithm for B” — B functions
@ a reusable library of circuits
Also, non-functional characteristics to hold:

® evaluation of reasonably-sized circuits should be
reasonably efficient.
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class (Show

zZero
one

snot
sand
sxor

v

A%
A%
A%
v

v, Enum v) => Value v where

_>V
-> v -> v
-> v > v

-- has a default implementation

snand

vl -> v —- n-ary and

snand = foldr sand one

Implemented four times.
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class (Show

zZero
one

snot
sand
sxor

v

A%
A%
A%
v

v, Enum v) => Value v where

_>V
-> v -> v
-> v > v

-— has a default tmplementation

snand

vl -> v —- n-ary and

snand = foldr sand one

Implemented four times.

data VarInFormula f v = FR

{ fromVar

v —> f

, fromVars :: Int -=> v -—> [ f ]
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First, naive implementation:

newtype Ands = Ands { 1lits :: [String] }
deriving (Eq, Ord)

(&&&) :: Ands -> Ands -> Ands
(Ands 1litsl) &&& (Ands 1lits2) =
Ands (litsl ++ 1lits2)

newtype Formula = Formula { ands :: [Ands]}
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Second, using sets of ints and occurence maps:

type Literal = Int
newtype Ands = Ands { lits :: IS.IntSet }

{-# INLINABLE compAnds #-}
compAnds :: Ands -> Ands -> Ordering
compAnds (Ands al) (Ands a2) =

compare (IS.toAscList al) (IS.toAscList a2)

(&&&) :: Ands -> Ands -> Ands
(Ands 1litsl) &&& (Ands 1lits2) =
Ands (IS.union litsl 1its2)

-- raw XOR formulas
type XORFU = Map.Map Ands Int
—-— Normalized XOR formulas, i.e occur O or 1 time

newtype Formula = Formula { ands :: MS.MultiSet Ands }
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Third, using bitmaps and occurence maps:

type Literal = Natural
newtype Ands = Ands { lits :: Literal }

{-# INLINABLE compAnds #-}
compAnds :: Ands -> Ands -> Ordering
compAnds (Ands al) (Ands a2) = compare al a2

(&&&) :: Ands -> Ands -> Ands
(Ands lits1) &&& (Ands 1lits2) = Ands (litsl .|. 1lits2)

type Occur = Int

—-— Raw XOR formulas

type XORFU = Map.Map Ands Occur

—-— Normalized XOR formulas, i.e occur O or 1 time
type XORF = MS.MultiSet Ands
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® Retrodictive once on output measurement 0
o ® Output symbolic formula that decides f(|x)) = 0.

® f constant = 0 = 0 or 1 = 0 regardless of circuit size.

Retrodictive

Running

T
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& Running Deutsch-Josza

S

® Retrodictive once on output measurement 0

o ® Output symbolic formula that decides f(|x)) = 0.

Superpositio

® f constant = 0 = 0 or 1 = 0 regardless of circuit size.

Symbolic

Sample outputs:

Retrodictive

[ ) XO = Ov
o * XD X1 Dx2Dx3Px4Px5 =0, and
o ® 1D x3x5 D xox4 D x1X5 D X0X3 D Xox2 D X3XaX5 D X2X3X5 D
X1X3X5 D XoX3X5 D XgX1Xq D XoXx1X2 D XoX3X4X5 D
X1X3Xa X5 D X1X20X4X5 D X1 X2X3X5 D X0X3X4X5 D XoX20Xa X5 D
X0X2X3X5 D XoX1XaX5 D XoX1X3X5 D XgX1X3X4 D XoX1X2Xgq D
XoX1X2X4.X5 D XgX1X2X3X5 D XgX1X2X3Xq = 0.

Running
Timings
Complexity

Cost Models

How to decide? If it mentions a variable, it's balanced.
We tested all 12872 functions B® — B.



W Running Deutsch-Josza

® Retrodictive once on output measurement 0

Introduction

o ® Output symbolic formula that decides f(|x)) = 0.

B ® f constant = 0 = 0 or 1 = 0 regardless of circuit size.
e Sample outputs:

Examples ® xg =0,

P * X0 Dx1 DX Dx3Dx D x5 =0, and

o ® 1D x3x5 D xoxg D x1x5 D x0x3 D XoX2 D x3x3X5 D Xo0x3X5 D

Evaluation

- X1X3X5 D X0X3X5 D XoX1X4 D XoX1X2 D X2X3XaX5 D
Timings
X1X3XaX5 B X1 X0 Xa X5 B X1X2X3X5 B X0X3Xa X5 B XoXoX4X5 B
Conclusion X0X2X3X5 (D XoX1XaX5 D XgX1X3X5 D XgX1X3Xa D XoX1Xo0Xg4 D
Extras XoX1X0X4X5 B XgX1X0X3X5 B Xgx1X0x3X3 = 0.
Cost Models

How to decide? If it mentions a variable, it's balanced.

We tested all 12872 functions B® — B.
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Chivest g Running Grover

Recall: guess the position of the single 1 bit.

Idea

Reversible
Superposition .
e n =4, win the range {0..15}
u=0 1D x3Dx2 @ x1 B xo D xox3 D x1x3 D x1x2 B x0x3 D xox2 D xox1 B x1x2x3 B X0x2x3
D xox1x3 B Xox1X2 B Xpx1X2X3
Aetredine =1 X0 @ x0x3 B x0x2 B x0x1 B x0x2x3 B Xox1X3 D Xox1X2 B X0X1X2X3
=2 x1 @ x1x3 @ x1x2 © xox1 D x1x2x3 D xox1x3 D Xox1x2 D X0x1X2X3
=3 x0x1 D xox1x3 @ XgX1x2 D XpX1X2X3
= xo @ xox3 @ xyx2 @ Xox2 B x1x2x3 D x0x2x3 D xpX1x2 D XpX1X2X3
Requirements = Xox2 @ Xgx2x3 B xgx1x2 B XgX1X2X3
P = x1x2 @ x1xpx3 @ XgXx1x2 D XpX1X2X3
=7 Xpx1x2 B XpXx1x2X3
Running x3 @ xox3 @ x1x3 @ xox3 D x1x20x3 D xpx2x3 D Xox1x3 D Xox1X2X3
=9 xX0x3 @ Xgx2x3 D xpx1x3 B XgX1X2X3

Timings
=10  x1x3 @ xyx2x3 D xox1X3 D xox1X2X3
=11 XoXx1X3 D XgX1X2X3
=12 xox3 @ xyxox3 D xox2x3 D xox1X2X3
=13 Xpx2x3 D XpX1X2X3
=14 X1 X0x3 D XgX1X2X3

Complexity

IS~ S T~~~ N N
|
<)

Cost Models

=15 X0X1X2X3
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E
Problem
o Factor a given N. Do this by using f(x) = a* mod N for
Reversible . . n . _ 2
suitable a and f : BQ — B" with Q = [log, (N )]
Symbolic n—= “ng N‘l )
Factoring 15:
Base Equations Solution
a=11 x =0 x0 =0
Requirements a=4,14 1@x =1 xg =0 x0 =0
Design a=7,13 1®x3 ®xox3 =1 xox1 =0 XxoDx1 Bxox1 =0 xpDxox1 =0 x9g=x3 =0
a=28 1®dxxPx1Dxx1 =1 xox1 =0 x3 D xox3 =0 xp ®xox1 =0 xp=x3 =0

Running

Auto-generated circuits: 56,538 generalized Toffoli gates.

Complexity

Cost Models



= Shor

Problem
Factor a given N. Do this by using f(x) = a* mod N for
o suitable a and f : BQ — B" with Q = [log, (N?)],

n = [log, N.
B Factoring 15:
Base Equations Solution
a=11 xo =0 xp =0
Requirements a=4,14 1@x =1 xp =0 x0 =0
Design a=7,13 1®x3 ®xox3 =1 xox1 =0 XxoDx1 Bxox1 =0 xpDxox1 =0 x9g=x3 =0
a=2,8 1@®x9Dx1Dxx =1 xox1 =0 x3 D xpx1 =0 xp ®xox1 =0 xp=x3 =0

Auto-generated circuits: 56,538 generalized Toffoli gates.

For 3*65537=196611 (4,328,778 gates), 16 small equations

that refer to just the four variables xg, x1, x2, and x3
constraining them to be all 0, i.e., asserting that the period is
16.



WG Timings: Deutsch-Jozsa
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CPU time in seconds
®

Evaluation

Running

0.01: . . . . . | 4
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Complexity
Conclusion

Extras Figure: Retrodictive execution on 3 balanced functions at different
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Timings: Grover on different values

400

[%2] o U=

ae)

§ 3000, —9on/3 .
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Figure: Retrodictive execution of the Grover algorithm on different
“secret” values u at different sizes



WG Timings: Grover with different representations
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Big Picture [ 1
ig Picture % 15
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Examples 0]
€ 10 ]
Software s
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esign o L ]
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Evaluation
Running
Timings 0 . ‘ ‘ : ‘
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Conclusion n
Extras Figure: Retrodictive execution of the Grover algorithm on secret

fo e value u = 0 at two sizes but using different ANF representations



Complexity

Problem: circuit with T generalized Toffoli gates over n + m
qubits split into two registers (A,B).
@ Design oracle / circuit.
o @® Let A=100...0) and B =100...0) and run classically.
e O(T). Leaves A intact, produce b in B.
Revdcti ©® Run backwards (symbolically) with A = |x,_1...x1x0)
and B = |b). Worst case, equations sized O(2"), so
O(Tm2").

@ Answer by inspecting/solving resulting m equations.

Cost Models



Complexity
Problem: circuit with T generalized Toffoli gates over n + m
qubits split into two registers (A,B).
@ Design oracle / circuit.
® Let A=100...0) and B =00...0) and run classically.
O(T). Leaves A intact, produce b in B.
©® Run backwards (symbolically) with A = |x,_1...x1x0)
and B = |b). Worst case, equations sized O(2"), so
O(Tm2").
@ Answer by inspecting/solving resulting m equations.
Bottlenecks:
e step (3) at worst case O(Tm2"),
e step (4) “solve”, which is NP-complete.
However:

® Sometimes ‘typical’ case has expected run-time
depending on bit-size of the information contained in the
answer.



=t Conclusion

e Different algorithms need different analyses to extract
answer.

® (Not shown in slides) Shor seems to need qutrits/qudits
in general.

Retrodictive

® For a number of classical quantum algorithms, classical
but symbolic execution works just as well.

S ® Even better: symbolic execute once instead of “enough
times to get probabilistic answer.

® Symbolic execution sometimes is really bad.

Conclusion

Cost Models



=t Conclusion

e Different algorithms need different analyses to extract
answer.

® (Not shown in slides) Shor seems to need qutrits/qudits
in general.

Retrodictive

® For a number of classical quantum algorithms, classical
but symbolic execution works just as well.

S ® Even better: symbolic execute once instead of “enough
times to get probabilistic answer.

® Symbolic execution sometimes is really bad.

Conclusion

® Speculation: some common quantum algorithms might
not need quantum after all.

Cost Models



=t Cost Models

® White-box model: We implement Ur and the cost of
implementing it and the cost of using it is counted as
R part of the overall complexity
® Black-box model: “Someone” implements Ur and gives
us access to it; the complexity analysis only counts the
S number of times Uy is used. There are different cases
based on what kind of access we are given:
® Query Ur on a classical input
® Query Ur on a quantum superposition
® Query Ur on a symbolic formula (NEW!)

Cost Models
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