
Journal of Seismology, Accepted, http://link.springer.com/article/10.1007/s10950-018-9731-3
The final publication is available at link.springer.com

Seismology Software: State of the Practice

W. Spencer Smith · Zheng Zeng · Jacques Carette

Available on-line: February, 2018

Abstract We analyzed the state of practice for soft-

ware development in the seismology domain by com-

paring 30 software packages on four aspects: product,

implementation, design and process. We found room

for improvement in most seismology software packages.

The principal areas of concern include a lack of ade-

quate requirements and design specification documents,

a lack of test data to assess reliability, a lack of exam-

ples to get new users started, and a lack of technological

tools to assist with managing the development process.

To assist going forward, we provide recommendations

for a document driven development process that in-

cludes a problem statement, development plan, require-

ments specification, verification and validation (V&V)

plan, design specification, code, V&V report and a user

manual. We also provide advice on tool use, including

issue tracking, version control, code documentation and

testing tools.

Keywords Seismology, Scientific Computing, Soft-

ware Quality Model, Analytic Hierarchy Process

(AHP), Software Engineering

1 Introduction

Seismology is the scientific study of earthquakes and

seismic waves through and around the earth. Many

valuable software tools have been created by end user

developers in the seismology community. The devel-

oped software tools automate the task of processing

Computing and Software Department
McMaster University, Hamilton, Ontario L8S 4L7, Canada
E-mail: smiths@mcmaster.ca

large amount of data, analyzing patterns with complex

calculations, simulating seismic waves, making seismo-

grams, etc. As in other scientific domains, the software

provides crucial support to the important work of seis-

mologists. Given the importance of the software, and

its value to various scientific and engineering communi-

ties, it is worthwhile to discuss whether there is room

for improvement in the quality of existing seismology

software.

In recent years, software researchers and scientists

have found that many Scientific Computing (SC) soft-

ware tools show room for improvement in terms of qual-

ity (Wilson et al 2013). This is, in part, explained be-

cause many SC tools are developed by scientists or re-

searchers (Carver et al 2007; Kelly 2007; Sanders and

Kelly 2008; Segal 2007a,b; Segal and Morris 2008), rather

than software engineers or computer scientists. These

scientist developers are known as “professional end-user

developers” (Segal 2007b). They work in their own do-

main, as an expert, developing tools to help with their

professional goals. Given the typical background of the

end user developer, software engineering methods are

not widely applied in scientific communities (Kelly 2007,

2013; Segal and Morris 2008). Moreover, some of the

developers tend to be averse to “process-oriented” de-

velopment processes (Carver et al 2007).

Our goal is to better understand, from a software

engineering perspective, the current state of practice

for seismology software. We build on our previous work

measuring qualities in other scientific domains, includ-

ing Geographic Information Systems (Lazzarato et al

2015), mesh generation (Smith et al 2016b, 2015a), psy-

chometrics (Smith et al 2015b) and oceanography (Smith

et al 2015c). The authors of this paper are not domain

experts in seismology, but they have been working in

the software industry, or doing software engineering re-



2 W. Spencer Smith et al.

search, for a combined total of more than 62 years. We

develop a systematic methodology to assess quality, but

we exclude comparisons based on the functionality pro-

vided by the available software packages. Given that

we are outsiders to the seismology community, we can

be objective. We aim to determine why some software

packages achieve good quality while others do not. We

will also provide suggestions for improving seismology

software quality in the future. The goal is to provide

insight to the communities on what is working well and

what area could be improved going forward.

In Section 2, we will present background informa-

tion for this study. Our methods will be provided in

Section 3. Project results will be shared in Section 4.

In Section 5, we provide our recommendations, includ-

ing an overview of a document driven design process.

Conclusions are found in Section 6.

2 Background

In this section, we summarize our software quality defi-

nitions and we introduce our use of the Analytic Hierar-

chy Process (AHP). AHP provides us with a systematic

means to compare software packages across different

quality attributes.

2.1 Software Quality Definitions

Software is very different from traditional manufactured

products, which can be touched and unambiguously

measured. For software, we need to explicitly state the

definitions for the qualities of interest. We adopt the
software quality definitions from Ghezzi et al (2003).

The qualities are presented below in the same order as

in Ghezzi et al (2003), bookended by two additional

qualities of interest for this project: installability and

reproducibility).

Installability Before a user can take advantage of a

software product, installation has to occur. Instal-

lability is the degree of effectiveness and efficiency

with which a product or system can be successfully

installed and/or uninstalled in a specified environ-

ment (ISO/IEC 2010). Installability can be achieved

by giving installation instructions, or an automatic

installation tool or script, or executable binary file,

etc. An easy and verifiable installation is preferred

by users. Achieving good installability is important

for professional performance (Simmons and Sea 1994).

Correctness The term correctness is often mentioned

as a degree to which software meets the requirement

specification (IEEE 1990). In this definition, the

specification has to exist to determine whether the

software is compliant with it or not. The functional

requirement specifications are rigidly required by

projects in software companies; but, in SC software

development, this is not always the case (Sanders

and Kelly 2008; Segal 2007b). Strictly speaking, es-

pecially in some algebraic specification languages

(IEEE 1990; Bidoit et al 2002), correctness is a math-

ematical property that represents the equivalence

between a program and its specification.

Verifiability This quality is sometimes referred as testa-

bility, since the focus is on measuring how easily the

properties of a software can be checked or proven.

Theoretically, program verification is part of the

broader area of formal methods (Almeida 2011),

which along with correctness can be established by

mathematical models in rigorous software develop-

ment. In practice, we often consider approaches that

are more feasible, such as testing, to build confi-

dence, rather than formal analysis methods.

Reliability As we know for complex software there is

no such thing as “bug-free” software, so reliability

is defined to be a measurement of the extent to

which the user can depend on the software, even

if it is not absolutely correct for all possible inputs.

Formally, reliability is a measure of the probability

that the software performs its required function un-

der stated conditions for a specified period of time

(IEEE 1990).

Robustness When a software product is put into use,

it does not always get the expected command or

data. Robustness then is about the ability of the

software to deal with unexpected input. It is not

easy to have a complete definition, but we can ex-

pect it to have “reasonable” behaviour in the pres-

ence of invalid inputs or an unexpected environ-

ment. This quality is related to error tolerance.

Performance Performance is typically about memory

usage, storage, and speed. Usually performance is

considered as an important non-functional require-

ment, which is expected to be optimized after func-

tional requirements have been met.

Usability This terminology is also known as User Friend-

liness (Ghezzi et al 2003). This quality depends on

the user interface design, regardless of whether the

interface has a GUI or not. Helpful support, such as

a user manual or a user community, also contributes

to a software’s usability. Formally, usability reflects

the extent of ease with which users can learn to op-

erate and interpret the output of the software (IEEE

1990).

Maintainability In modern software engineering, main-

tainability has become one of the most important



Seismology Software: State of the Practice 3

aspects for software. The maintenance period is the

longest working phase and the most costly, being

estimated to constitute at least 50% of the total

project lifecycle costs (van Vliet 2000, p. 450). Main-

tainability is a crucial factor to software’s success.

Maintainability is determined by documentation ar-

tifacts, management processes, tools, development

standards, etc. Maintainability can typically be con-

sidered from three perspectives: corrective, adaptive

and perfective (Ghezzi et al 2003). It is a complex

measurement to assess the health of the develop-

ment process and sustainability of the product de-

livery. Maintainability is the ease with which a soft-

ware product can be modified for correction or im-

provement (IEEE 1990).

Reusability In terms of software products, rather than

the development process, reusability often refers to

reusable components. Generally speaking, reusabil-

ity is about the degree to which a software product

or a component, can be used in another software

system (IEEE 1990).

Portability Portability is the ease with which soft-

ware, or a component, can be transferred from one

platform (or environment) to another. This ability

can be achieved by either adopting a platform in-

dependent programming languages or branched de-

velopment for different environments. Portability is

often required by those software products designed

as tools or invokable as libraries.

Understandability (of code) Understandability is con-

sidered as an “internal product quality” (Ghezzi

et al 2003), since the user does not directly see

this quality. Understandability measures the ease

with which a new developer can understand the de-

sign and source code. Good understandability con-

tributes to maintainability, and provides critical in-

formation for verifiability.

Interoperability Interoperability plays an important

role in highly integrated software, where the work-

flow involves multiple applications. There are differ-

ent forms of interoperability, such as the ESB (En-

terprise Service Bus) integrated system, which uses

a standardized message format; or the Microsoft Of-

fice products, which have internal connections with

each other. Here, we mean syntactic interoperabil-

ity, which is the ability of more than one software

packages to exchange their information and use it.

Visibility/Transparency This terminology in soft-

ware engineering is about the development process.

A well formed development process will clearly de-

fine its working phase to coordinate the develop-

ment team. Usually it means that, under a certain

development process, the current progress and sta-

tus are visible to the whole team. Visibility is in-

tended to ensure that everyone knows where they

are standing and where they are going. This kind of

transparency reduces the possibility of project fail-

ure due to some fatal mistakes made by a single

team member.

Reproducibility The aim of reproducibility is to pro-

vide enough information to enable anyone to ver-

ify scientific research results. Davison (2012) ob-

serves that reproducibility is part of the definition

of the scientific method. Reproducibility is often

archived by manual recording of details on the de-

velopment environment (mainly including run-time

platform and test data), or automated tools such as

the Madagascar framework (Fomel et al 2013) and

Sumatra (Davison 2013, 2012).

2.2 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP) is a structured

analysis technique developed for multi-criteria decision

making by Saaty (Triantaphyllou 1995). AHP is used

in a wide variety of decision making situations and for

tasks such as prioritization, resource allocation, bench-

marking and quality management (Forman and Gass

2001). We adopt AHP in our project because it is a

proven systematic method that helps eliminate bias caused

by personal perceptions and judgments (Saaty 2008-09-

01). AHP has the benefit that it does not require that

qualities like maintainability and usability be measured

on the same scale. Instead, the measurement is the rel-

ative importance of one quality versus another, or the

relative capability of one software option over another,

for a given quality. The emphasis on pairwise compar-

isons means that the determination of each of the inputs

to the AHP process does not have to consider the com-

plexity of the overall problem, but rather can focus on

the much simpler problem of comparing two things at

a time.

The AHP process is composed of three steps (Saaty

1990): i) breakdown the complex problem (or goal) into

a hierarchical structure of sub-problems (or sub-goals);

ii) evaluate the elements by pairwise comparison; iii) cal-

culate numerical properties of each alternative.

AHP analysis centres around n alternatives (the

software packages) and m criteria (the software qual-

ities). For a given project, pairwise comparisons are

made between the m criteria to determine the priority

ranking between the criteria. Similarly, pairwise com-

parisons are made between the alternatives to rank them

for each criterion (quality). The pairwise comparisons

are quantified using the 9 point scale proposed by Saaty



4 W. Spencer Smith et al.

(Triantaphyllou 1995). Assuming a priority ranking be-

tween qualities, we can use AHP to produce a ranking

for a set of software packages.

3 Methods

Although we have definitions of software qualities, we

still need to determine how the qualities are to be mea-

sured. Practitioners and researchers have been trying

to assess software quality through quality models dat-

ing back to the 1970s. Since then, quality models have

become a well-accepted means to prescribe and describe

software quality. Realizing that different intentions should

have different quality models, we produced a hierarchi-

cal quality model for SC software, which combines both

quantitative and qualitative approaches.

3.1 Overview

We selected the seismology domain for analysis since

it involves heavy usage of SC software and there is a

strong research community. In our analysis, we consid-

ered 30 seismology software packages. Most of them are

listed by Incorporated Research Institutions for Seis-

mology (IRIS) SeisCode (Lang 2013), which is a com-

munity repository for software used in seismology and

related fields. Others were found from university re-

search projects and some seismology research organi-

zations, such as Computational Infrastructure for Geo-

dynamics (CIG) (for Geodynamics 2014). The full list

of the selected software, along with their url’s, can be

found in Appendix B.

Some of the software packages on the lists provide

data manipulation assistance, such as data collection

and data exchange. Given our interest in SC software,

we did not select data manipulation programs; we se-

lected software packages that are more computation-

ally intensive, including digital seismic signal process-

ing, data transformation, complex calculation and dis-

playing. In the SeisCode community, the software we

selected is categorized as data processing. Once the soft-

ware packages were selected, we worked on our quality

assessment step by step.

For the first step, we determined the template for

measuring each software package against each of the

quality criteria. In Section 3.2, we will see these mea-

sures should be objective and reliable. This template is

the same as that used in the analysis of other SC soft-

ware domains (Smith et al 2016b; Lazzarato et al 2015;

Smith et al 2015a,b,c). The 56 questions that make up

the grading sheet are provided in Appendix A and at

http://dx.doi.org/10.17632/67ncspgz8n.1.

After we finalized our list of measurements, the sec-

ond step was to download the selected software pack-

ages and setup virtual machines to create clean envi-

ronments for their installations. Virtual machines were

used for installation and testing because this simpli-

fies adding and removing software. Each installation

starts from a “clean slate;” we do not have to worry

about strange and unexpected interactions with exist-

ing libraries. This also gives us a pure and fair test

of installability, since an installation should work on

a fresh operating system. After installation, each soft-

ware package was then graded out of 10 on each quality

criteria, following the grading template. All of the mea-

surements are only based on information that can be

found by searching on-line, as opposed to directly ask-

ing question of the developers. This approach provides

a true measure of what a new user faces, and it creates

a fair environment where all software is judged on equal

footing.

In the third step, we used the grading results to con-

struct our AHP tables. These tables compare each soft-

ware package for each quality. Details on how the objec-

tive measures for each software package are converted

into pairwise scores is found in (Smith et al 2015c).

Given that we have no information about the priority

of the qualities, since this differs between projects, we

give each criteria the same weight. The AHP results can

then be summed to give an overall quality ranking for

the seismology software.

Finally, to verify the reproducibility of our methods,

we did a peer review of 5 random software packages. A

separate reviewer followed the same method and met-

rics as originally used. The two reviewers differed in the

intermediate grading sheet results. However, the AHP

method smooths out this problem because it turns the

grades out of 10 into relative comparison. As long as

the reviewers are themselves internally consistent, the

relative differences between the two reviewers should

follow the same pattern. In our verification exercise,

the final AHP results from the different reviewers were

consistent, which supports our belief that our results

are reproducible and our method is reliable.

The initial grading of the seismology software took

place in the Spring of 2014. The data for those packages

that had changed was updated in the Summer of 2017.

3.2 Hierarchical Quality Model

Our quality model is based on the quality definitions

provided in Section 2.1. For each quality we need to de-

termine an associated set of feasible metrics. Our met-

rics were selected to satisfy the “seven criteria for a

good metric” suggested by Watts (Gillies 2011):



Seismology Software: State of the Practice 5

1. Objective: The results should be free from subjec-

tive influences, no matter who the measurer is.

2. Reliability: The results should be precise and re-

peatable.

3. Validity: The metric must measure the correct char-

acteristics.

4. Standardization: The metric must be unambiguous

and allow for comparison.

5. Comparability: The metric must be comparable with

other measures of the same criterion.

6. Economy: The simpler and, thus less expensive, the

measure is to use, the better.

7. Usefulness: The measure must address a need, not

simply measure a property for its own sake.

One of the consequences of applying the above cri-

teria, is that some of the qualities can only be measured

on the surface. The economic reality is that we only had

between 2 to 4 hours to spend measuring each of the 30

software products. When a quality can only be surface

checked, we make explicit note of this. Our measures

also need to be feasible. We do not have access to in-

formation that the developers have not made publicly

available. If there are details of the development process

that are not publicly posted, they are not considered.

By staying with what is publicly available, we achieve

objectivity and standardization.

With our goal of assessing quality, we consider four

aspects of seismology software quality, as shown in Ta-

ble 1. The connection between the aspects and qualities

is also provided in Table 1. Our quality model has 4 as-

pects with 13 criteria and 56 metrics in total.

3.3 Example

Here we take installability as an example, to show how a

quality metric is quantified and measured. For many SC

software packages, installability is often overlooked. As

we have learned, these software packages are often de-

veloped by “professional end-user developer,” who may

not have fully tested their application in different en-

vironments. New users may encounter difficulties due

to different system configuration. To measure installa-

bility for each software product, we installed it on a

virtual machine, recorded the steps and answered the

questions for installability given in Appendix A.

We give each metric a grade out of 10. In the current

example, we have 7 questions for installability. Each

of these questions will get about 1.5 points out of 10.

The absolute answer of “Yes” or “No” will directly get

points. For those questions that do not have an absolute

“correct” answer, such as the count of the number of

steps, we base the result on a comparison to the average

response on this metric. Considering all the responses

leads to an overall impression (an integer between 0 and

10). For example, by installing rfsyn, JRG and JEval-

Resp, we will have the grading results shown in Table 2.

In this example, JEvalResp scored the highest because

it was the only package that automated the installation

and provided a means to validate it.

This process will continue for all 30 seismology soft-

ware packages. After that, we convert the grading sheet

to a 30× 30 pairwise comparison table for each quality

criteria by doing a relative comparison between each

software package on each quality metric. In total, there

are 13 pairwise comparison tables for AHP. The full

grading results can be found in Appendix B. In the

next section, we will share our AHP results for each

quality aspect and measurement.

4 Results

Figure 1 shows a summary of the AHP results for all

4 aspects (product, implementation, design and pro-

cess). The packages are sorted in ascending order, with

a higher rating meaning better performance. In the sub-

sequent sections, which go through each aspect in turn,

we will use the same ordering as given in Figure 1.

Figure 1 highlights two software products (PITSA

and OregonDSP) that we could not install, despite a

significant amount of time attempting the installation.

If they could have been installed, then these two prod-

ucts may have scored higher on the qualities of cor-

rectness, reliability, robustness and usability, since these

qualities each include at least one measure that requires

running the software. For instance, for reliability, one

cannot judge whether the software breaks during initial

testing, if one cannot run the software. The complete

list of measures that require a successful installation are

indicated in Appendix A. Even though not all qualities

are accurately assessed when we cannot install the soft-

ware, the decision was made to include the uninstallable

software in the study for the following reasons: i) As

Appendix A shows, only 7 of 56 questions used to mea-

sure the software actually require running the software;

ii) For some of the measures that require running the

software, we can do an approximate measurement, such

as using user manual screenshots to judge the usability

metric associated with “look and feel;” and, iii) If we

think about the purpose of our AHP measurements to

be aiding a user in selecting a software product, poten-

tially reducing a few quality measures is not significant,

since the user will never select a software package that

they cannot install. In each case where the lack of in-

stallability has a potential impact on the measurements

in question, this will be explicitly noted.



6 W. Spencer Smith et al.

Table 1 Aspects of Quality

Aspect This Aspect is About Criteria (Qualities)

Product The software package itself Installability, Usability, Reliability
Implementation The development or coding phase Correctness/Verifiability, Maintainability, Understandability
Design The design of the finished product Robustness, Performance, Reusability, Portability,

Interoperability
Process The software development process Visibility, Reproducibility

Table 2 Example of Installability Grade Sheet

Question rfsyn JRG JEvalResp

Are there installation instructions? Yes Yes Yes
Are the installation instructions linear? Yes Yes Yes
Is there something in place to automate the installation? No No Yes
Is there a means given to validate the installation? No Yes Yes
How many steps were involved in the installation? 2 1 1
How many software packages need to be installed? 0 1 3
Run uninstall, if available. Any obvious problems? No No No

Overall Impression (/10) 5 7 10

Fig. 1 Overall Quality Ranking (software marked with an asterisk (*) could not be installed)

Tables 3 and 4 summarize software packages that

are alive and dead, respectively. About one third (11

out of 30) of the software is considered alive, since they

were updated during the past 18 months; the rest (19 of

30) appear to be dead, or at least dormant. Most (22 out

of 30) of the software is public, as defined by Gewaltig

and Cannon (2012). Five of them are private software

(Gewaltig and Cannon 2012) and the others are POC

(Proof Of Concept) (Gewaltig and Cannon 2012) pro-

grams. (Gewaltig and Cannon (2012) proposed a re-

vised 4-category classification system (Gewaltig and Can-

non 2014), but for our purposes the simpler 3-part clas-

sification system meets our needs.) There are many (22

out of 30) command line tools; 5 out of 30 have a GUI

(Graphic User Interface) and the rests are used as pro-

gram libraries.

The software tools summarized here are all written

by scientists or related researchers (including students

during their Master’s or PhD studies). This finding is

consistent with many literature reports (Segal 2007a).

About half of the software packages (16 out of 30) have

related publications. There is no commercial software in

our set of programs; most of them (28 out of 30) have

source code available. We found C/C++ is the dominant

(13 out of 30) programming language used for seismol-

ogy software, followed by Java (9 out of 30). The other



Seismology Software: State of the Practice 7

Table 3 Alive Seismology Software Packages

Name Type UI Language Released Updated

fissuresutil Private lib Java 2012 Jun 2016 Jul
jAmaSeis Public GUI Java ? 2017 Jan
SEISMIC CPML Public cmd FORTRAN ? 2017 Apr
AIMBAT POC cmd Python 2012 Sep 2016 Aug
JRG Private GUI Java 2003 Jul 2016 Apr
CWP/SU Public cmd C 1987 2017 Apr
GEE Public GUI Java 2003 Oct 2016 Nov
TauP Public GUI/cmd/lib Java ? 2017 Mar
SOD Public cmd Java ? 2016 Nov
PRESTo Public GUI C++ ? 2016 Mar
Earthworm Public cmd C 1993 2016 Nov

Table 4 Dead Seismology Software Packages

Name Type UI Language Released Updated

rfsyn POC cmd FORTRAN 2001 Mar 2001 Oct
PITSA Public cmd C ? 1993 Nov
RECFUNK09 POC cmd FORTRAN ? 2009 Jul
Jpitsa Public GUI Java ? 2000 Jan
Station Analysis Tools POC cmd C ? 2015 Sept
OregonDSP Public lib Java ? 2011 Feb
evalresp Public cmd C 1997 Mar 2012 Oct
Seismic Handler Private cmd Python 2008 2013 Feb
NonLinLoc Public cmd C ? 2011 Mar
tracedsp Private cmd C ? 2014 Mar
msmod Public cmd C 2006 2013 Oct
FilterPicker Public lib C 2011 Nov 2013 Feb
FreeUSP Public cmd C 1974 2012 Apr
iaspei-tau Public cmd FORTRAN ? 2009 Jun
JEvalResp Public cmd Java 2003 Sep 2014 Apr
focmec Public cmd FORTRAN 1984 Oct 2009 Jun
FLEXWIN Public cmd C ? 2012 Aug
Mineos Public cmd FORTRAN ? 2011 July
SAC Public cmd/lib C 2004 Dec 2013 Nov

languages are FORTRAN (6 out of 30) and Python (2

out of 30).

Comparing Tables 3 and 4, we see that most FOR-

TRAN software (83%) is classified as dead. Python has

no examples in the dead category. The second lowest

percentage of dead software is for C/C++, where only

29 % of the selected packages are dead. Java software

packages have about half (56 %) of the packages classi-

fied as dead.

4.1 Product Aspect

The product aspect sums the AHP scores for instal-

lability, usability and reliability, as shown in Figure 2.

The top software packages in this aspect are JEvalResp,

focmec, SOD and PRESTo.

Most of the software packages have good installa-

bility, either by unzipping a compressed file, an auto-

mated installer, or a makefile. The installation guide

is also provided in most cases. Some of the software

products include the required external libraries as part
of the zip file. This reduces the need for extra down-

loading by the user and ensures the use of the correct

library version. Software packages like GEE, CWP/SU

and focmec have done well by providing detailed in-

stallation guides, or an easy-to-use installer. Moreover,

their installation can be verified either by an installa-

tion report or test case. However, the software PITSA

and OregonDSP need improvement on installability, be-

cause we were unable to install them, due to unlisted

dependencies on other libraries. The installability issues

may be tied to the fact that these packages are classified

as dead.

In the criteria of usability, we found most (21 out

of 30) software packages provide getting started tutori-

als, or proper beginner examples. Many (19 out of 30)

packages include explanations of the examples. Except

for the unable-to-run software packages listed above,

which we were unable to measure, all application have

a standard “look and feel,” which contributes to their



8 W. Spencer Smith et al.

Fig. 2 Product Aspect (software marked with an asterisk (*) could not be installed)

ease of use. Nevertheless, only a few of them (3 out 30)

mentioned their target users in terms of background

or required knowledge. This may cause uncertainty for

a new user. We were not able to find any support for

several products (4 out of 30); others are supported by

E-mail or community forums. Software packages like

SAC, FilterPicker, FLEXWIN and PRESTo have done

an obviously good job in this criteria. But others, like

PITSA, shows its age here, with no support being pro-

vided. We were unable to find user manuals for Jpitsa,

rfsyn and fissuresutil.

For reliability, most (25 of 30) of the software pack-

ages had no trouble with installation, but only about

half (14 out of 30) provided simple initial tutorial tests,

out of which 4 packages had trouble running the initial

tests. We have good examples such as SOD, GEE and

FilterPicker. However, packages like PITSA appear to

be unreliable. PITSA could not be compiled and no

tutorial examples were provided. Although marked as

“reliable software” on its website, we found Earthworm

had many problems while installing from source code

under Linux, and the tutorial steps were difficult to un-

derstand and follow.

4.2 Implementation Aspect

In our hierarchical quality model, we have criteria of

correctness and verifiability, maintainability and under-

standability under the aspect of implementation. Based

on our inspection, we believe there is room of improve-

ment for this aspect. The chart in Figure 3 provides the

AHP quality assessment summary. The top software

packages in this aspect are PRESTo, FLEXWIN and

FreeUSP. The measurement of correctness for PITSA

and OregonDSP may be underestimated, since these

two products could not be installed.

When measuring correctness and verifiability, we

found only 6 software packages had a document that

could be considered as a requirement specification. No

software was found that provides a formal requirement

specification. Requirements documentation is important

for confirming the correctness of software, since correct-

ness can only be judged when there is a clear statement

of what the tool is expected to do. Half of the soft-

ware make use of standard libraries, while 5 of them

are used themselves as libraries. Only half provide test
data, with the other half providing standard, usually

simple, examples. Only rarely is the expected output

provided to verify the results. One of the good packages,

FLEXWIN, uses SAC and has test cases and gives ex-

pected output. focmec, which is developed using iaspei-

tau, provides test cases and expected output; in this

case, the authors’s paper can be considered as its infor-

mal requirement specification. We were unable to find

any convincing correctness and verifiability evidence for

software like Seismic Handler and PITSA.

We found that seismology software should proba-

bly pay more attention to the criterion of maintainabil-

ity. Most (24 out of 30) have change logs from which

we can see that major bugs have been fixed. Half of

them provide a history of multiple versions. However,

only a few (7 out of 30) mentioned how to contribute

source code, or source code review. Moreover, only 8 of

the packages have an explicit issue tracking system and

only 10 packages have a version control system (5 for

SVN, 5 for git). Version Control is considered crucial



Seismology Software: State of the Practice 9

Fig. 3 Implementation Aspect (software marked with an asterisk (*) could not be installed)

tool for team collaboration (Wilson et al 2013; Wil-

son 2006). Software like Mineos, Earthworm and SEIS-

MIC CPML have relatively good maintainability; but

fissuresutil, RECFUNK09 and Jpitsa provide little in-

formation to convince one that maintainability was con-

sidered in their design.

Most of the seismology software packages did a good

job on the criteria of understandability by having con-

sistent coding style, meaningful identifiers and descrip-

tive naming, etc. Nearly half of the packages (14 out of

30) gave the name or URL of the algorithm used. How-

ever, we found only a few of them (8 out of 30) had an

explicitly stated coding standard. Many packages only

have comments on the critical blocks of code. Unfor-

tunately, only 3 packages have an explicit design doc-

ument (including published papers). We believe a de-

sign document significantly contributes to a software’s

understandability. A very good example is Earthworm,

which provides abundant information, while PITSA and

rfsyn are at the other end of the understandability spec-

trum.

4.3 Design Aspect

For the design aspect, we examined if software quali-

ties like robustness, performance, reusability, portabil-

ity and interoperability have been considered in the

design of the software packages. Figure 4 shows the

AHP quality assessment for the design aspect. The top

software packages in this aspect are Mineos, msmod

and SAC. As mentioned previously, the robustness of

PITSA and OregonDSP may underestimated, because

they could not be installed.

During our surface check on the criteria of robust-

ness, we checked whether each software package can

gracefully handle garbage input. Since several (4 out of

30) software packages only retrieve already formatted

data from network servers, they have no need to deal

with different input file formats. But, there are many

(12 out of 30) software packages that have no test data

or are unable to run; therefore, we were not able to mea-

sure their robustness. A good example for robustness is

Taup, since it identified incorrect input. On the other

hand, FilterPicker failed to terminate when given an in-

correctly formatted input file, although error messages

were correctly displayed.

Performance was only measured on the surface be-

cause we do not have domain expertise, or enough time

to measure it more deeply. To measure performance, we

looked for evidence that performance had been consid-

ered in the software. There are several software pack-

ages that have performed well in this, such as the soft-

ware tracedsp, which can take multiple input files at a

time and then process them in parallel. Mineos used a

benchmark tool to test and optimize its performance.

Based on their own designs, reusability may not be

a mandatory requirement for all software, especially for

standalone applications. We found nearly half of the se-

lected packages (14 out of 30) had obvious evidence for

reusability, either as library or as a tool. Many (13 out

of 30) clearly documented their Application Program

Interface (API), or command line tools. Some good ex-

amples, like msmod, can process data directly, or can

be reused as a library of functions. One of the best ex-

amples of API documentation was FilterPicker.



10 W. Spencer Smith et al.

Fig. 4 Design Aspect (software marked with an asterisk (*) could not be installed)

Portability has been achieved for most of the soft-

ware products. We found many of them (12 out of 30)

had convincing evidence in their documentation that

portability had been achieved. In fact, 19 packages have

the ability to run on more than 1 platforms, includ-

ing Linux, Mac and Windows. Many of them achieved

portability by conditional compilation (8 out of 19) or

branched versions for different operating systems (7 out

of 19). The other 4 software packages achieved porta-

bility implicitly, since they are developed on platform

independent languages (Python or Java).

For the criteria of interoperability, we found seis-

mology software packages are naturally interoperable,

since they generally share input or output in a stan-

dard data format. Data interchange is clearly planned

in the seismology domain, and all the selected examples

possess syntactic interoperability.

4.4 Process Aspect

The process aspect includes the criteria of visibility/

transparency, to check whether any defined develop-

ment process has been used in its project, and the qual-

ity of reproducibility, which is central for long-term sci-

entific work. Figure 5 is our quality assessment sum-

mary for the process aspect. The top software packages

in this aspect are Earthworm, TauP and FLEXWIN.

We have stated the importance of the development

process in Section 2. Unfortunately, for the criteria of

visibility/ transparency, we found most of the seismol-

ogy software packages have not clearly defined their

development process. There is only one software pack-

age (Earthworm) that has explicitly specified the de-

velopment process. In addition, there are 3 packages

that have their source code shared and managed on

Github. This decision represents a good start, as it

makes progress on the development process more trans-

parent.

For the criteria of reproducibility, not surprisingly,

there is rarely any evidence that this was considered for

most of the software packages. Many of them (18 out of

30) have test data, which can be considered as evidence

for the reproducibility of their current version. But only

a few (4 out of 30) have specified or recorded the de-

velopment environment for future use, and no software

uses automated tools, such as Madagascar (Fomel et al

2013), to achieve reproducibility.

5 Recommendations

In the subsections that follow recommendations are given

on the design and documentation of seismology soft-

ware. The advice focuses on the ideal case where the

developers have the desire, time and resources to aim

for high quality. That is, in the terminology of Gewaltig

and Cannon (2012), the software is intended to be user

ready, as opposed to review ready, or research ready.

Not all developers will require a high evaluation on the

grading template in Appendix A. However, if the work

will be used for decision making, especially if the de-

cisions impact safety, or if the project is to be main-

tained going forward, then high quality should be the

goal. Moreover, if the results obtained with the soft-

ware are to be reproducible, the documentation has a

critical role. In the event that there are restrictions on

resources, but developers want to start on the path to



Seismology Software: State of the Practice 11

Fig. 5 Process Aspect

higher quality, the last subsection below (Section 5.10)

provides advice on where and how to get started.

The paper on best practices for SC software lists 25

recommendations for individuals and groups to improve

their software tools for higher productivity and reliabil-

ity (Wilson et al 2013). Rather than repeat the excellent

advice given therein, we will instead focus on a higher

level (more abstract) style of advice. Where (Wilson

et al 2013) focuses on improving the code and the use

of computers to support scientific work, we will aim our

advice on what documents drive quality improvement,

and how to create these documents. Further details on

documentation for SC software can be found in Smith

(2016).

5.1 Recommended Documentation

Table 5 shows an overview of the recommended docu-

mentation for an SC project. The documents listed are

typical of what is suggested for SC software certifica-

tion, where certification consists of official recognition

by an authority, or regulatory body, that the software

is fit for its intended use. A similar set of documenta-

tion is required by the Canadian Standards Association

(CSA) for quality assurance of SC programs for nuclear

power plants (CSA 1999). Table 5 follows the stages

of the waterfall model of software development, which

may cause concern for SC practitioners, since they gen-

erally do not follow a waterfall model when develop-

ing their software (Kelly 2013; Segal 2005), and they

find documenting requirements in advance challenging

(Wilson et al 2013). Some developers go as far as to say

that reports for each stage of software development are

counterproductive (Roache 1998, p. 373). However, the

reports are only counterproductive if the process used

by the scientists has to follow the same waterfall as the

documentation. This most definitely does not have to

be the case. Even when the process is not waterfall, as

Parnas and Clements (Parnas and Clements 1986) point

out, the most logical way to present the documentation

is still to “fake” a rational design process. Documen-

tation that follows a simple rational process improves

maintainability and reusability of the software artifacts.

To succeed with the qualities measured in this pa-

per (maintainability, understandability etc.) the docu-

mentation in Table 5 should have the following qual-

ities: complete, correct, consistent, modifiable, trace-

able, unambiguous and verifiable. All of these qualities

are listed in the IEEE recommended practise for pro-

ducing software requirements (IEEE 1998). The IEEE

guidelines are for requirements, but most qualities are

relevant for most documentation artifacts. In addition

to the qualities listed by the IEEE, we also add that

documentation should be abstract. For instance, re-

quirements should state what is to be achieved, but

be silent on how it is to be achieved.

5.2 Problem Statement

A problem statement is a high level description of what

the software hopes to achieve. Like a mission statement

in a strategic plan (Parker Gates 2010, p. 22), the prob-

lem statement summarizes the primary purpose of the

software, what it does, who the users are and what

benefits the software provides. A problem statement

should be abstract. That is, it should state what the



12 W. Spencer Smith et al.

Table 5 Recommended Documentation

Problem Statement Description of what problem is to be solved, without mention of how to solve it.
Development Plan Overview of development process and development infrastructure.
Requirements Documentation of the desired functions and qualities of the software.
V & V Plan Verification that all documentation artifacts, including the code, are internally correct. Validation,

from an external viewpoint, that the right problem, or model, is being solved.
Design Specification Documentation of how the requirements are to be realized, through both a software architecture and

detailed design of modules and their interfaces.
Code Implementation of the design in code.
V & V Report Summary of the verification and validation efforts, including testing results.
User Manual Instructions on how to use the software, including installation instructions and worked examples.

mission is, but not how it is to be achieved. The length

of a problem statement should usually be about half

a page of text, or less. The seismology software Mi-

neos (CIG 2015) provides a good example of a problem

statement on its homepage, starting with “Mineos com-

putes synthetic seismograms in a spherically symmetric

non-rotating Earth by summing normal modes.” The

problem statement for Mineos could benefit the wider

community more if some additional context were pro-

vided. Specifically, who are the intended users and what

benefit does the software provide? For instance, is Mi-

neos unique in some way because of the algorithm it

uses to calculate the seismograms?

The problem statement’s main impact on software

quality is through improving reuse, since a clear state-

ment positions the current work relative to similar soft-

ware products. If the problem statement shows too much

overlap with existing products, the decision may be

made to go in another direction. Moreover, the infor-

mation in the problem statement might be enough to

encourage future users and developers to adopt this

product, rather than develop another one. The prob-

lem statement also improves quality since it provides

focus for subsequent work and documents.

5.3 Development Plan

The recommendations in this section imply a set of

documents (Table 5), but the specific contents of these

documents and the process that underlies them is not

prescribed. As mentioned previously, the external doc-

umentation follows a “faked” waterfall model, but the

internal process can be anything. The development plan

is where this internal process is specified. The specific

parts of the plan should include the following: i) What

documents will be created? ii) What template, includ-

ing rules and guidelines, will be followed for the doc-

uments? iii) What internal process will be employed?

iv) What technology infrastructure (development sup-

port tools) will be used (see Section 5.9)? v) What are

the coding standards? vi) How does one contribute to

the software? For the internal process there are many

software development models, including spiral, agile,

Rapid Application Development (RAD), etc. Develop-

ers should use what they feel comfortable with, but past

software development experience has shown that ideally

the process will incorporate iterative and incremental

development (Larman and Basili 2003). With respect

to the coding standard, a good starting point is the

Java Coding Standards (Teague et al 2009).

Earthworm (Isti 2013) provides a good example of

a development plan. The plan distinguishes between

different categories of software: core, contributed and

encapsulated. In addition, details are provided on the

expected coding standards and on how to contribute to

the project. Unfortunately the documentation require-

ments for Earthworm contributions are fairly sparse

and development support tools seem to be limited to

issue tracking tools. A suggestion to improve the ap-

proach to documentation would be to follow the exam-

ple of the Comprehensive R Archive Network (CRAN)

CRAN (2014), which facilitates a single developer con-

tributing packages that have the quality expected of a

much larger team (Smith et al 2015b). GRASS (Geo-

graphic Resources Analysis Support System) (GRASS

Development Team 2014), is another example of a com-

munity developed software product with a clear soft-

ware development process and an infrastructure of de-

velopment support tools (Lazzarato et al 2015).

The presence of a development plan immediately

improves the qualities of visibility and transparency,

since the development process is now defined. Repro-

ducibility is also improved, since the development plan

includes recording development and testing details. De-

pending on the choices made, the development support

tools, such as version control and issue tracking, can

have a direct impact on the quality of maintainability.

5.4 Software Requirements Specification (SRS)

The Software Requirements Specification (SRS) records

the functionality, expected performance, goals, context,



Seismology Software: State of the Practice 13

design constraints, external interfaces and other qual-

ity attributes of the software (IEEE 1998). Writing an

SRS generally starts with a template, which provides

guidelines and rules for documenting the requirements.

There are several existing templates that contain sug-

gestions on how to avoid complications and how to im-

prove qualities such as verifiability, maintainability and

reusability (ESA February 1991; IEEE 1998; NASA

1989). There is no universally accepted template for

an SRS. The recommendation here is to start with a

template specifically designed for SC software (Smith

et al 2007). The recommended template is suitable for

SC, because of its hierarchical structure, which decom-

poses abstract goals to concrete instance models, with

the support of data definitions, assumptions and termi-

nology. The document’s structure facilitates its main-

tenance and reuse (Smith and Lai 2005).

Inclusion of an SRS will directly improve several

quality measures in Appendix A. For instance, the grader

would find a requirements specification, a statement of

user characteristics and an explicit statement on soft-

ware portability. An SRS also has significant indirect

benefits on other qualities, since it explicitly sets qual-

ity targets as nonfunctional requirements. For instance,

usability requirements would likely improve the mea-

sures of the “look and feel” of the application and to the

visibility of its features. Including an SRS improves ver-

ifiability because it provides a standard against which

correctness can be judged. The recommended template

(Smith and Lai 2005; Smith et al 2007) facilitates ver-

ification of the theory documented in the SRS by sys-

tematically breaking the information into structured

units, and using cross-referencing. Comparing the rec-

ommended template versus an ad hoc approach, for a

case study in nuclear safety analysis, highlighted sev-

eral errors and omissions in the ad hoc documentation

(Smith and Koothoor 2016). An SRS also indirectly

improves maintainability of the software product be-

cause it improves the chance of finding errors early. A

final benefit of an SRS is improved communication with

stakeholders. For software to be used by others, or for

others to join the development team, a clear statement

of the requirements is critical.

5.5 Verification and Validation Plan/Report

Verification can be described as “solving the equations

right” and validation as “solving the right equations”

(Roache 1998, p. 23). SC involves using simplifying as-

sumptions to create an idealized mathematical model of

the real world. The model is then used for simulation

and analysis. Verification involves checking that the

governing equations for the model, together with other

definitions, including boundary and/or initial condi-

tions, are solved correctly. Validation, on the other hand,

involves checking that the model is close enough to re-

ality for whatever scientific or engineering problem is

being addressed by the software. Verification is an ex-

ercise in mathematics, while validation is an exercise in

engineering and science (Roache 1998, p. 24). In Roache

(1998), the emphasis for verification is on the code. Here

we extend the importance of verification to all software

artifacts. As shown by the IEEE Standard for Software

Verification and Validation Plans (van Vliet 2000, p.

412), V&V activities are recommended for each phase

of the software development lifecycle.

The verification activities will tend to focus on the

code, but plans should be in place for the verification

of the other artifacts as well. For instance, the require-

ments specification should be verified by experts that

can assess the reasonableness of the theoretical model,

equations, assumptions etc. This verification activity is

assisted by the use of a requirements template tailored

to SC software, as discussed in Section 5.4. Verification

of the design and the code can potentially be improved

by the use of Literate Programming, as discussed in

Section 5.7. An important part of the verification plan

is checking the traceability between documents to en-

sure that every requirement is addressed by the design,

every module is tested, etc.

Developing test cases is challenging for SC software,

since SC problems typically lack a test oracle (Kelly

et al 2011). In the absence of a test oracle, several test

techniques can be used to build system tests, as de-

scribed below. Many of these techniques are already in

use for seismology software, but the idea here is to ex-

plicitly document the tests, so that confidence building

evidence is available to all users.

– Select test cases that are a subset of the real problem

for which a closed-form solution does exists.

– Build test case by assuming a solution and using this

to calculate the inputs that should lead to this solu-

tion. In the case of solving Partial Differential Equa-

tions (PDEs), this approach is called the Method of

Manufactured Solutions (Roache 1998).

– Compare floating point arithmetic solutions to the

slower, but guaranteed correct, interval arithmetic

(Hickey et al 2001).

– Compare successive grid or time step refinements.

– Compare results to another program that overlaps

in functionality.

– Quantify nonfunctional requirements, like accuracy,

performance and portability. Verification may in-

clude comparisons between the new implementa-

tion and competing products, since nonfunctional



14 W. Spencer Smith et al.

requirements can naturally be stated using relative

comparisons (Smith 2006).

In addition to system test cases, described above,

the verification plan should outline the other testing

techniques that will be used. For instance, the plan

should describe how unit test cases will be selected.The

test plan should also identify what, if any, code cov-

erage metrics will be used and what approach will be

employed for automated testing. If other testing tech-

niques, such as mutation testing, or fault testing (van

Vliet 2000), are to be employed, this should be included

in the plan. In addition to testing, the verification plan

should mention the plans for other techniques, such as

code walkthroughs, code inspections, and correctness

proofs (Ghezzi et al 2003; van Vliet 2000).

Although the emphasis in this description has been

on verification, validation is also included in the V&V

plan. For validation plans, the document should iden-

tify the real world experimental results with which the

adopted physical model should agree. If the purpose

of the code is a general purpose mathematical library,

such as a library for signal processing, there may not be

a need for a separate validation phase, since the code

is not directly tied to a model of the real world.

Having a V&V plan will improve the quality mea-

sures outlined in this paper. For instance, installability

should be improved through an explicit plan for test-

ing the installation process. Similarly, performance and

portability tests will be outlined in the V&V plan. A

V&V plan improves the assessment of correctness and

verifiability, since the plan explicitly identifies the tests

and other techniques used to improve these qualities.

Moreover, a consequence of the emphasis on verifica-

tion should be an improvement in reliability. In the

case where the V&V plan suggests code inspections,

there should be a corresponding improvement in un-

derstandability, due to an increase in the number of

people reading the code. Finally, a V&V plan improves

reproducibility, since the plan will record the environ-

ment for development and testing, as well as providing

test data. Ideally the V&V plan will also facilitate an

automated testing infrastructure, which will in turn im-

prove reproducibility.

The V&V report summarizes the test results, with

enough detail to convince a reader that all the planned

activities were accomplished. The report should empha-

size changes made in a response to uncovered issues.

5.6 Design Specification

As mentioned in Section 4.2, only 3 of the 30 surveyed

packages have explicit design documentation. The ab-

sence of documentation effects design, implementation

and maintenance (Hoffman and Strooper 1995, p. 16).

The recommended approach to handle complexity in

design is to use abstraction (van Vliet 2000, p. 296).

For scientific software, the inspiration for the appropri-

ate abstraction should usually be taken from the un-

derlying mathematics.

The recommended documentation should include a

high level view of the software architecture, which di-

vides the system into modules, and a low level view,

which specifies the interfaces for the modules. In this

context, a module is defined as a “work assignment

given to a programmer or group of programmers” (Par-

nas et al 1984). Wilson et al (2013) advise modular de-

sign for SC, but are silent on the criteria to use to de-

compose the software into modules. We advocate a de-

composition based on the principle of information hid-

ing (Parnas 1972). This principle supports design for

change, because the “secrets” that each module hides

represent likely future changes. Design for change is

valuable in SC, where modifications are frequent, espe-

cially during initial development as the solution space is

explored. The modular decomposition can be recorded

in a Module Guide (MG) (Parnas et al 1984), which

organizes the modules in a hierarchy by their secrets.

An SC example of a parallel mesh generator, which fol-

lows the Parnas approach to information hiding, can be

found in (Smith and Yu 2009).

The MG does not provide enough information for

each module to be developed. The interface still needs

to be designed and documented in a Module Interface

Specification (MIS) document (Hoffman and Strooper

1995). The MIS is less abstract than the architectural

design mentioned above. However, an MIS is still ab-

stract, since it describes what the module will do, but

not how to do it. The interfaces can be documented

formally (ElSheikh et al 2004; Smith and Yu 2009) or

informally. An informal presentation would use natural

language and equations. The most important concern is

that the specification needs to clearly define all param-

eters, since an unclear description of the parameters

is one cause of reusability issues for libraries (Dubois

2002). The designer should keep in mind the following

interface quality criteria: consistent, essential, general,

minimal and opaque (Hoffman and Strooper 1995, p.

83).

Documentation of the system architecture and the

module interfaces will improve the software quality. For

instance, the documentation provides evidence that main-

tainability has been considered, since the design will

be based on likely changes. The documentation of the

API (through an MIS) improves the measures associ-

ated with reusability and interoperability. Furthermore,



Seismology Software: State of the Practice 15

the documentation improves understandability, since

the code is modularized, the design is documented, and

the parameter ordering will be standardized.

5.7 Code

We recommend reusing mature and trustworthy libraries

when possible. Using mature libraries saves develop-

ment time and reduces errors. Systems can be devel-

oped faster if they can be built on stable subsystems

(Simon 1996). Moreover, reuse supports maintenance

through software evolution (Dawkins 1996; Fischer 2001).

For any of the code that is written, we recommend

that comments be given the attention that they de-

serve. Comments “aid the understanding of a program

by briefly pointing out salient details or by providing

a larger-scale view of the proceedings” (Kernighan and

Pike 1999). Comments should not describe details of

how an algorithm is implemented, but instead focus

on what the algorithm does and the strategy behind

it. Good examples of commented code from seismology

include Seismic Handler and OregonDSP. Writing com-

ments is one of the best practices identified for SC by

(Wilson et al 2013). As said by Wilson et al., we should

aim to “write programs for people, not computers” and

“[t]he best way to create and maintain reference docu-

mentation is to embed the documentation for a piece of

software in that software” (Wilson et al 2013). An ap-

proach that takes these ideas to their logical conclusion

is Literate Programming (LP) (Knuth 1984).

LP was introduced by Knuth (1983). “...[I]nstead

of imagining that our main task is to instruct a com-
puter what to do, let us concentrate rather on explain-

ing to human beings what we want a computer to do”

(Knuth 1992, pg. 99). When using LP, an algorithm is

refined into smaller, simpler parts. Each of the parts

is documented in an order that is natural for human

comprehension, as opposed to the order used for com-

pilation. In a literate program, documentation and code

are maintained in one source. The program is written

as an interconnected “web” of “chunks” of code (Knuth

1983, 1992). LP can improve verifiability, understand-

ability and reproducibility. One example of a commonly

used LP tools is Sweave, which is part of the tool suite

used by CRAN (Comprehensive R Archive Network).

However, the aim of Sweave is teaching the use of the

code to new users, as opposed to convincing other de-

velopers that the implementation is correct (Smith et al

2015b). Other examples that place a greater emphasis

on verifiability for SC software can be found in Nedi-

alkov (2010) and Pharr and Humphreys (2004). Specific

documentation and code examples that highlight the

quality improvements possible using LP can be found

in Smith and Koothoor (2016).

Library reuse and code comments will improve the

software quality. For instance, correctness and verifia-

bility are improved by the presence of trustworthy ex-

ternal libraries. These qualities are further improved if

a confidence building technique, such as LP, is used.

LP also provides evidence that the project is concerned

about reusability and maintainability, since proper doc-

umentation means that others can reuse and improve

the existing work. Paying proper attention to comments

improves understandability, which is further improved

if one follows the other coding conventions mentioned

under this quality in Appendix A.

5.8 User Manual

The presence of a user manual will have a direct im-

pact on quality. The quality of usability in particular

benefits from a user manual, especially if the manual

includes a getting started tutorial and a fully explained

example. A user manual also benefits installability, as

long as it includes linear installation instructions. In

addition to the components of the manual explicitly

checked in the grading template, a user manual will

typically also include the following sections: system re-

quirements, instructions for use, troubleshooting, fre-

quently asked questions, and safety precautions (if ap-

propriate). Advice for writing user manuals and techni-

cal instructions can be found in technical writing texts,

such as Blicq (1987) and VanAlstyne (2005).

We found several good sample manuals, such as

those for GEE and Mineos. Outside of seismology, the

CRAN repository provides consistently high usability

(Smith et al 2015b). Thanks to the CRAN repository

policy, Rd files and Sweave vignettes, the R extensions

tend to provide complete and consistent user documen-

tation. The CRAN policy, together with the support

tools, allows a single developer project to have the qual-

ity of something developed by a larger team (Smith

et al 2015b). With respect to usability, a notably good

CRAN example is mokken (van der Ark 2013).

5.9 Tool Support

We recommend software development tools for issue

tracking and version control. As shown in Section 4.2,

the use of these tools is rare for seismology software.

Issue tracking is considered to be a central quality as-

surance process (Neumann 2009). One option is to use

a commercial issue tracker, such as Jira. Free tools are

also available, such as, iTracker, Roundup, GitHub and



16 W. Spencer Smith et al.

Bugzilla (Johnson and Dubois 2003). For version con-

trol, the recommended tools are SVN (Collins-Sussman

et al 2004) and Git (Loeliger and McCullough 2012).

The model employed by SVN is a central repository.

Git, on the other hand, uses distributed version con-

trol, which makes it more flexible than SVN. Version

control tools can also be used for reproducibility, since

they are able to record development information as the

project progresses. However, Davison (Davison 2012),

recommends more flexible and powerful automated re-

producibility tools, such as Sumatra (Davison 2013)

and Madagascar (Fomel et al 2013).

Tool use for code documentation falls on a contin-

uum between no tool use, all the way up to full Liter-

ate Programming (discussed in Section 5.7). From our

survey, seismology software code documentation ranges

from “no tool” up to code documentation assistants,

which encourage completeness and consistency. The tools

in this later category include Javadoc, Doxygen and

Sphinx. For code written with Matlab, the publish func-

tion sits at a similar level on the tool use continuum. For

seismology software, we saw Javadoc in use by JEval-

Resp, fissuresutil, TauP, SOD and jAmaSeis; Doxygen

is employed by Earthworm. The previously mentioned

tools can be thought of as code first, then documen-

tation. LP flips this around with documentation first,

then code. Tools for LP include cweb, noweb, Funnel-

Web and Sweave. We did not see any evidence of LP

use for seismology software.

Tools also exist to make the testing phase easier.

For functional testing, unit testing frameworks are very

popular. A unit testing framework, has been developed

for most programming languages. Examples for the lan-

guages listed in Tables 3 and 4 include JUnit (for Java),

Cppunit (for C++), CUnit (for C), FUnit (for FOR-

TRAN), and PyUnit (for Python). The use of a unit

testing framework for the surveyed seismology software

is limited, with only TauP and fissuresutil using such

a framework (JUnit). For nonfunctional testing related

to performance, one can use a profiler to identify the

real bottlenecks in performance (Wilson et al 2013). A

powerful tool for dynamic analysis of code is Valgrind.

5.10 Practical Advice

Smith et al (2016a) showed that the style of documen-

tation recommended above has value for SC developers.

However, that study also showed that document driven

design is a daunting task to start out with, especially

for projects that begin with a small scope. As a starting

point, we provide some practical “getting started” ad-

vice. To start with, we recommend using the template

in Appendix A as a checklist for reviewing a project as

it progresses. Of particular importance for the initial

efforts is the quality of installability. Several of the seis-

mology projects in this study could not be installed.

If others have the same problem, then it means that

nobody will use the software. Another practical rec-

ommendation is to use tools wherever possible to sim-

plify and improve the development process. In partic-

ular, a version control system is an important building

block (Wilson 2006). We recommend adopting a full

web solution, like GitHub, or SourceForge, which pro-

vide documentation and code management, along with

issue tracking. This approach provides the advantage

that the product website can be designed for maximum

visibility (Lazzarato et al 2015). Moreover, the project

can gradually grow into the use of the tools that are

available as the need arises. For code documentation,

for seismology software we recommend using a tool like

Doxygen, since this enforces some consistency and pro-

duces documentation that other developers can more

easily navigate than the source code alone.

Although we place a great deal of importance on

requirements, testing is often a more natural starting

point, likely because tests are less abstract than require-

ments. We recommend beginning the process by writing

test cases, which in a sense form the initial requirements

for the project. If an infrastructure for automated test-

ing is created early in a project, this can help improve

verification and validation efforts going forward.

6 Conclusion

Our summary and recommendations are based on the
assumption that the software that we found available

on-line is intended to be user ready. However, in the ter-

minology of Gewaltig and Cannon (2012), some projects

may only need to reach the level of being review ready,

or research ready. For a small team of developers work-

ing on specialized software that is not intended to have

a long life, or be maintainable going forward, the sum-

mary comments and recommendations do not apply.

Our study suggests that seismology software follows

the usual trends for SC software. For instance, as for

other SC software, requirements documentation is not

emphasized (Carver et al 2007), nor is there much evi-

dence of efficient testing (Sanders and Kelly 2008; Segal

2007b). We assume that many seismologists are follow-

ing the usual pattern of treating software development

as a “secondary activity” to their research job (Segal

2007b). By paying a little more attention to software

engineering, we believe that overall seismology software

quality can be improved and software development pro-

ductivity can be increased.



Seismology Software: State of the Practice 17

The above statements on the state of seismology

software development are based data collected on 30

seismology packages. We used a hierarchical quality model,

starting from four aspects: product, implementation,

design and process. Our overall process is similar to

that used for other studies of SC software (Smith et al

2016b; Lazzarato et al 2015; Smith et al 2015a,b,c).

Each software product is graded following a standard

template, consisting of 56 questions. Following this, we

construct AHP tables to build a relative quality com-

parison between products.

We found that most of the seismology software could

likely benefit from standardizing their development pro-

cess. The frequent lack of a requirement specification

documents, test data, assistant tools and tutorial exam-

ples is a problem that would likely be worth addressing.

The highlights of our findings are as follows:

– Summing the contributions to all four aspects shows

the top three seismology packages as SAC, Mineos

and Earthworm.

– The programming languages used are C, C++, FOR-

TRAN, Python and Java.

– For the product aspect (installability, usability and

reliability) the top products are JEvalResp, focmec,

SOD and PRESTo.

– For the implementation aspect (correctness and ver-

ifiability, maintainability and understandability) the

top programs are PRESTo, FLEXWIN and FreeUSP.

– Only 6 of the 30 packages had a document that could

be considered as a requirements specification.

– Only half of the packages provide test data and only

rarely is the expected output stated.

– Only 8 packages have an explicitly issue tracking

system and only 10 packages have a version control

system.

– Only 3 programs have an explicit design document.

– For the design aspect (robustness, performance, reusabil-

ity, portability and interoperability) the top soft-

ware packages are Mineos, msmod and SAC.

– For the criteria of interoperability, we found seismol-

ogy software packages are naturally interoperable.

– For the process aspect (visibility/transparency, re-

producibility) the top performers are Earthworm,

TauP and FLEXWIN.

– Only one package (Earthworm) explicitly specified

the development process used.

– For reproducibility only 4 out of 30 packages spec-

ified or recorded the development environment for

future use.

Our recommendation for addressing these problems

is to follow a document driven process (Smith and Yu

2009; Smith and Koothoor 2016). This process includes

a problem statement, development plan, requirements

specification, V&V plan, design specification, code, V&V

report and a user manual. We also provide advice on

tool use, including issue tracking, version control, code

documentation and testing tools. As a practical start-

ing point for quality improvement, we recommend doc-

umenting tests cases as requirements, using GitHub (or

SourceForge), incorporating Doxygen and implement-

ing automated testing via a unit testing framework.

Acknowledgements Adam Lazzarato, Yue Sun and Vasudha
Kapil are acknowledged for their support on this project. Con-
structive criticism on an earlier draft provided by Dr. Diane
Kelly is gratefully acknowledged.

References

Almeida JB (2011) Rigorous Software Development. Springer
London Dordrecht Heidelberg New York

van der Ark LA (2013) mokken: Mokken Scale Analy-
sis in R. URL http://cran.r-project.org/web/packages/

mokken/index.html, R package version 2.7.5
Bidoit M, Sannella D, Tarlecki A (2002) Architectural spec-

ifications in casl. Formal Aspects of Computing 13(3-
5):252–273

Blicq R (1987) Technically-Write! Prentice Hall
Carver JC, Kendall RP, Squires SE, Post DE (2007) Soft-

ware development environments for scientific and engi-
neering software: A series of case studies. In: ICSE ’07:
Proceedings of the 29th International Conference on Soft-
ware Engineering, IEEE Computer Society, Washington,
DC, USA, pp 550–559, DOI http://dx.doi.org/10.1109/
ICSE.2007.77

CIG (2015) Mineos. http://geodynamics.org/cig/software/

mineos/

Collins-Sussman B, Fitzpatrick B, Pilato M (2004) Version
Control with Subversion. O’Reilly Media, Inc.

CRAN (2014) The comprehensive r archive network. http://
cran.r-project.org/, URL http://cran.r-project.org/

CSA (1999) Quality assurance of analytical, scientific, and de-
sign computer programs for nuclear power plants. Tech.
Rep. N286.7-99, Canadian Standards Association, 178
Rexdale Blvd. Etobicoke, Ontario, Canada M9W 1R3

Davison AP (2012) Automated capture of experiment con-
text for easier reproducibility in computational research.
Computing in Science and Engineering, IEEE

Davison AP (2013) Sumatra Project Main Page. http://

neuralensemble.org/sumatra/

Dawkins R (1996) The blind watchmaker: Why the evidence
of evolution reveals a universe without design. WW Nor-
ton & Company

Dubois PF (2002) Designing scientific components. Comput-
ing in Science and Engineering 4(5):84–90

ElSheikh AH, Smith WS, Chidiac SE (2004) Semi-formal de-
sign of reliable mesh generation systems. Advances in En-
gineering Software 35(12):827–841

ESA (February 1991) ESA software engineering standards,
PSS-05-0 issue 2. Tech. rep., European Space Agency

Fischer G (2001) The software technology of the 21st century:
From software reuse to collaborative software design. In:
International Symposium on Future Software Technology,
pp 1–8



18 W. Spencer Smith et al.

Fomel S, Sava P, Vlad I, Liu Y, Bashkardin V (2013) Mada-
gascar: open-source software project for multidimensional
data analysis and reproducible computational experi-
ments. Journal of Open Research Software 1(1):e8, DOI
http://dx.doi.org/10.5334/jors.ag

Forman EH, Gass SI (2001) The analytic hierarchy process—
an exposition. Operations Research 49(4):469–486

for Geodynamics CI (2014) List of Software. http://

geodynamics.org/cig/software/

Gewaltig MO, Cannon R (2012) Quality and sustainability of
software tools in neuroscience. Cornell University Library
arXiv preprint arXiv:1205.3025:20 pp

Gewaltig MO, Cannon R (2014) Current practice in software
development for computational neuroscience and how to
improve it. PLoS computational biology 10(1)

Ghezzi C, Jazayeri M, Mandrioli D (2003) Fundamentals of
Software Engineering, 2nd edn. Prentice Hall, Upper Sad-
dle River, NJ, USA

Gillies A (2011) Software Quality: Theory and Manage-
ment. Lulu. com, URL http://books.google.ca/books?

id=XTvpAQAAQBAJ

GRASS Development Team (2014) GRASS GIS bringing
advanced geospatial technologies to the world. http://

grass.osgeo.org/, URL http://grass.osgeo.org/

Hickey T, Ju Q, Van Emden MH (2001) Interval arithmetic:
From principles to implementation. J ACM 48(5):1038–
1068, DOI 10.1145/502102.502106, URL http://doi.acm.

org/10.1145/502102.502106

Hoffman DM, Strooper PA (1995) Software Design, Auto-
mated Testing, and Maintenance: A Practical Approach.
International Thomson Computer Press, URL http://

citeseer.ist.psu.edu/428727.html

IEEE (1990) IEEE Standard Glossary of Software Engineer-
ing Terminology. Tech. rep., Institute of Electronic and
Electrical Engineers (IEEE), DOI 10.1109/ieeestd.1990.
101064, URL http://dx.doi.org/10.1109/ieeestd.1990.

101064

IEEE (1998) Recommended practice for software require-
ments specifications. IEEE Std 830-1998 pp 1–40, DOI
10.1109/IEEESTD.1998.88286

ISO/IEC (2010) ISO/IEC 25010 - Systems and software en-
gineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality
models. Tech. rep., International Organization for Stan-
dardization (ISO)

Isti (2013) Earthworm software standards. http://www.

earthwormcentral.org/documentation2/PROGRAMMER/

SoftwareStandards.html

Johnson JN, Dubois PF (2003) Issue tracking. Computing in
Science & Engineering 5(6):71–77

Kelly DF (2007) A software chasm: Software engineering and
scientific computing. IEEE Software 24(6):120–119, DOI
http://dx.doi.org/10.1109/MS.2007.155

Kelly DF (2013) Industrial scientific software: A set of in-
terviews on software development. In: Proceedings of
the 2013 Conference of the Center for Advanced Stud-
ies on Collaborative Research, IBM Corp., Riverton, NJ,
USA, CASCON ’13, pp 299–310, URL http://dl.acm.

org/citation.cfm?id=2555523.2555555

Kelly DF, Smith WS, Meng N (2011) Software engineering for
scientists. Computing in Science & Engineering 13(5):7–
11

Kernighan BW, Pike R (1999) The practice of programming.
Addison-Wesley Professional

Knuth DE (1983) The WEB system of structured documenta-
tion. Stanford Computer Science Report CS980, Stanford

University, Stanford, CA
Knuth DE (1984) Literate programming. The Computer

Journal 27(2):97–111, DOI 10.1093/comjnl/27.2.97, URL
http://comjnl.oxfordjournals.org/content/27/2/97.

abstract, http://comjnl.oxfordjournals.org/content/

27/2/97.full.pdf+html

Knuth DE (1992) Literate Programming. CSLI Lecture
Notes Number 27, Center for the Study of Language
and Information, URL http://csli-www.stanford.edu/

publications/literate.html

Lang JP (2013) IRIS SeisCode. https://seiscode.iris.

washington.edu

Larman C, Basili VR (2003) Iterative and incremental devel-
opment: A brief history. Computer 36(6):47–56

Lazzarato A, Smith WS, Carette J (2015) State of the prac-
tice for remote sensing software. Technical Report CAS-
15-03-SS, McMaster University

Loeliger J, McCullough M (2012) Version Control with Git:
Powerful tools and techniques for collaborative software
development. ” O’Reilly Media, Inc.”

NASA (1989) Software requirements DID, SMAP-DID-P200-
SW, release 4.3. Tech. rep., National Aeronautics and
Space Agency

Nedialkov NS (2010) Implementing a Rigorous ODE Solver
through Literate Programming. Tech. Rep. CAS-10-02-
NN, Department of Computing and Software, McMaster
University

Neumann D (2009) The impact of communication structure
on issue tracking efficiency at a large business software
vendor. Issues in Information Systems X(2):316–323

Parker Gates L (2010) Strategic planning with critical success
factors and future scenarios: An integrated strategic plan-
ning strategic planning with critical success factors and
future scenarios: An integrated strategic planning frame-
work. Tech. Rep. CMU/SEI-2010-TR-037, Software En-
gineering Institute, Carnegie-Mellon University

Parnas DL (1972) On the criteria to be used in decomposing
systems into modules. Comm ACM, vol 15, no 2, pp 1053-
1058

Parnas DL, Clements P (1986) A rational design process: How
and why to fake it. IEEE Transactions on Software Engi-
neering 12(2):251–257

Parnas DL, Clement PC, Weiss DM (1984) The modular
structure of complex systems. In: International Confer-
ence on Software Engineering, pp 408–419

Pharr M, Humphreys G (2004) Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA

Roache PJ (1998) Verification and Validation in Computa-
tional Science and Engineering. Hermosa Publishers, Al-
buquerque, New Mexico

Saaty TL (1990) How to make a decision: the analytic hier-
archy process. European journal of operational research
48(1):9–26

Saaty TL (2008-09-01) Relative measurement and its general-
ization in decision making why pairwise comparisons are
central in mathematics for the measurement of intangible
factors the analytic hierarchy/network process. RACSAM
- Revista de la Real Academia de Ciencias Exactas, Fisi-
cas y Naturales Serie A Matematicas 102:251–318, DOI
10.1007/BF03191825

Sanders R, Kelly DF (2008) Dealing with risk in scientific
software development. IEEE Software 25:21

Segal J (2005) When software engineers met research sci-
entists: A case study. Empirical Software Engineer-
ing 10(4):517–536, DOI 10.1007/s10664-005-3865-y, URL



Seismology Software: State of the Practice 19

http://dx.doi.org/10.1007/s10664-005-3865-y

Segal J (2007a) End-user software engineering and pro-
fessional end-user developers. In: Burnett MH, Engels
G, Myers BA, Rothermel G (eds) End-User Software
Engineering, Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany, Dagstuhl, Germany, no. 07081
in Dagstuhl Seminar Proceedings, URL http://drops.

dagstuhl.de/opus/volltexte/2007/1095

Segal J (2007b) Some problems of professional end user devel-
opers. Visual Languages and Human-Centric Computing,
2007 VL/HCC 2007 IEEE Symposium on pp 111 – 118

Segal J, Morris C (2008) Developing scientific software. IEEE
Software 25(4):18–20

Simmons S, Sea I (1994) Software design for installability.
USENIX

Simon HA (1996) The sciences of the artificial. 3rd
Smith WS (2006) Systematic development of requirements

documentation for general purpose scientific computing
software. IEEE International Requirements Engineering
Conference

Smith WS (2016) A rational document driven design pro-
cess for scientific computing software. In: Carver JC,
Hong NC, Thiruvathukal G (eds) Software Engineering
for Science, Chapman & Hall/CRC Computational Sci-
ence, Taylor & Francis, chap Examples of the Application
of Traditional Software Engineering Practices to Science,
pp 33–63

Smith WS, Koothoor N (2016) A document-driven method
for certifying scientific computing software for use in
nuclear safety analysis. Nuclear Engineering and Tech-
nology 48(2):404–418, DOI http://dx.doi.org/10.1016/
j.net.2015.11.008, URL http://www.sciencedirect.com/

science/article/pii/S1738573315002582

Smith WS, Lai L (2005) A new requirements template for
scientific computing. In: Ralyté J, Ågerfalk P, Kraiem N
(eds) Proceedings of the First International Workshop on
Situational Requirements Engineering Processes – Meth-
ods, Techniques and Tools to Support Situation-Specific
Requirements Engineering Processes, SREP’05, In con-
junction with 13th IEEE International Requirements En-
gineering Conference, Paris, France, pp 107–121

Smith WS, Yu W (2009) A document driven methodology for
improving the quality of a parallel mesh generation tool-
box. Advances in Engineering Software 40(11):1155–1167,
DOI http://dx.doi.org/10.1016/j.advengsoft.2009.05.003

Smith WS, Lai L, Khedri R (2007) Requirements analysis for
engineering computation: A systematic approach for im-
proving software reliability. Reliable Computing, Special
Issue on Reliable Engineering Computation 13(1):83–107

Smith WS, Lazzarato A, Carette J (2015a) State of the prac-
tice for mesh generation software. Technical Report CAS-
15-04-SS, McMaster University

Smith WS, Sun Y, Carette J (2015b) Comparing psycho-
metrics software development between CRAN and other
communities. Technical Report CAS-15-01-SS, McMaster
University

Smith WS, Sun Y, Carette J (2015c) State of the prac-
tice for developing oceanographic software. Technical Re-
port CAS-15-02-SS, McMaster University, Department of
Computing and Software

Smith WS, Jegatheesan T, Kelly DF (2016a) Advantages,
disadvantages and misunderstandings about document
driven design for scientific software. In: Proceedings of the
Fourth International Workshop on Software Engineering
for High Performance Computing in Computational Sci-
ence and Engineering (SE-HPCCE), 8 pp

Smith WS, Lazzarato A, Carette J (2016b) State of practice
for mesh generation software. Advances in Engineering
Software 100:53–71

Teague LD, Somannair R, Stark K, Goyal N, Ruzbacki R
(2009) Java coding standards, Software Engineering Stan-
dards Division, Department of Veterans Affairs. www.va.
gov/trm/files/java_coding_standards_v2.doc

Triantaphyllou SHM (1995) Using the analytic hierarchy pro-
cess for decision making in engineering applications. In-
ternational Journal of Industrial Engineering: Applica-
tions and Practice 2(1):35–44

VanAlstyne JS (2005) Professional and Technical Writing
Strategies, sixth edn. Pearson Prentice Hall, Upper Sad-
dle River, New Jersey

van Vliet H (2000) Software Engineering (2nd ed.): Principles
and Practice. John Wiley & Sons, Inc., New York, NY,
USA

Wilson GV (2006) Where’s the real bottleneck in scientific
computing? American Scientist 94(1):5

Wilson GV, Aruliah D, Brown CT, Hong NPC, Davis M, Guy
RT, Haddock SH, Huff KD, Mitchell IM, Plumblet MD,
Waugh B, White EP, Wilson P (2013) Best practices for
scientific computing. CoRR abs/1210.0530



20 W. Spencer Smith et al.

A Full Grading Template

The table below lists the full set of measures that are assessed
for each software product. The measures are grouped under
headings for each quality, and one for summary information.
Following each measure, the type for a valid result is given
in brackets. Many of the types are given as enumerated sets.
For instance, the response on many of the questions is one of
“yes,” “no,” or “unclear.” The type “number” means natural
number, a positive integer. The types for date and url are not
explicitly defined, but they are what one would expect from
their names. In some cases the response for a given question is
not necessarily limited to one answer, such as the question on
what platforms are supported by the software product. Case
like this are indicated by “set of” preceding the type of an in-
dividual answer. The type in these cases are then the power
set of the individual response type. In some cases a super-
script ∗ is used to indicate that a response of this type should
be accompanied by explanatory text. For instance, if prob-
lems were caused by uninstall, the reviewer should note what
problems were caused. An (I) precedes the question descrip-
tion when its measurement requires a successful installation.

B Summary of Grading Results

The full gradings of the 30 RS software products start on the
next page. The most recent gradings are available at: http:

//dx.doi.org/10.17632/67ncspgz8n.1. The column headings
correspond with the above questions from the grading tem-
plate.



Seismology Software: State of the Practice 21

Summary Information

Software name? (string)
URL? (url)
Educational institution (string)
Software purpose (string)
Number of developers (number)
How is the project funded (string)
Number of downloads for current version (number)
Release date (date)
Last updated (date)
Status ({alive, dead, unclear})
License ({GNU GPL, BSD, MIT, terms of use, trial, none, unclear})
Platforms (set of {Windows, Linux, OS X, Android, Other OS})
Category ({concept, public, private})
Development model ({open source, freeware, commercial})
Publications using the software (set of url)
Publications about the software (set of url)
Is source code available? ({yes, no})
Programming language(s) (set of {FORTRAN, Matlab, C, C++, Java, R, Ruby, Python, Cython, BASIC, Pascal,
IDL, unclear})

Installability (Measured via installation on a virtual machine.)

Are there installation instructions? ({yes, no})
Are the installation instructions linear? ({yes, no, n/a})
Is there something in place to automate the installation? ({yes∗, no})
Is there a specified way to validate the installation, such as a test suite? ({yes∗, no})
How many steps were involved in the installation? (number)
How many software packages need to be installed before or during installation? (number)
(I) Run uninstall, if available. Were any obvious problems caused? ({unavail, yes∗, no})
Overall impression? ({1 .. 10})

Correctness and Verifiability

Are external libraries used? ({yes∗, no, unclear})
Does the community have confidence in this library? ({yes, no, unclear})
Any reference to the requirements specifications of the program? ({yes∗, no, unclear})
What tools or techniques are used to build confidence of correctness? (string)
(I) If there is a getting started tutorial, is the output as expected? ({yes, no∗, n/a})
Overall impression? ({1 .. 10})

Surface Reliability

Did the software “break” during installation? ({yes∗, no})
(I) Did the software “break” during the initial tutorial testing? ({yes∗, no, n/a})
Overall impression? ({1 .. 10})

Surface Robustness

(I) Does the software handle garbage input reasonably? ({yes, no∗})
(I) For any plain text input files, if all new lines are replaced with new lines and carriage returns, will the software
handle this gracefully? ({yes, no∗, n/a})
Overall impression? ({1 .. 10})

Surface Performance

Is there evidence that performance was considered? ({yes∗, no})
Overall impression? ({1 .. 10})



22 W. Spencer Smith et al.

Surface Usability

Is there a getting started tutorial? ({yes, no})
Is there a standard example that is explained? ({yes, no})
Is there a user manual? ({yes, no})
(I) Does the application have the usual “look and feel” for the platform it is on? ({yes, no∗})
(I) Are there any features that show a lack of visibility? ({yes, no∗})
Are expected user characteristics documented? ({yes, no})
What is the user support model? (string)
Overall impression? ({1 .. 10})

Maintainability

Is there a history of multiple versions of the software? ({yes, no, unclear})
Is there any information on how code is reviewed, or how to contribute? ({yes∗, no})
Is there a changelog? ({yes, no})
What is the maintenance type? (set of {corrective, adaptive, perfective, unclear})
What issue tracking tool is employed? (set of {Trac, JIRA, Redmine, e-mail, discussion board, sourceforge, google
code, git, none, unclear})
Are the majority of identified bugs fixed? ({yes, no∗, unclear})
Which version control system is in use? ({svn, cvs, git, github, unclear})
Is there evidence that maintainability was considered in the design? ({yes∗, no})
Are there code clones? ({yes∗, no, unclear})
Overall impression? ({1 .. 10})

Reusability

Are any portions of the software used by another package? ({yes∗, no})
Is there evidence that reusability was considered in the design? (API documented, web service, command line tools,
...) ({yes∗, no, unclear})
Overall impression? ({1 .. 10})

Portability

What platforms is the software advertised to work on? (set of {Windows, Linux, OS X, Android, Other OS})
Are special steps taken in the source code to handle portability? ({yes∗, no, n/a})
Is portability explicitly identified as NOT being important? ({yes, no})
Convincing evidence that portability has been achieved? ({yes∗, no})
Overall impression? ({1 .. 10})

Surface Understandability (Based on 10 random source files)

Consistent indentation and formatting style? ({yes, no, n/a})
Explicit identification of a coding standard? ({yes∗, no, n/a})
Are the code identifiers consistent, distinctive, and meaningful? ({yes, no∗, n/a})
Are constants (other than 0 and 1) hard coded into the program? ({yes, no∗, n/a})
Comments are clear, indicate what is being done, not how? ({yes, no∗, n/a})
Is the name/URL of any algorithms used mentioned? ({yes, no∗, n/a})
Parameters are in the same order for all functions? ({yes, no∗, n/a})
Is code modularized? ({yes, no∗, n/a})
Descriptive names of source code files? ({yes, no∗, n/a})
Is a design document provided? ({yes∗, no, n/a})
Overall impression? ({1 .. 10})

Interoperability

Does the software interoperate with external systems? ({yes∗, no})
Is there a workflow that uses other softwares? ({yes∗, no})
If there are external interactions, is the API clearly defined? ({yes∗, no, n/a})
Overall impression? ({1 .. 10})



Seismology Software: State of the Practice 23

Visibility/Transparency

Is the development process defined? If yes, what process is used. ({yes∗, no, n/a})
Ease of external examination relative to other products considered? ({1 .. 10})
Overall impression? ({1 .. 10})

Reproducibility

Is there a record of the environment used for their development and testing? ({yes∗, no})
Is test data available for verification? ({yes, no})
Are automated tools used to capture experimental context? ({yes∗, no})
Overall impression? ({1 .. 10})

Table 6 Full List of Seismology Software

Name URL AHP
Score

rfsyn https://seiscode.iris.washington.edu/projects/rfsyn 0.009
PITSA https://seiscode.iris.washington.edu/projects/pitsa 0.011
RECFUNK09 https://seiscode.iris.washington.edu/projects/recfunk09-pick 0.011
Jpitsa http://www.iris.edu/pub/programs/JPITSA/ 0.017
Station Analysis Tools https://seiscode.iris.washington.edu/projects/station-analysis-tools 0.019
fissuresutil https://github.com/crotwell/fissuresImpl 0.020
OregonDSP https://seiscode.iris.washington.edu/projects/oregondsp 0.021
evalresp http://www.iris.edu/dms/nodes/dmc/software/downloads/evalresp/3-3-3/ 0.021
jAmaSeis http://www.iris.edu/hq/jamaseis/ 0.022
SEISMIC CPML https://github.com/geodynamics/seismic_cpml 0.023
Seismic Handler http://www.seismic-handler.org/wiki 0.028
AIMBAT https://github.com/pysmo/aimbat 0.028
JRG http://crack.seismo.unr.edu/jrg/ 0.029
NonLinLoc http://alomax.free.fr/nlloc/ 0.029
tracedsp https://seiscode.iris.washington.edu/projects/tracedsp 0.032
CWP/SU http://www.cwp.mines.edu/cwpcodes/ 0.038
GEE http://www.seis.sc.edu/gee/ 0.038
TauP http://www.seis.sc.edu/taup/index.html 0.041
msmod https://seiscode.iris.washington.edu/projects/msmod 0.042
FilterPicker http://alomax.free.fr/FilterPicker/ 0.042
FreeUSP http://freeusp.org/FreeUSP.html 0.042
iaspei-tau http://www.iris.edu/pub/programs/iaspei-tau/ 0.043
JEvalResp http://www.iris.edu/pub/programs/JEvalResp/JEvalResp_v1.77/ 0.045
focmec http://www.iris.edu/pub/programs/focmec/ 0.046
SOD http://www.seis.sc.edu/sod/ 0.047
FLEXWIN http://geodynamics.org/cig/software/flexwin/ 0.049
PRESTo http://www.prestoews.org 0.049
Earthworm http://www.earthwormcentral.org/ 0.052
Mineos http://geodynamics.org/cig/software/mineos/ 0.053
SAC http://www.iris.edu/dms/nodes/dmc/software/downloads/sac/ 0.053



24 W. Spencer Smith et al.

Table 7 Installability, II: Installation instructions available, II linear: Linear installation steps, AI: Automated Installation,
Inst ValidTests for installation validation, # S/W lib: Number of software/libraries required for installation, Uninst: Any
uninstallation problem?

Name II II linear AI Inst Valid # of Steps # S/w lib Uninst

rfsyn Yes Yes No No 2 0 No
PITSA Yes No Yes No 2 0 No
RECFUNK09 Yes Yes N/A No 1 2 No
Jpitsa Yes Yes Yes No 1 0 No
Station Analysis Tools Yes Yes Yes Yes 5 Unclear No
fissuresutil N/A N/A N/A N/A 1 0 No
OregonDSP No Yes N/A No N/A 0 No
evalresp Yes Yes Yes No 2 0 No
jAmaSeis Yes Yes Yes No 1 0 No
SEISMIC CPML Yes Yes Yes No 1 0 No
Seismic Handler Yes Yes Yes No 1 4 No
AIMBAT Yes Yes N/A Yes 2 4 No
JRG Yes Yes No Yes 1 1 No
NonLinLoc Yes Yes Yes Yes 1 0 No
tracedsp Yes Yes Yes No 1 0 No
CWP/SU Yes Yes Yes Yes 7 0 No
GEE Yes Yes Yes Yes 1 0 No
TauP Yes Yes No Yes 2 1 No
msmod Yes Yes Yes No 1 0 No
FilterPicker Yes Yes Yes Yes 2 0 No
FreeUSP Yes Yes Yes No 3 0 No
iaspei-tau Yes Yes Yes Yes 2 0 No
JEvalResp Yes Yes Yes Yes 1 3 No
focmec Yes Yes Yes Yes 2 2 No
SOD Yes Yes Yes Yes 1 0 No
FLEXWIN Yes Yes Yes No 2 2 No
PRESTo Yes Yes Yes Yes 1 0 No
Earthworm Yes Yes Yes Yes 3 0 No
Mineos Yes Yes Yes No 1 0 No
SAC Yes Yes Yes No 1 3 No



Seismology Software: State of the Practice 25

Table 8 Reliability, Installation Break: The software “break” during installation. Tutorial Break: The software “break” during
the initial tutorial testing.

Name Installation Break Tutorial Break

rfsyn Yes N/A
PITSA Yes N/A
RECFUNK09 No N/A
Jpitsa No N/A
Station Analysis Tools Yes N/A
fissuresutil N/A N/A
OregonDSP Yes N/A
evalresp No N/A
jAmaSeis No N/A
SEISMIC CPML No N/A
Seismic Handler No N/A
AIMBAT No Yes
JRG No Yes
NonLinLoc No Yes
tracedsp No N/A
CWP/SU No NA
GEE No No
TauP No No
msmod No N/A
FilterPicker No No
FreeUSP No Yes
iaspei-tau No N/A
JEvalResp No No
focmec No No
SOD No No
FLEXWIN No No
PRESTo No No
Earthworm Yes N/A
Mineos No No
SAC No No



26 W. Spencer Smith et al.

Table 9 Usability, Tut: Getting Started Tutorial, Ex: Standard Example, UM: User Manual, Look/Feel: Usual look and feel
of software, Vis: Lack of visibility (Norman’s Principle) , User Char: User characteristics documented.

Name Tut Ex UM Look/feel Vis User Char User support

rfsyn No No Yes Yes No Yes Email
PITSA No No No Yes No N/A No
RECFUNK09 Yes No Yes Yes No N/A E-mail
Jpitsa No No No Yes No Yes Email
Station Analysis Tools No No Yes Yes No N/A E-mail/Community
fissuresutil No No No N/A No N/A No
OregonDSP No No Yes N/A No N/A E-mail
evalresp Yes Yes Yes Yes No No Community
jAmaSeis No No Yes Yes Yes Yes E-mail
SEISMIC CPML No No Yes Yes No No Community/Email
Seismic Handler No No Yes Yes No N/A Email/Community
AIMBAT Yes Yes Yes Yes No No Email
JRG Yes No Yes Yes No No Email
NonLinLoc Yes No Yes Yes No Yes Email
tracedsp No Yes Yes Yes No No E-mail
CWP/SU Yes Yes Yes Yes No No E-mail/Seminar
GEE Yes Yes Yes Yes Yes No No
TauP Yes Yes Yes N/A No No E-mail
msmod No Yes Yes Yes No No No
FilterPicker Yes Yes Yes Yes Yes N/A Email
FreeUSP Yes Yes Yes Yes No N/A E-mail/Community
iaspei-tau Yes Yes Yes Yes No No E-mail
JEvalResp Yes Yes Yes Yes No No E-mail
focmec Yes Yes Yes Yes No No Email
SOD Yes Yes Yes Yes No No E-mail
FLEXWIN Yes Yes Yes Yes No No Community
PRESTo Yes Yes Yes Yes No No E-mail/Community
Earthworm Yes Yes Yes Yes No N/A E-mail/Community
Mineos Yes Yes Yes Yes No No Community/Email
SAC Yes Yes Yes Yes Yes No E-mail/Community



Seismology Software: State of the Practice 27

Table 10 Correctness and Verifiability, Library: Use of standard libraries, SRS: Software Requirements Specification, Evidence:
Evidence to build confidence? Example: Standard Example explained?

Name Library SRS Evidence? Example

rfsyn No No No N/A
PITSA No No No No
RECFUNK09 Yes No No No
Jpitsa Yes No No No
Station Analysis Tools No No No Yes
fissuresutil Yes No No No
OregonDSP No No Yes No
evalresp No No No Yes
jAmaSeis Yes Yes N/A N/A
SEISMIC CPML No Yes No No
Seismic Handler No No No No
AIMBAT No No Yes No
JRG No No Yes No
NonLinLoc Yes No Yes Yes
tracedsp Yes No No No
CWP/SU Yes No No Yes
GEE Yes No No Yes
TauP Yes No No Yes
msmod No Yes Yes No
FilterPicker No No Yes No
FreeUSP Yes Yes Yes No
iaspei-tau No No Yes Yes
JEvalResp Yes No No Yes
focmec Yes Yes Yes Yes
SOD Yes No Yes Yes
FLEXWIN Yes No Yes Yes
PRESTo No Yes Yes N/A
Earthworm Yes No Yes N/A
Mineos No No Yes Yes
SAC Yes No Yes Yes



28 W. Spencer Smith et al.

Table 11 Maintainability, VH: Versions history available, RC: Information on reviewing and contributing , log: Change log
available, MT: Maintenance Type, Issue: Issue Tracking Tool, Bugs: Majority of Bugs fixed , VS: Versioning system used,
Evidence: Any evidence that maintainability was considered in design, Cor: Corrective, Pfc: Perfective, Adp: Adaptive, Clone:
Are there code clones?

Name VH RC log MT Issue Bugs VS Evidence Clone

rfsyn No No Yes Cor No Yes No No No
PITSA No No Yes Cor No Yes No Yes No
RECFUNK09 No No No Unclear No ? No Yes No
Jpitsa No No No Unclear No ? No No N/A
Station Analysis Tools No No Yes Cor ? Yes SVN No ?
fissuresutil No No No N/A ? ? Git Yes ?
OregonDSP Yes No No Unclear ? ? ? Yes No
evalresp No No Yes Cor/Adp/Pfc ? Yes ? Yes No
jAmaSeis No N/A No ? Yes Yes ? Yes ?
SEISMIC CPML Yes Yes Yes Cor/Adp/Pfc Yes Yes Git Yes No
Seismic Handler Yes Yes Yes Cor/Adp/Pfc Yes Yes Git/SVN Yes No
AIMBAT Yes No Yes Cor/Adp/Pfc ? Yes Git Yes No
JRG No No Yes Adp/Pfc ? Yes ? Yes No
NonLinLoc Yes No Yes Cor/Adp/Pfc ? Yes ? Yes No
tracedsp Yes No Yes Cor/Pfc Yes Yes SeisCode Yes No
CWP/SU Yes No Yes Cor/Adp/Pfc ? Yes ? Yes ?
GEE Yes No Yes Cor/Adp/Pfc ? Yes ? Yes ?
TauP Yes No No Cor/Adp/Pfc ? Yes ? Yes ?
msmod No No Yes Adp/Pfc ? ? SVN Yes No
FilterPicker Yes No Yes Cor/Adp/Pfc ? Yes SVN Yes No
FreeUSP Yes Yes Yes Cor/Adp/Pfc ? Yes ? Yes No
iaspei-tau No No Yes Pfc No Yes No Yes No
JEvalResp No No Yes Cor/Adp/Pfc ? Yes ? Yes ?
focmec Yes No Yes Cor/Adp/Pfc ? Yes ? Yes No
SOD Yes No Yes Cor ? Yes ? Yes ?
FLEXWIN Yes Yes Yes Cor/Adp/Pfc Yes Yes Git Yes ?
PRESTo Yes No Yes Cor/Adp/Pfc ? Yes ? Yes No
Earthworm Yes Yes Yes Cor/Adp/Pfc Yes Yes SVN Yes No
Mineos Yes Yes Yes Cor/Adp/Pfc Yes Yes Git Yes No
SAC No Yes Yes Cor/Adp/Pfc Yes Yes ? Yes No



Seismology Software: State of the Practice 29

Table 12 Understandability (of code), Format: Consistent Identation and formatting, Coding st: Explicit coding standard, Id:
Distinctive, Meaningful identifiers name, Constants: Constants (other than 0 or 1) hard coded, PC: proper comments, Algo:
Reference to algorithm used, Mod: Code is modularised, Para: Parameters are in same order, SC: Descriptive names of source
code files, DD: Design document present.

Name Format Coding st Id Constants PC Algo Mod para SC DD

rfsyn Yes No No Yes Yes No Yes N/A Yes No
PITSA Yes No No No No No Yes Yes Yes No
RECFUNK09 Yes No Yes Yes Yes Yes Yes N/A Yes No
Jpitsa N/A No N/A N/A N/A N/A N/A N/A N/A N/A
Station Analysis Tools Yes No No Yes Yes Yes Yes No Yes No
fissuresutil Yes No Yes Yes Yes Yes Yes Yes Yes No
OregonDSP Yes Yes Yes No Yes Yes Yes Yes Yes No
evalresp Yes Yes Yes No Yes No Yes Yes Yes No
jAmaSeis N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
SEISMIC CPML Yes No Yes No Yes Yes Yes Yes Yes No
Seismic Handler Yes Yes Yes No Yes No Yes Yes Yes No
AIMBAT Yes No Yes No Yes Yes Yes Yes Yes No
JRG Yes No Yes Yes Yes No Yes Yes Yes No
NonLinLoc Yes Yes Yes Yes Yes Yes Yes Yes Yes No
tracedsp Yes No Yes No Yes No Yes Yes Yes No
CWP/SU Yes No Yes No Yes Yes Yes Yes Yes No
GEE Yes Yes Yes Yes Yes No Yes Yes Yes No
TauP Yes No Yes No Yes No Yes Yes Yes No
msmod Yes No Yes No Yes No Yes Yes Yes No
FilterPicker Yes No Yes No Yes Yes Yes Yes Yes No
FreeUSP Yes Yes Yes Yes Yes Yes Yes Yes Yes No
iaspei-tau Yes No Yes Yes Yes Yes Yes Yes Yes No
JEvalResp Yes No Yes Yes Yes No Yes Yes Yes No
focmec Yes No Yes No Yes Yes Yes Yes Yes No
SOD Yes Yes Yes No Yes No Yes Yes Yes No
FLEXWIN Yes No Yes No Yes No Yes Yes Yes No
PRESTo Yes No Yes No Yes Yes Yes Yes Yes No
Earthworm Yes Yes Yes No Yes Yes Yes Yes Yes Yes
Mineos Yes No Yes No Yes Yes Yes Yes Yes No
SAC Yes No Yes No Yes No Yes Yes Yes No



30 W. Spencer Smith et al.

Table 13 Robustness, Performance and Reusability, install: Software break during installation , test: Software break during
initial tutorial testing, Wrong I/P handling: Handling of wrong input by software , format: Can the software gracefully handle
a change of the format of text input files where the end of line follows a different convention? Perf: Evidence that performance
was considered? S/W reused: any portions of the software used by another package? Reuse Evidc: Any evidence of reusability?

Name Wrong I/P handling Format Perf S/W reused Reuse Evidc

rfsyn ? ? No ? No
PITSA ? ? No No No
RECFUNK09 ? ? No ? No
Jpitsa Yes Yes No No No
Station Analysis Tools ? ? Yes No No
fissuresutil ? ? No Yes Yes
OregonDSP ? ? No Yes Yes
evalresp ? ? Yes Yes ?
jAmaSeis N/A N/A Yes No No
SEISMIC CPML ? ? No ? No
Seismic Handler ? No No Yes Yes
AIMBAT ? ? Yes No No
JRG Yes Yes No Yes Yes
NonLinLoc Yes Yes No No ?
tracedsp Yes Yes Yes ? N/A
CWP/SU N/A N/A Yes ? No
GEE N/A N/A Yes No No
TauP Yes Yes No Yes Yes
msmod Yes N/A Yes Yes Yes
FilterPicker No N/A No Yes Yes
FreeUSP ? ? Yes Yes Yes
iaspei-tau Yes Yes No No No
JEvalResp ? Yes Yes Yes Yes
focmec Yes Yes No No No
SOD N/A N/A No Yes Yes
FLEXWIN Yes YES Yes ? Yes
PRESTo N/A N/A Yes N/A N/A
Earthworm ? ? Yes Yes Yes
Mineos Yes Yes Yes Yes No
SAC Yes Yes Yes Yes Yes



Seismology Software: State of the Practice 31

Table 14 Portability, Platforms: Platforms specified for the software to work on , Port in code: How portability is handled (If
source code given), All: Linux, Windows and Mac OS, Port not imp: Portability explicitly identified as not important, Evid
in doc.: Convincing evidence present in documentation for portability?

Name Platforms Port in code Port not imp Evid in doc

rfsyn Linux/Solaris N/A N/A No
PITSA Linux N/A N/A No
RECFUNK09 Mac N/A Yes No
Jpitsa Linux/Win Yes Implicity No
Station Analysis Tools Linux No Implicity No
fissuresutil Unspecified Yes Implicitly No
OregonDSP Unspecified N/A Implicity No
evalresp Linux/Win Yes Implicity No
jAmaSeis All N/A No Yes
SEISMIC CPML All N/A Implicity No
Seismic Handler Linux Yes Implicity No
AIMBAT All Yes No Yes
JRG All Yes No Yes
NonLinLoc Linux,Mac Yes No No
tracedsp Linux/Win32 Yes No Yes
CWP/SU Linux N/A Implicitly No
GEE All Yes No Yes
TauP All Yes Implicitly No
msmod Win/Linux Yes No Yes
FilterPicker All No Implicity No
FreeUSP Linux N/A Implicity N/A
iaspei-tau Mac/Linux Yes No Yes
JEvalResp All Yes No Yes
focmec Solaris/Linux/Mac Yes Implicitly No
SOD Unix/Win Yes Implicitly No
FLEXWIN Linux N/A Implicity No
PRESTo ALL Yes No Yes
Earthworm All Yes No Yes
Mineos All Yes No Yes
SAC All Yes No Yes



32 W. Spencer Smith et al.

Table 15 Interoperability, External package: Software communicates with external package, Workflow uses other s/w: Workflow
uses other software, API: External interactions (API) defined?

Name External package workflow uses other s/w API

rfsyn Yes No N/A
PITSA Yes No N/A
RECFUNK09 Yes No N/A
Jpitsa Yes No No
Station Analysis Tools Yes No N/A
fissuresutil Yes No Yes
OregonDSP Yes No Yes
evalresp Yes No No
jAmaSeis Yes Yes N/A
SEISMIC CPML Yes No No
Seismic Handler Yes No Yes
AIMBAT Yes No N/A
JRG Yes No Yes
NonLinLoc Yes No No
tracedsp Yes Yes No
CWP/SU Yes No Yes
GEE Yes No N/A
TauP Yes No Yes
msmod Yes No Yes
FilterPicker Yes No Yes
FreeUSP Yes Yes Yes
iaspei-tau Yes Yes No
JEvalResp Yes No Yes
focmec Yes No No
SOD Yes No Yes
FLEXWIN Yes No N/A
PRESTo Yes N/A N/A
Earthworm Yes Yes Yes
Mineos Yes No Yes
SAC Yes No Yes



Seismology Software: State of the Practice 33

Table 16 Visibility/Transparency and Reproducibility, Dev Pro: Development process defined, Ease of Exam: Ease of exam-
ination relative to other software (out of 10), Dev/Env Rec: Record of development environment, Test Data: Availability of
test data for verification, Auto Rep tool: Automated tools used to capture experimental data.

Name Dev Pro Ease of Exam Dev/Env Rec Test Data Auto Rep tool

rfsyn No 1 No No No
PITSA ? 2 No Yes No
RECFUNK09 ? 3 No No No
Jpitsa No 2 No Yes No
Station Analysis Tools ? 7 No No No
fissuresutil ? 5 No No No
OregonDSP ? 3 No No No
evalresp No 5 No No No
jAmaSeis No 5 No No No
SEISMIC CPML No 8 No No No
Seismic Handler ? 5 No No No
AIMBAT ? 7 No Yes No
JRG ? 7 No Yes No
NonLinLoc ? 6 No Yes No
tracedsp No 2 No No No
CWP/SU ? 8 No Yes No
GEE ? 7 No No No
TauP ? 8 Yes Yes No
msmod ? 10 No Yes No
FilterPicker ? 7 No Yes No
FreeUSP Yes 6 Yes Yes No
iaspei-tau No 9 No Yes No
JEvalResp No 9 No Yes No
focmec ? 10 No Yes No
SOD ? 7 No Yes No
FLEXWIN No 8 Yes Yes No
PRESTo Yes 8 No Yes No
Earthworm Yes 10 Yes Yes No
Mineos No 8 No No No
SAC ? 8 No Yes ?


