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ABSTRACT
This paper presents a template for the commonality analysis
of a family of models of physical phenomena. The common-
ality analysis template includes documentation of the po-
tential system context, the variabilities between models and
the common aspects shared by all family members, including
sections for terminology, goals, assumptions and theoretical
models. The commonality analysis document also explicitly
shows the dependence between terminology, goals, assump-
tions, theoretical models and variabilities. The proposed
template is demonstrated by presenting the example of a
family of constitutive equations that model the deformation
of a material particle under an applied load.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specification;
J.2.0 [Computer Applications]: Physical Sciences and
Engineering

Keywords
Commonality analysis, program families, scientific comput-
ing, models of physical phenomena

1. INTRODUCTION
Scientific computing (SC) problems involve the use of com-

puter tools to analyze and simulate physical models of real
world systems so that scientists and engineers can better
understand and predict the behaviour of those systems. Al-
though the quality of the computer tools, and associated
algorithms and code, is very important in SC, their qual-
ity does not matter if the first step of building the physical
model is incorrect, or inaccurate. If the wrong model is cho-
sen, then all subsequent steps will yield meaningless results.
Given the importance of the physical model, it is surpris-
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ing that in many cases little attention is paid to its docu-
mentation. Although the governing equations and boundary
conditions are usually documented, in many instances not
all of the assumptions are made explicit and terminology,
sign conventions and the meaning of different symbols can
remain ambiguous. For instance, when the Euler-Bernoulli
equation is used for modelling the deformation of a beam,
the documentation of the model seldom explicitly states the
assumption that the beam is long and thin. When there
are potential problem like this, where ambiguity and com-
munication between different stakeholders is an issue, the
usual solution advocated by software engineers is to sys-
tematically gather, analyze and document the requirements.
Therefore, requirements documentation for physical models
is promoted here as a way to improve the quality of SC
software.

Previous work has looked at the documentation of require-
ments for physical models [16, 17], but this previous work
has not considered the case where the requirements are for
a family of physical models. With a family approach multi-
ple models are documented concurrently. For instance, us-
ing the family approach, the requirements for a thin beam
and a thick beam are documented together as two mem-
bers of a family of beam models. Within the requirements
document for the family, sometimes termed a commonality
analysis (CA) document [21], the common requirements are
highlighted and the variabilities between the models are enu-
merated and specified. This paper motivates and illustrates
the use of a CA for families of physical models for use in SC.

Where applicable, a CA is recommended for families of
physical models because of the benefits it provides. To begin
with, a CA provides all the benefits usually associated with
a requirements document. For instance, a CA can provide
improved communication, a basis for estimating costs and
schedules, improved opportunities for error detection and a
foundation for incremental delivery. In addition, a CA pro-
vides the benefits usually associated with the development of
software as a program family, such as reduced development
time, improved quality, reduced maintenance effort and the
ability to cope with complexity. A particularly exciting ad-
vantage of a CA is that it can form the starting point for
the design of a domain specific language (DSL) [19]. A DSL
facilitates the specification of family members using a small
language tailored to the problem domain of interest. The
DSL can then be used, often via code generation, to quickly



create (generate) individual family members.
A family approach also helps SC because it improves the

usability of the software. Usability often suffers in SC be-
cause of the current trend to develop physics solvers that
are as widely applicable as possible. For instance, mod-
ern stress analysis programs allow for intricate three dimen-
sional boundaries, complex constitutive equations and tran-
sient analysis. The level of sophistication is overwhelming
to the engineer who may only want to find the stress in a
rectangular plate made of a linear elastic solid. A program
family approach allows generation of family members that
have exactly the degree of complexity required for a particu-
lar domain. An additional benefit of customized applications
is that the generation of the family member can potentially
take advantage of potential simplifications to produce more
efficient code.

Although not in common use today, requirements and
commonality analysis, could potentially improve the pro-
cess of developing physical models and the associated SC
software. If a domain expert (or experts) invest the time
and energy to document a physical model, this investment is
repaid because the knowledge can be reused by many non-
domain experts. Rather than spending considerable time
learning the complexities of a domain, anyone working with
a member of a family of models can use the CA to inform
themselves on the necessary background. The CA allows
a non-expert to quickly develop the model for their own
problem, without the fear of inadvertently missing an im-
portant detail or assumption. In particular, the non-expert
can quickly judge the appropriateness of the physical model
by looking at whether the rationale for the documented as-
sumptions matches their needs. As the model changes over
time, the CA can help manage the change because it specifies
how each change in an assumption impacts the other parts
of the model. Since the CA provides a framework to monitor
changes in the model, it also provides a convenient way to
summarize and classify the existing literature and computer
implementations. A summary of this form quickly highlights
where progress in the physical modelling can still be made,
since it facilitates determination of which assumptions have
not yet been removed by the existing work.

If a DSL is developed for a given family of physical mod-
els, then the process of SC software development can be
improved even further. The process currently used for the
development of many SC programs is for a domain expert
to implement their model in a given programming language.
This requires that the physical modelling expert gain knowl-
edge outside their domain, namely they need to learn the
programing language, some computer science and possibly
some software engineering. Furthermore, if a family of re-
lated models is being developed, their implementation will
likely follow an ad hoc process. In many instances, a new
family member may be built by the error-prone, inefficient
and time consuming process of simply starting from previous
code and modifying it until the desired model is achieved.
A DSL will alleviate these problems. The DSL, which will
need to be created with the help of computer scientists and
software engineers, will be a language that is expressed in
the terminology of the expert. This means that there is
no need for the expert to learn a new language. Since the
code is generated, the domain expert does not need to dilute
their efforts on time spent writing code. Moreover, when a
machine generates the code, the process is much less than

error-prone than when a person does it. Also, the opportu-
nity exists for the generated code to be optimized, since it
does not need to employ the abstractions that are typically
employed by human programmers to make the code more
general and easier to read. Although the DSL is more work
than would be required for one program, the effort spent in
developing it quickly pays off when there are multiple family
members that need to be generated.

The first section below reviews the literature on program
families and on documenting requirements for SC. In the
section following this, a CA analysis template suitable for
families of physical models is presented. The next section
shows excerpts from an example CA for a family of mate-
rial behaviour models, where each member model consists
of equations that characterize the response of a material to
applied loads.

2. BACKGROUND
The idea that software should be developed using a pro-

gram family concept has a long history in software engineer-
ing. The idea of program families was first introduced in
the early 1970s by Dijkstra [5] and later investigated by Par-
nas [9, 10]. More recently, Weiss [1, 22] has considered the
concept of a program family in the context of what is termed
Family oriented Abstraction, Specification and Translation
(FAST) [21]. Other approaches to developing program fami-
lies, also known as software product lines, can be found in [3]
and [12].

Many of the ideas associated with program families are not
new to researchers in SC. For instance, Carette [2] shows how
to create a family of efficient, type-safe Gaussian elimination
algorithms by fixing different design decisions and then using
code generation. Code generation is also used in ATLAS [23]
and Blitz++ [20] to produce efficient and portable SC code
for linear algebra and array processing. Other ideas related
to program families, in particular software reuse and captur-
ing domain knowledge, figure prominently in SC research on
Problem Solving Environments (PSEs). A PSE is “a com-
puter system that provides all the computational facilities
necessary to solve a target class of problems efficiently” [13].
Although the contributions listed above can improve quality
and productivity of SC software, these examples have typ-
ically underemphasized the requirements stage and instead
focused on algorithms and design.

A requirements template for SC have been presented in [16]
and [17]. This template focuses on engineering mechanics
problems, which provide an example of the class of SC soft-
ware that is based on physical models. This class of SC
software involves solving governing equations for such de-
pendent variables as displacement, velocity, pressure, tem-
perature, and concentration. Another class of SC software
consists of multi-purpose tools. SC programs from this class
of programs are not tied to a specific physical model, but
rather they provide tools that can be used in many different
contexts, for instance to solve different physical models. The
members of the set of multi-purpose SC programs roughly
correspond to the chapters in a typical introductory SC text.
For example, typical multi-purpose tools include ordinary
differential equation solvers, linear solvers, numerical inte-
grators, mesh generators etc. A template for documenting
the requirements for families of multi-purpose tools is pre-
sented in [15]. Unlike the template presented for a single
physical model, the template for multi-purpose tools uses



a CA and a family approach. The current paper combines
these two previous approaches to create a CA template for
a family of physical models.

3. COMMONALITY ANALYSIS TEMPLATE
The first step in documenting a family of physical mod-

els it to determine the family of interest. The second step
consists of a Commonality Analysis (CA) on this identified
family. The CA can be seen as a method for summarizing
the requirements for all potential models that are consid-
ered to be within the scope of the project. The CA includes
documentation of the potential system context, commonal-
ities (including terminology, goals and theoretical models)
and variabilities. Previous CA templates [4, 21] have fo-
cused on embedded systems and information systems, while
the current template is aimed at scientific systems, or phys-
ical models. Although the overall structure of the proposed
template is similar to existing templates, the details differ.
In particular, the values of the variabilities in many of the
existing examples are chosen from a discrete set of choices,
whereas in the existing template the variabilities can have
types that are continuous.

A potential template for use when documenting a CA for
physical models is shown in Figure 1. The template includes
a section listing potential system contexts, user characteris-
tics and system constraints. The CA covers all the potential
physical models in the family, so it is not possible to know
exactly what information to place in these sections; however,
there will often be information that can be recorded on typ-
ical uses of the family members. Although the information
in this section cannot be presented as variabilities, because
it does not represent requirements, the hints provided in the
CA can later be refined during the process of application en-
gineering. The structure of the CA template for families of
physical models is essentially the same as that proposed for
multi-purpose SC tools [15], except that when document-
ing physical models the assumptions are considered to be
commonalities, as opposed to being variabilities.

1. Reference Material: a) Table of Contents b) Table
of Units c) Table of Symbols d) Abbreviations and
Acronyms e) Types

2. Introduction: a) Purpose of the Document b) Scope
of the Family c) Organization of the Document

3. General System Description: a) Potential System
Contexts b) Potential User Characteristics c) Po-
tential System Constraints

4. Commonalities a) Background Overview b) Termi-
nology Definition c) Goal Statements d) Assump-
tions e) Theoretical Models f) Derived Quantities

5. Variabilities

6. Dependence Graphs

7. Sample Family Members

8. References

Figure 1: Commonality Analysis Template

A “Terminology Definition” section is commonplace in re-
quirements documentation. In the case of the CA its in-
clusion is motivated by a need to clarify the domain con-
cepts and to serve as a reference aid. The contents of this
section consist of a list of mathematical concepts and their
exact meaning, along with associated symbols and sign con-
ventions. This section should provide enough information
to allow understanding of the later sections “Goal State-
ment,”“Assumptions,”“Theoretical Models,” and “Variabil-
ities.” The terminology section is necessary to make the
physical model unambiguous because terminology often has
subtly different meanings, even in very similar contexts.

The motivation of the goal statement section of the CA is
to capture the goals in the requirements process. A goal, in
this context, is a functional objective that each member of
the physical model is expected to achieve. The goal state-
ments do not include nonfunctional objectives because non-
functional requirements are not commonalities between fam-
ily members. Goals provide criteria for sufficient complete-
ness of a requirements specification and for requirements
pertinence. Goals will be refined in the Section “Theoretical
Models.” The goal statements are intended to be written at
a level that is easy to understand, which usually means that
goals are written using natural language. The goal state-
ments should briefly summarize the commonalities shared
by all models of the physical phenomenon.

The“Theoretical Models” section specifies the theory that
all members of the physical model share. The model is pre-
sented as it would be presented in a mathematics or physics
textbook. That is, the model is specified as the ideal mathe-
matical case, without reference to the limitations that an ac-
tual computer implementation will have to overcome. This
is done so that there is a relatively uncomplicated reference
model that all stakeholders can agree on and understand.

The “Assumptions” section emphasizes the importance of
assumptions to SC for making the theoretical model some-
thing that can be solved. In many cases, if no constraints are
placed on the theoretical model, then it cannot be solved nu-
merically for all possible inputs. The assumptions are used
as a means to transform the goal statement into a formal the-
oretical model. The assumptions are also potentially used
by some of the terminology definitions, when the associated
concept depends on an assumption. The assumptions are
shared by all family members. If an assumption is poten-
tially not shared between all family members, then it should
be documented as a variability.

For each of the variabilities in the CA there is a parameter
of variation and a binding time. The parameter of variation
specifies the type of the possible values for the variability.
The binding time is the time in the software lifecycle when
the variability is fixed. The binding time could be during
specification of the requirements (specification time), or dur-
ing building of the system (build time), or during execution
of the system (run time). It is possible to have a mixture of
binding times. For instance, a parameter of variation could
have a binding time of “specification or build” to represent
that the parameter could be set at specification time, or it
could be postponed until the given family member is built.
The presence of a DSL allows postponing the binding until
build time. The DSL itself could have the facilities to specify
that the binding will be postponed until run time.

The dependence graphs perform the role of showing the re-
lationship between the terminology, goals, theories, assump-



tions and variabilities. The dependence relation represented
by the graph is important so that change can be tracked
through the CA document. A traceability matrix with the
same purpose was introduced in [16, 17]. The dependence
graph summarizes the same information as the related com-
monality field that is suggested for each variability in the
Weiss approach [21].

The overall structure of the proposed CA template is simi-
lar to existing templates [16, 17], but the specific breakdown
of how information is given within each section is new. In
particular, each of the terminology definitions, goal state-
ments, assumptions, theoretical models and variabilities is
documented using a series of expected fields. A description
of each of these fields is provided in the next section, in the
context of a specific example of a family of physical models.

4. EXAMPLE OF A FAMILY OF MATERIAL
MODELS

The example CA presented here is for a family of ma-
terial models for predicting the deformation of a material
particle in response to some applied loading. The CA sum-
marized here provides a specification for an implementation
of this family, where the implementation has been previously
presented in [8, 18]. This family is of interest because the
modelling of deformation is necessary to solve many engi-
neering problems, such as for determining the deflection of
a structure, or the stresses in an airplane wing, or the thick-
ness of a manufactured sheet of plastic film. For problems
like these, where the material body cannot be assumed to
be rigid, the conservation equations of mechanics (conserva-
tion of mass and conservation of momentum) do not provide
enough information to solve for changes in the body’s config-
uration. To determine deformation, another equation has to
be introduced, the so-called closure or constitutive equation,
which relates the deformation history of the body and the
current stress field. A wide range of constitutive equations,
or material models, are used in engineering applications. For
instance, materials may be modelled as elastic, viscous, vis-
coelastic, plastic or viscoplastic. Although the behaviour of
these different types of materials can be very different, the
mathematics used to describe them is similar. This allows us
to find an abstraction that makes it possible to consider the
above range of material behaviours as a family of material
models, as described in this section.

Although the theory, terminology and equations presented
are not new, the manner in which the information is pre-
sented in the CA is apparently unique. A reasonably com-
plex theory is presented, but at the same time the document
remains self-contained. To accomplish this goal and at the
same time keep the size of the document small enough to be
practical, no attempt is made to cover the breadth of con-
tinuum mechanics, but within the scope of the constitutive
equations in the family, all necessary details are presented.
An example of this approach is illustrated by the presen-
tation of the definition of deformation that is given within
the CA. Although there are many potential measures of de-
formation, which are usually documented within continuum
mechanics textbooks, the only one necessary in the current
context, and thus the only one presented in the CA, is the
rate of natural strain tensor.

One way in which the example CA adds value, over what
could be achieved by simply reading the various sources on

which it is based, is that it employs a consistent notation and
terminology. Moreover, potential ambiguities that would ex-
ist when combining different documents are removed. For
instance, in continuum mechanics many different measures
of stress and strain are used, but a specific equation is only
valid for the specific measures for which it was derived. It
is not possible to simply swap one stress or strain measure
for another, especially in the case of large deformations. To
remove this potential ambiguity, the stress and strain mea-
sures associated with the presented equations are clearly de-
fined (see Section 4.1). Given that irrelevant details are left
out of the documentation, one may be concerned that im-
plicit assumptions about relevance were made during prepa-
ration of the document. To guard against this problem, the
CA should clearly document all assumptions. The docu-
mented assumptions also provide the important role of as-
sisting with delimiting the scope of the family.

4.1 Terminology Definition
This section consists of definitions of terminology that

are necessary to understand the modelling of material be-
haviour. These definitions will be used later to explain the
assumptions, goal statement, theoretical model and variabil-
ities. Although in some cases the definitions will look like
some of the variables that are introduced later, this section
is describing concepts, not specific variables. For instance,
it is the concepts of stress that is presented here, not a vari-
able; the concept of stress will later be used to understand
the input variable of initial stress and the output variable of
stress history.

The terminology definitions for the family of material mod-
els have the following labels: D Stress, D StrainRate, D Yield-
Function, D HardeningParameter, D PlasticPotential, D Des-
criptionOfMotion. For reasons of space, the full details of
each definition are not provided here. In the actual CA
each definition is presented using a tabular structure with
the following rows:

Label: The label is a short identifying phrase, each with
the prefix “D .” This label provides a mnemonic that
helps with quickly remembering which definition is be-
ing presented.

Symbol: This field shows the symbol that is used to repre-
sent variables related to this concept.

Type: Each variable designated by a symbol has a type
associated with it, which is listed in this field of the
data definition template. The type information helps
to clarify the meaning of the symbol and the variables.

Units: Where applicable the units associated with the sym-
bol are given. These units are given in terms of the
mass (M), length (L), time (t) and temperature (T).
For convenience the units are also given in SI.

Related Items: A related item is a data definition or as-
sumption that is used by the current definition. That
is, if the used data definition or assumption should
change, then the current data definition will also need
to be modified.

Sources: This field lists references that can be consulted
for additional information on the concept in question.



F = 0

∂Q

∂σ

Q = 0

Figure 2: Yield function, hardening and the plastic
potential in stress space

Description: The actual definition is given here. In some
cases where the description is lengthy, some of the de-
tails are moved to a section following the table. When
appropriate the description will reference the related
definitions and assumptions.

History: Each data definition ends with a history of the
definition, including the creation date and any subse-
quent modifications.

An example data definition for D YieldFunction is pro-
vided below. In this definition, the type tensor2DT is used
to represent two-dimensional tensors [7] and Q is known as
the plastic potential function [6, pages 356–377].

Label: D YieldFunction
Symbol: F = F (σ, κ)
Type: (tensor2DT× R) → R
Units: –
Related
Items:

D Stress, D HardeningParameter

Sources: [11]; [6, pages 327–356]; [7, pages 175–181];
[24, pages 74–78]

Description: The yield function defines a surface F = 0
in the six dimensional stress space, which
can be visualized by looking at the sketch in
Figure 2. Within this surface the material
behaves as an elastic solid. Outside this sur-
face the material is assumed to have yielded
and thus must obey a different constitutive
equation. When the material has yielded,
which occurs when the stress path reaches
the yield surface, as shown in Figure 2,
the yield surface may change shape. This
change in shape is caused by the strain hard-
ening (or softening) of the material. The
new yield surface is shown in Figure 2 as a
dashed line. This behaviour is mathemati-
cally represented in the yield function by its
dependence on the instantaneous values of
the hardening parameter κ, as described in
D HardeningParameter.

History: Created – June 15, 2007

4.2 Goal Statement
The family of material models has one common goal, as

shown in the table below. As for the data definition tables,
the goal is assigned a unique label and the table shows fields
for the description of the goal and its history. Goals also
have a field for “Refinement,” which shows which theoreti-
cal model refines the goal under consideration. Changes in
the theoretical model, potentially caused by changes in the
assumptions it is based on, may cause the theoretical model
to no longer satisfy the goal statement.

Label: G StressDetermination
Description: Given the initial stress and the deformation

history of a material particle, determine the
stress within the material particle.

Refinement: T ConstitEquation
History: Created – June 8, 2007

4.3 Assumptions
The assumptions for the family of material models have

the following labels: A ContinuumHypothesis, A CauchyStr-
ess, A DeformationHistory, A NoDistribMoments, A Small-
DefGradients, A CartesianCoord, A Isotropic, A Isothermal,
A AdditivityPostulate, A ElasticConstit, A PerzynaConstit,
and A DescriptionOfMotion. Each of the assumptions is
documented following a template similar to that adopted
for the data definitions in Section 4.1. As for the data def-
initions, the following fields are used: label, related items,
description, source and history. The new fields introduced
and an example assumption are as follows:

Equation: Some of the assumptions include an equation,
when this makes the description more precise. For
each equation the types of each of the terms is listed.

Rationale: This field justifies the appropriateness of the
assumption within the context of the current family.
If changes in the assumptions are made in the future,
it will be because the rationale is inadequate in some
sense.

Label: A AdditivityPostulate
Related
Items:

D StrainRate

Equation: ε̇ = ε̇e + ε̇vp

with the following types and units
ε̇ : tensor2DT (1/t) (1/s)
ε̇e : tensor2DT (1/t) (1/s)
ε̇vp : tensor2DT (1/t) (1/s)

Description: The total strain rate (ε̇) is assumed to de-
compose into elastic (ε̇e) and viscoplastic
(ε̇vp) strain rates.

Rationale: This is a standard assumption for elastoplas-
tic and elastoviscoplastic materials. The ap-
propriateness of this assumption is born out
by the success of theories built upon it.

Source: [6, page 339]; [7, page 181]
History: Created – June 11, 2007

4.4 Theoretical Model
The template for the table describing the theoretical model

uses the fields of label, related items, description and history,
as introduced in Section 4.1. In addition the table introduces
the following fields:



Input: The input field consists of a list of the input vari-
ables and their types. Where appropriate, the units of
the variables are listed as well.

Output: This field lists the output variable and its type.
The units of the output variable are listed as well.

Derivation: The derivation explains how the theoretical
model is derived from the assumptions on which it is
based.

The theoretical model for the constitutive equation is pre-
sented below. This model uses the type R+ for positive reals
and the type poissonT for a real number between 0 and 0.5.
In addition, the model uses symbols that are defined else-
where in the CA, but are not explicitly defined in this paper
because of space limitations. The symbols in question in-
cluding γ, which is the fluidity parameter, and φ, which is
a function of F . Finally, the units used in this example
include StressU, which is defined as L−1Mt−2, or in SI as
Pascal (Pa), where Pa = N/m2, with N for Newtons.

Label: T ConstitEquation
Related
Items:

A CauchyStress, A DeformationHistory,
A PerzynaConstit, A AdditivityPostulate,
A ElasticConstit, A DescriptionOfMotion,
V MaterialProperties

Input: σ0 : tensor2DT (StressU) (Pa)
tbegin : R (t) (s)
tend : R (t) (s)
ε̇(t) : {t : R|tbegin ≤ t ≤ tend : t} →

tensor2DT (1/t) (1/s)
mat prop val : string → R
E : R+ (StressU) (Pa)
ν : poissonT (dimensionless)

Output: σ(t) : {t : R|tbegin ≤ t ≤ tend : t} →
tensor2DT such that

σ̇ = D

„
ε̇− γ < φ(F (σ, κ)) >

∂Q(σ)

∂σ

«
and σ(tbegin) = σ0, the components of σ
have the units of StressU (Pa)

Derivation: The governing differential equation
is found by first solving for ε̇e in
A AdditivityPostulate and then substitut-
ing the resulting expression into the elastic
constitutive equation A ElasticConstit. The
final form is found by substituting in the
expression for ε̇vp from A PerzynaConstit.

Description: The theoretical model is only completely
defined once the associated variabili-
ties (V MaterialProperties) that define the
material have been set. Given the material
properties, which always include E and
ν, and the input parameters describing
the deformation ε̇(t) of the material par-
ticle over the relevant history from tbegin
to tend solve the governing differential
equation for the stress history (σ(t)) with
the initial condition that the stress tensor
σ(tbegin) = σ0.

History: Created – June 14, 2007

4.5 Variabilities
The labels for the variabilities in the family of material

models are as follows: V MatName, V PlasticPotential, V Hard-
eningParameter, V Phi, V FluidityParameter, V MaterialProp-
erties, V Description, V StressState, and V StrainState. The
tables used to present the variabilities, shown below, bor-
rows several fields from the terminology definition template
(Section 4.1) and adds a field for the binding time.

Label: V PlasticPotential
Related
Items:

T ConstitEquation

Symbol: Q = Q(σ)
Type: tensor2DT → R
Description: The plastic potential function (see Figure 2)

is one of the characteristics that distin-
guished one member of the family of mate-
rials from another. In the case of associative
materials, such as metals, the yield function
and the plastic potential function will be the
same. This is not the case for nonassociative
flow materials, such as soils. The units of
the plastic potential function depend on the
particular function. In many cases the units
will be StressU (Pa) or StressU2 (Pa2).

Binding
Time:

Specification or Build

History: Created – Aug 24, 2007

4.6 Dependence Graphs
Figure 3 shows the relationship between the common parts

of the family of material models: the goal, the theoretical
model, the data definitions and the assumptions. A line be-
tween a lower and higher entry means that a change in the
lower entry will likely require a change in the higher entry.
This dependence graph summarizes the “Related Item” field
in the tables given in the Commonalities Section. An ex-
ample of a potential change would be removing the assump-
tion that the material is isothermal (A Isothermal). As the
graph shows, removal of this assumption would mean chang-
ing the assumed form for the Perzyna constitutive equa-
tion (A PerzynaConstit) and the elastic constitutive equa-
tion (A ElasticConstit). The change would mean making
the material properties temperature dependent.

Figure 4 illustrates the dependence between the variabil-
ities and the associated commonalities, and potentially be-
tween variabilities. As for the previous dependence graph
(Figure 3), a line between a higher and a lower item shows
that the higher item depends on the lower item. In this
case if the lower item changes, then the associated variabil-
ity might need to be modified. Several of the variabilities
(V Description, V MatName and V MaterialProperties) de-
pend on other variabilities. This is to reflect the fact that
the other variabilities need to be set before it makes sense
to set the variabilities that describe the material and its
material properties. Figure 4 shows a dashed arrow be-
tween T ConstitEquation and V MaterialProperties to in-
dicate that expressing the theoretical model depends on the
choice of material properties. This dependency occurs be-
cause the input to the theoretical model includes the values
of the material properties, which can only be determined
once the material model is known.
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Figure 3: Dependence graph within the physical
model (commonalities) of the family of material
models
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Figure 4: Dependence between the variabilities and
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4.7 Sample Family Members
To clarify how the CA can be used to specify specific fam-

ily members, a section is provided listing potential family
members. The family members are specified by setting the
value of their variabilities. For this example the binding
time for the variabilities is specification or build time. The
example of a viscoplastic strain hardening material is pro-
vided. In this description, q is the effective stress [6, page
364] and η is the viscosity.

Label: E StrainHardening
V MatName name =“Strain-Hardening Viscoelastic”

V YieldFunct F = qκ
n−1

m (StressU) (Pa)
V PlasticPot Q = q (StressU) (Pa)
V HardParam κ = εvpq , which is the second invariant of the

deviatoric viscoplastic strain tensor. (L/L)
(m/m)

V Phi φ = F
m
n (StressU

m
n ) (Pa

m
n )

V FluParam γ = nA
1
n (StressU−mt−1) (Pa−ms−1)

V MatProps mat prop names = {“A”, “m”, “n” }, where
the type of the material properties are as
follows:

A : R+, m : R+, n : R+ (1)

There is likely an upper limit on the val-
ues for m and n, but at this time the value
of these limits is unclear. With respect to
units, m and n do not have units and A has
units of StressU−mt−1 (Pa−ms−1)

V Descrip descript = “This constitutive equation com-
bines a power-law viscoelastic material with
a strain hardening (softening) material.
A strain-hardening (softening) material is
one where accumulated viscoplastic strain
causes the material to be more difficult to
deform (easier to deform). The strain hard-
ening material will behave the same as the
power-law viscoelastic material if n = 1 and
it will behave like the linear viscoelastic ma-
terial if n = 1, m = 1 and A = 1

2η
. If n < 1

the material is strain hardening and if n > 1
the material is strain softening.”

Source [14]
History Created – Sept 21, 2007

5. CONCLUSIONS
This document presented a CA template for families of

models of physical phenomena. This template adds to the
already existing set of templates tailored to documenting
requirements for SC, which includes a template for a single
model of a physical phenomenon [16, 17] and for a family of
multi-purpose SC tools [15]. The new template’s structure is
similar to the structure of the previous SC templates. As for
the other templates, the structure is essentially top down,
with details added as one proceeds through it. Within the
details of each section of the template various fields were
introduced, such as fields for labelling the concept, describ-
ing the concept, providing a rationale and documenting the
relationship between concepts.

The first section of the proposed CA template serves the
purpose of introducing the family of models, while the sec-
ond section provides a general description of the physical
problem and the different contexts where the physical model
might be used. This second section includes subsections list-
ing potential system contexts, user characteristics and sys-
tem constraints. The third section presents the common ter-
minology and requirements, including assumptions, the goal
statement and the theoretical model. The fourth section de-
scribes the variabilities that distinguish the family members
and the fifth section includes dependence graphs that show
the relationship between data definitions, goal statements,



assumptions, theoretical models and the variabilities. The
final section provides examples of potential family members.

The example CA presented in this paper summarizes a
family of material models, where each member model con-
sists of equations, often called constitutive equations, that
characterize the material’s response to applied loads. The
CA for the material model family can be refined into part
of a requirements document for a specific physical problem
that requires a constitutive equation, or it can be used as
the basis for a DSL. In the case of a DSL, a specification for
a constitutive equation is written using the DSL and then
the necessary code can be generated from this specification.
To judge the effectiveness of the proposed CA, future work
will be performed using it to verify and enhance an existing
DSL that was designed to specify material models for use
within a virtual material testing laboratory [8].

Additional future work will consist of further justification
of the approach through additional examples and through
empirical study. Although similar techniques to those pro-
posed in this paper have been successful for other classes of
software, it has not been demonstrated that they will nec-
essarily be successful for SC software. Although rational ar-
guments have been presented for the potential effectiveness
of the proposed methodology, it is still necessary to quantify
the improvement in the software development process and
in the quality of the resulting software.
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[12] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer-Verlag, 2005.

[13] J. R. Rice and R. F. Boisvert. From scientific software
libraries to problem-solving environments. IEEE
Computational Science & Engineering, 3(3):44–53,
Fall 1996.

[14] W. S. Smith. Simulating the Cast Film Process Using
an Updated Lagrangian Finite Element Algorithm.
PhD thesis, McMaster University, Hamilton, ON,
Canada, 2001.

[15] W. S. Smith. Systematic development of requirements
documentation for general purpose scientific
computing software. In Proceedings of the 14th IEEE
International Requirements Engineering Conference,
RE 2006, pages 209–218, Minneapolis / St. Paul,
Minnesota, 2006.

[16] W. S. Smith and L. Lai. A new requirements template

for scientific computing. In J. Ralyté, P. Ȧgerfalk, and
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