
Computing with
Semirings and Weak Rig Groupoids

Jacques Carette and Amr Sabry

1 McMaster University (carette@mcmaster.ca)
2 Indiana University (sabry@indiana.edu)

Abstract. The original formulation of the Curry–Howard correspon-
dence relates propositional logic to the simply-typed λ-calculus at three
levels: the syntax of propositions corresponds to the syntax of types;
the proofs of propositions correspond to programs of the corresponding
types; and the normalization of proofs corresponds to the evaluation of
programs. This rich correspondence has inspired our community for half
a century and has been generalized to deal with more advanced logics
and programming models. We propose a variant of this correspondence
which is inspired by conservation of information and recent homotopy
theoretic approaches to type theory.
Our proposed correspondence naturally relates semirings to reversible
programming languages: the syntax of semiring elements corresponds to
the syntax of types; the proofs of semiring identities correspond to (re-
versible) programs of the corresponding types; and equivalences between
algebraic proofs correspond to meaning-preserving program transforma-
tions and optimizations. These latter equivalences are not ad hoc: the
same way semirings arise naturally out of the structure of types, a cate-
gorical look at the structure of proof terms gives rise to (at least) a weak
rig groupoid structure, and the coherence laws are exactly the program
transformations we seek. Thus it is algebra, rather than logic, which
finally leads us to our correspondence.

1 Introduction

Elementary building blocks of type theory include the empty type (�), the unit
type (⊺), the sum type (⊎), and the product type (×). The traditional Curry–
Howard correspondence which goes back to at least 1969 relates these types to
logical propositions as follows: the type � corresponds to the absurd proposition
with no proof; the type ⊺ corresponds to the trivially true proposition; the type
τ1 ⊎τ2 corresponds to the disjunction of the corresponding propositions, and the
type τ1 × τ2 corresponds to the conjunction of the corresponding propositions.
The following tautologies of propositional logic therefore give rise to functions
witnessing the back-and-forth transformations:

τ ⊎ τ ⇔ τ
τ × τ ⇔ τ

(τ1 × τ2) ⊎ τ3 ⇔ (τ1 ⊎ τ3) × (τ2 ⊎ τ3)

This connection to logic, as inspiring as it is, only cares whether a type
is inhabited or not. For example, when translated to the world of types, the
second tautology above states that the type τ × τ is inhabited iff the type τ is.
Furthermore, the proofs of the two implications give rise to two functions that
produce an element from one type given an element of the other. This framework
is however of no direct help if one is concerned with other, richer properties of
types and their relationships. For example, type isomorphisms are an important
relation between types that is more refined than mere inhabitance of types as
they clearly distinguish τ × τ and τ .

The study of type isomorphisms became popular during at least two short pe-
riods: in the early 1990s when they were used to search large libraries [30], and in
the mid 2000s when they were studied from a categorical perspective [12, 13, 11].
In the last few years, type isomorphisms became one of the central concepts in
homotopy type theory (HoTT) [33], where type equivalences feature prominently.
These connections exposed that there is even more interesting structure arising
from type isomorphisms at higher levels. For example, let Bool abbreviate the
type ⊺ + ⊺ and consider the two isomorphisms between the type Bool and itself.
One of these is the identity and the other is the twist (negation) map. These
isomorphisms are themselves “not equivalent” in a sense to be formalized.

The question we therefore ask is whether there is a natural correspondence,
in the style of the Curry–Howard correspondence, between types and some exist-
ing mathematical entities, which would bring forth the structure of type isomor-
phisms and their equivalences at higher levels. We argue that, for the case of finite
types, commutative semirings and their categorification are exactly these enti-
ties. In a broader sense, such a correspondence connects computation with math-
ematical structures common in topology and physics, thus opening the door for
deeper and more fruitful interactions among these disciplines [1]. In more detail,
because physical laws obey various conservation principles (including conserva-
tion of information), every computation is, at the physical level, an equivalence
that preserves information. The idea that computation, at the logical and pro-
gramming level, should also be based on “equivalences” (i.e., invertible processes)
was originally motivated by such physical considerations [25, 4, 32, 10, 15, 29].
More recently, the rising importance of energy conservation for both tiny mobile
devices and supercomputers, the shrinking size of technology at which quantum
effects become noticeable, and the potential for quantum computation and com-
munication, are additional physical considerations adding momentum to such
reversible computational models [14, 7].

Outline. The next section discusses the correspondence between semirings and
types at an intuitive informal level. Sec. 3 formalizes the notions of equivalences
of types and equivalences of equivalences which are the semantic building blocks
for the computational side of the Curry–Howard-style correspondence we aim
for. Sec. 4 introduces a reversible programming language which exactly captures
type equivalences. Sec. 5 lays the categorical foundation for developing a sec-
ond language that exactly captures equivalences between equivalences. Sec. 6

introduces such a language. The remaining sections put our work in perspective,
point out its limitations and directions for future work, and conclude.

We note that because the issues involved are quite subtle, the paper is partly
an “unformalization” of an executable Agda 2.4.2.4 package with the global
without-K option enabled. The code is available at http://github.com/
/JacquesCarette/pi-dual/Univalence. We also make crucial use of a
substantial library of categorical structures; we forked our copy from https:
//github.com/copumpkin/categories and augmented it with definitions
for Groupoid, Rig Category and Bicategory. This fork is available from https:
//github.com/JacquesCarette/categories.

2 Informal Development

We explore the main ingredients that would constitute a Curry–Howard-like cor-
respondence between (commutative) semirings and (constructive) type theory.

2.1 Semirings

We begin with the standard definition of commutative semirings.

Definition 1. A commutative semiring sometimes called a commutative rig
(ring without negative elements) consists of a set R, two distinguished elements
of R named 0 and 1, and two binary operations + and ⋅, satisfying the following
relations for any a, b, c ∈ R:

0 + a = a (+-unit)
a + b = b + a (+-swap)

a + (b + c) = (a + b) + c (+-assoc)

1 ⋅ a = a (⋅-unit)
a ⋅ b = b ⋅ a (⋅-swap)

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c (⋅-assoc)

0 ⋅ a = 0 (⋅-0)
(a + b) ⋅ c = (a ⋅ c) + (b ⋅ c) (⋅-+)

If one were to focus on the syntax of the semiring elements, they would be
described using the following grammar:

a, b ∶∶= 0 ∣ 1 ∣ a + b ∣ a ⋅ b

This grammar corresponds to the grammar for the finite types in type theory:

τ ∶∶= � ∣ ⊺ ∣ τ1 ⊎ τ2 ∣ τ1 × τ2

We will show that this — so far — superficial correspondence scratches the
surface of a beautiful correspondence of rich combinatorial structure.

http://github.com//JacquesCarette/pi-dual/Univalence
http://github.com//JacquesCarette/pi-dual/Univalence
https://github.com/copumpkin/categories
https://github.com/copumpkin/categories
https://github.com/JacquesCarette/categories
https://github.com/JacquesCarette/categories

2.2 Semiring Identities and Isomorphisms

Having matched the syntax of semiring elements and the syntax of types, we
examine the computational counterpart of the semiring identities. When viewed
from the type theory side, each semiring identity asserts that two types are
“equal.” For example, the identity ⋅-unit, i.e., 1 ⋅a = a asserts that the types ⊺×A
and A are “equal.” One way to express such an “equality” computationally is to
exhibit two functions mediating between the two types and prove that these two
functions are inverses. Specifically, we define:

f ∶ ⊺ ×A→ A f̄ ∶ A→ ⊺ ×A
f (tt, x) = x f̄ x = (tt, x)

and prove f ○ f̄ = f̄ ○ f = id. One could use this proof to “equate” the two types but,
in our proof-relevant development, it is more appropriate to keep the identity of
the types separate and speak of isomorphisms.

2.3 Proof Relevance

In the world of semirings, there are many proofs of a + a = a + a. Consider

pf1 ∶ a + a = a + a (because = is reflexive)
pf2 ∶ a + a = a + a (using +-swap)

In some cases, we might not care how a semiring identity was proved and it
might then be acceptable to treat pf1 and pf2 as “equal.” But although these two
proofs of a + a = a + a look identical, they use different “justifications” and these
justifications are clearly not “equal.”

When viewed from the computational side, the situation is as follows. The
first proof gives rise to one isomorphism using the self-inverse function id. The
second proof gives rise to another isomorphism using another self-inverse function
swap defined as:

swap ∶ A ⊎B → B ⊎A
swap (inj1 x) = inj2 x
swap (inj2 x) = inj1 x

Now it is clear that even though both id and swap can be used to establish an
isomorphism between A ⊎A and itself, their actions are different. Semantically
speaking, these two functions are different and no program transformation or
optimization should ever identify them.

The discussion above should not however lead one to conclude that programs
resulting from different proofs are always semantically different. Consider for
example, the following two proofs of (a + 0) + b = a + b. To avoid clutter in this
informal presentation, we omit the justifications that refer to the fact that = is
a congruence relation:

pf3 ∶ (a + 0) + b = (0 + a) + b (using +-swap)
= a + b (using +-unit)

pf4 ∶ (a + 0) + b = a + (0 + b) (using +-assoc)
= a + b (using +-unit)

On the computational side, the proofs induce the following two isomorphisms
between (A ⊎ �) ⊎ B and A ⊎ B. The first isomorphism pf3 takes the values in
(A ⊎ �) ⊎B using the composition of the following two isomorphisms:

f1 ∶ (A ⊎ �) ⊎B → (� ⊎A) ⊎B f1 ∶ (� ⊎A) ⊎B → (A ⊎ �) ⊎B

f1(inj1 (inj1 x)) = inj1 (inj2 x) f1(inj1 (inj2 x)) = inj1 (inj1 x)
f1(inj2 x) = inj2 x f1(inj2 x) = inj2 x

f2 ∶ (� ⊎A) ⊎B → A ⊎B f2 ∶ A ⊎B → (� ⊎A) ⊎B

f2(inj1 (inj2 x)) = inj1 x f2(inj1 x) = inj1 (inj2 x)
f2(inj2 x) = inj2 x f2(inj2 x) = inj2 x

We calculate that composition corresponding to pf3 as:

f12 ∶ (A ⊎ �) ⊎B → A ⊎B f12 ∶ A ⊎B → (A ⊎ �) ⊎B

f12(inj1 (inj1 x)) = inj1 x f12(inj1 x) = inj1 (inj1 x)
f12(inj2 x) = inj2 x f12(inj2 x) = inj2 x

We can similarly calculate the isomorphism corresponding to pf4 and verify that
it is identical to the one above.

2.4 Summary

To summarize, there is a natural computational model that emerges from view-
ing types as syntax for semiring elements and semiring identities as type isomor-
phisms. The correspondence continues further between justifications for semiring
identities and valid program transformations and optimizations. There is a long
way however from noticing such a correspondence to formalizing it in such a way
that a well-founded reversible programming language along with its accompany-
ing program transformations and optimizations can be naturally extracted from
the algebraic semiring structure. Furthermore, the correspondence between the
algebraic manipulations in semirings and program transformations is so tight
that it should be possible to conveniently move back and forth between the two
worlds transporting results that are evident in one domain to the other. The
remainder of the paper is about such a formalization and its applications.

3 Type Equivalences and Equivalences of Equivalences

The previous section used two informal notions of equivalence: between types,
corresponding to semiring identities, and between programs, corresponding to
proofs of semiring identities. We make this precise.

3.1 Type Equivalences

As a first approximation, Sec. 2.2 identifies two types when there is an iso-
morphism between them. The next section (Sec. 2.3) however reveals that we

want to reason at a higher level about equivalences of such isomorphisms. We
therefore follow the HoTT approach and expose one of the functions forming
the isomorphism in order to explicitly encode the precise way in which the two
types are equivalent. Thus, the two equivalences between Bool and itself will be
distinguished by the underlying witness of the isomorphism.

Technically our definition of type equivalence relies on quasi-inverses and
homotopies defined next.3

Definition 2 (Homotopy). Two functions f, g ∶ A → B are homotopic, writ-
ten f ∼ g, if ∀x ∶ A.f(x) = g(x). In Agda, we write:

∼ : ∀ {A : Set} {P : A → Set} → (f g : (x : A) → P x) → Set
∼ {A} f g = (x : A) → f x ≡ g x

where Set is the universe of Agda types.

In the HoTT world, there is a distinction between the identification of two func-
tions f ≡ g, and two functions producing equal values on all inputs f ∼ g: the two
notions are traditionally identified but are only equivalent in the HoTT context.

Definition 3 (Quasi-inverse). For a function f ∶ A→ B, a quasi-inverse of f
is a triple (g,α, β), consisting of a function g ∶ B → A and two homotopies
α ∶ f ○ g ∼ idB and β ∶ g ○ f ∼ idA. In Agda, we write:

record isqinv {A : Set} {B : Set} (f : A → B) : Set where
constructor qinv
field

g : B → A
α : (f ○ g) ∼ id
β : (g ○ f) ∼ id

The terminology “quasi-inverse” was chosen in the HoTT context as a reminder
that this is a poorly-behaved notion by itself as the same function f ∶ A→ B may
have multiple unequal quasi-inverses; however, up to homotopy, all quasi-inverses
are equivalent. From a quasi-inverse, one can build an inverse (and vice-versa);
however, in a proof-relevant setting, logical equivalence is insufficient.

Definition 4 (Equivalence of types). Two types A and B are equivalent
A ≃ B if there exists a function f ∶ A → B together with a quasi-inverse for f .
In Agda, we write:

≃ : Set → Set → Set
A ≃ B = Σ (A → B) isqinv

3 For reasons beyond the scope of this paper, we do not use any of the definitions
of equivalence which make it a mere proposition, as we want a definition which is
syntactically symmetric.

It is easy to prove that homotopies (for any given function space A→ B) are an
equivalence relation. It is also straightforward to show that ≃ is an equivalence
relation by defining:

id≃ ∶ A ≃ A
sym≃ ∶ (A ≃ B)→ (B ≃ A)

trans≃ ∶ (A ≃ B)→ (B ≃ C)→ (A ≃ C)

The definition of equivalence allows us to formalize the presentation of Sec. 2.2
by proving that every commutative semiring identity is satisfied by types in the
universe (Set) up to ≃.

Theorem 1. The collection of all types (Set) forms a commutative semiring
(up to ≃).

Proof. As expected, the additive unit is �, the multiplicative unit is ⊺, and the
two binary operations are ⊎ and ×. The relevant structure in Agda is:

typesCSR : CommutativeSemiring (Level.suc Level.zero) Level.zero
typesCSR = record {

Carrier = Set ;
≈ = _≃_ ; _+_ = _⊎_ ; _*_ = _×_ ;
0# = � ; 1# = ⊺ ;
isCommutativeSemiring = typesIsCSR }

The functions, homotopies, and quasi-inverses witnessing the explicit equiva-
lences are defined within typesIsCSR and are straightforward. For future refer-
ence, we list some of these equivalences:

unite+≃ ∶ (� ⊎A) ≃ A
unite+′≃ ∶ (A ⊎ �) ≃ A
swap+≃ ∶ (A ⊎B) ≃ (B ⊎A)

assoc+≃ ∶ ((A ⊎B) ⊎C) ≃ (A ⊎ (B ⊎C))

⊎≃ ∶ (A ≃ C)→ (B ≃D)→ ((A ⊎B) ≃ (C ⊎D))

3.2 Equivalences of Equivalences

In the terminology of Sec. 2.3, an equivalence ≃ denotes a proof of a semiring
identity. Thus the proofs pf1, pf2, pf3, and pf4 can be written formally as:

pf1 pf2 : {A : Set} → (A ⊎ A) ≃ (A ⊎ A)
pf1 = id≃
pf2 = swap+≃

pf3 pf4 : {A B : Set} → ((A ⊎ �) ⊎ B) ≃ (A ⊎ B)
pf3 = trans≃ (swap+≃ ⊎≃ id≃) (unite+≃ ⊎≃ id≃)
pf4 = trans≃ assoc+≃ (id≃ ⊎≃ unite+≃)

In order to argue that pf3 and pf4 are equivalent, we therefore need a notion
of equivalence of equivalences. To motivate our definition below, we first consider
the obvious idea of using ≃ to relate equivalences. In that case, an equivalence of
equivalences of type (A ≃ B) ≃ (A ≃ B) would include functions f and g mapping
between (A ≃ B) and itself in addition to two homotopies α and β witnessing
(f ○g) ∼ id and (g ○f) ∼ id respectively. Expanding the definition of a homotopy,
we note that α and β would therefore attempt to compare equivalences (which
include functions) using propositional equality ≡. In other words, we need to
resolve to homotopies again to compare these functions: two equivalences are
equivalent if there exist homotopies between their underlying functions.4

Definition 5 (Equivalence of equivalences). Two equivalences eq1, eq2 ∶ A ≃

B are themselves equivalent, written eq2 ≋ eq2, if eq1.f ∼ eq2.f and eq1.g ∼ eq2.g.
In Agda, we write:

record _≋_ {A B : Set} (eq1 eq2 : A ≃ B) : Set where
constructor eq
open isqinv
field

f≡ : proj1 eq1 ∼ proj1 eq2
g≡ : g (proj2 eq1) ∼ g (proj2 eq2)

We could now verify that indeed pf3 ≋ pf4. Such a proof exists in the ac-
companying code but requires a surprising amount of tedious infrastructure to
present. We will have to wait until Secs. 5.1 and 6.4 to see this proof.

4 Programming with Equivalences

We have established and formalized a correspondence between semirings and
types which relates semiring identities to the type equivalences of Def. 4. We
have further introduced the infrastructure needed to reason about equivalences
of equivalences so that we can reason about the relation between different proofs
of the same semiring identity. As we aim to refine these relationships to a Curry–
Howard-like correspondence, we now turn our attention to developing an actual
programming language. The first step will be to introduce syntax that denotes
type equivalences. Thus instead of having to repeatedly introduce functions and
their inverses and proofs of homotopies, we will simply use a term language that
exactly expresses type equivalences and nothing else.

4.1 Syntax of Π

In previous work, Bowman, James and Sabry [6, 20] introduced the Π family of
reversible languages whose only computations are isomorphisms between types.
The simplest member of Π is exactly the language we seek for capturing type
4 Strictly speaking, the g≡ component is redundant, from a logical perspective, as it
is derivable. From a computational perspective, it is very convenient.

id↔∶ τ ↔ τ ∶ id↔

unite+l ∶ 0 + τ ↔ τ ∶ uniti+l
swap

+
∶ τ1 + τ2 ↔ τ2 + τ1 ∶ swap

+

assocl+ ∶ τ1 + (τ2 + τ3) ↔ (τ1 + τ2) + τ3 ∶ assocr+

unite∗l ∶ 1 ∗ τ ↔ τ ∶ uniti∗l
swap

∗
∶ τ1 ∗ τ2 ↔ τ2 ∗ τ1 ∶ swap

∗

assocl∗ ∶ τ1 ∗ (τ2 ∗ τ3) ↔ (τ1 ∗ τ2) ∗ τ3 ∶ assocr∗

absorbr ∶ 0 ∗ τ ↔ 0 ∶ factorzl
dist ∶ (τ1 + τ2) ∗ τ3 ↔ (τ1 ∗ τ3) + (τ2 ∗ τ3) ∶ factor

Fig. 1. Π-terms [6, 20].

⊢ c1 ∶ τ1 ↔ τ2 ⊢ c2 ∶ τ2 ↔ τ3

⊢ c1 ⊙ c2 ∶ τ1 ↔ τ3

⊢ c1 ∶ τ1 ↔ τ2 ⊢ c2 ∶ τ3 ↔ τ4

⊢ c1 ⊕ c2 ∶ τ1 + τ3 ↔ τ2 + τ4
⊢ c1 ∶ τ1 ↔ τ2 ⊢ c2 ∶ τ3 ↔ τ4

⊢ c1 ⊗ c2 ∶ τ1 ∗ τ3 ↔ τ2 ∗ τ4

Fig. 2. Π-combinators.

equivalences arising from semiring identities. The syntactic components of our
language are as follows:

(Types) τ ∶∶= 0 ∣ 1 ∣ τ1 + τ2 ∣ τ1 ∗ τ2
(Values) v ∶∶= () ∣ inl v ∣ inr v ∣ (v1, v2)
(Combinator types) τ1 ↔ τ2
(Terms and Combinators) c ∶∶= [see Figs. 1 and 2]

The values classified by the finite types are the conventional ones: () of type 1,
(inl v) and (inr v) for injections into sum types, and (v1, v2) for product types.

Fig. 1 gives the terms which correspond to the identities of commutative
semirings. Each line of the figure introduces a pair of dual constants (where
id↔, swap

+
and swap

∗
are self-dual) that witness the type isomorphism in the

middle. Fig. 2 adds to that 3 combinators ⊙, ⊕, and ⊗, which come from the
requirement that ↔ be transitive (giving a sequential composition operator ⊙),
and that ↔ be a congruence for both + and ∗ (giving a way to take sums and
products of combinators using ⊕ and ⊗ respectively). This latter congruence
requirement is classically invisible, but appears when being proof-relevant.

By construction, each term in the language has an inverse:

Definition 6 (Syntactic Inverse !). Each Π-term c ∶ τ1 ↔ τ2 has a syntactic
inverse !c ∶ τ2 ↔ τ1. We only show a few representative clauses:

!id↔ = id↔
!unite+l = uniti+l
!uniti+l = unite+l

!(c1 ⊙ c2) = !c2 ⊙ !c1
!(c1 ⊕ c2) = !c1 ⊕ !c2
!(c1 ⊗ c2) = !c1 ⊗ !c2

4.2 Example Programs

The family of Π languages was previously introduced as standalone reversible
programming languages. The fragment without recursive types discussed in this
paper is universal for reversible boolean circuits [20]. With the addition of re-
cursive types and trace operators [18], Π becomes a Turing-complete reversible
language [20, 6].

We illustrate the expressiveness of Π with a few small programs; we begin
by defining the universe of types U:

data U : Set where
ZERO : U
ONE : U
PLUS : U → U → U
TIMES : U → U → U

We then encode the type of booleans, write a few simple gates like the Toffoli
gate [32], and use them to write a reversible full adder [19]:

BOOL : U
BOOL = PLUS ONE ONE

BOOL2 : U
BOOL2 = TIMES BOOL BOOL

BOOL3 : U
BOOL3 = TIMES BOOL2 BOOL

NOT : BOOL ↔ BOOL
NOT = swap+

CNOT : BOOL2 ↔ BOOL2

CNOT = dist ⊙ (id↔ ⊕ (id↔ ⊗ NOT)) ⊙ factor

TOFFOLI : TIMES BOOL BOOL2 ↔ TIMES BOOL BOOL2

TOFFOLI = dist ⊙ (id↔ ⊕ (id↔ ⊗ CNOT)) ⊙ factor

PERES : BOOL3 ↔ BOOL3

PERES = (id↔ ⊗ NOT) ⊙ assocr⋆ ⊙ (id↔ ⊗ swap⋆) ⊙ TOFFOLI ⊙
(id↔ ⊗ (NOT ⊗ id↔)) ⊙ TOFFOLI ⊙ (id↔ ⊗ swap⋆) ⊙
(id↔ ⊗ (NOT ⊗ id↔)) ⊙ TOFFOLI ⊙ (id↔ ⊗ (NOT ⊗ id↔)) ⊙ assocl⋆

- Input: (z, ((n1, n2), cin)))
- Output: (g1, (g2, (sum, cout)))

F_ADDER : TIMES BOOL BOOL3 ↔ TIMES BOOL (TIMES BOOL BOOL2)
F_ADDER = swap⋆ ⊙ (swap⋆ ⊗ id↔) ⊙ assocr⋆ ⊙ swap⋆ ⊙ (PERES ⊗ id↔) ⊙

assocr⋆ ⊙ (id↔ ⊗ swap⋆) ⊙ assocr⋆ ⊙ (id↔ ⊗ assocl⋆) ⊙
(id↔ ⊗ PERES) ⊙ (id↔ ⊗ assocr⋆)

Although writing circuits using the raw syntax for combinators is tedious,
the examples illustrate the programming language nature of Π. In other work,
one can find a compiler from a conventional functional language to circuits [20],
a systematic technique to translate abstract machines to Π [21], and a Haskell-
like surface language [22] which can ease writing circuits. All that reinforces the
first part of the title, i.e., that we can really compute with semirings.

4.3 Example Proofs

In addition to being a reversible programming language, Π is also a language
for expressing proofs that correspond to semiring identities. Thus we can write
variants of our proofs pf1, pf2, pf3, and pf4 from Sec. 2:

pf1π pf2π : {A : U} → PLUS A A ↔ PLUS A A
pf1π = id↔
pf2π = swap+

pf3π pf4π : {A B : U} → PLUS (PLUS A ZERO) B ↔ PLUS A B
pf3π = (swap+ ⊕ id↔) ⊙ (unite+l ⊕ id↔)
pf4π = assocr+ ⊙ (id↔ ⊕ unite+l)

4.4 Semantics

We define the denotational semantics of Π to be type equivalences:

J_K : U → Set
J ZERO K = �
J ONE K = ⊺
J PLUS t1 t2 K = J t1 K ⊎ J t2 K
J TIMES t1 t2 K = J t1 K × J t2 K

c2equiv : {t1 t2 : U} → (c : t1 ↔ t2) → J t1 K ≃ J t2 K

The function J⋅K maps each type constructor to its Agda denotation. The function
c2equiv confirms that every Π term encodes a type equivalence.

In previous work, we also defined an operational semantics for Π via forward
and backward evaluators with the following signatures:

eval : {t1 t2 : U} → (t1 ↔ t2) → J t1 K → J t2 K
evalB : {t1 t2 : U} → (t1 ↔ t2) → J t2 K → J t1 K

This operational semantics serves as an adequate semantic specification if
one focuses solely on a programming language for reversible boolean circuits. It
is straightforward to prove that eval and evalB are inverses of each other.

If, in addition, one is also interested in using Π for expressing semiring iden-
tities as type equivalences then the following properties are of more interest:

lemma0 : {t1 t2 : U} → (c : t1 ↔ t2) → (v : J t1 K) →
eval c v ≡ proj1 (c2equiv c) v

lemma1 : {t1 t2 : U} → (c : t1 ↔ t2) → (v : J t2 K) →
evalB c v ≡ proj1 (sym≃ (c2equiv c)) v

The two lemmas confirm that these type equivalences are coherent with respect
to the operational semantics, i.e., that the operational and denotational seman-
tics of Π coincide.

5 Categorification

We have seen two important ways of modeling equivalences between types: us-
ing back-and-forth functions that compose to the identity (Def. 4) and using
a programming language tailored to only express isomorphisms between types
(Sec. 4.1). In terms of our desired Curry–Howard-like correspondence, we have
so far related the syntax of semiring elements to types and the proofs of semiring
identities to programs of the appropriate types. The last important component
of the Curry-Howard correspondence is to relate semiring proof transformations
to program transformations.

We thus need to reason about equivalences of equivalences. Attempting to
discover these when working directly with equivalences, or with the syntax of
a programming language, proves quite awkward. It, however, turns out that
the solution to this problem is evident if we first generalize our models of type
equivalences to the categorical setting. As we explain, in the right class of cate-
gories, the objects represent types, the morphisms represent type equivalences,
and the coherence conditions will represent equivalences of equivalences. Our
task of modeling equivalences of equivalences then reduces to “reading off” the
coherence conditions for each instance of the general categorical framework.

5.1 Monoidal Categories

As the details matter, we will be explicit about the definition of all the categorical
notions involved. We begin with the conventional definitions for monoidal and
symmetric monoidal categories.

Definition 7 (Monoidal Category). A monoidal category [27] is a category
with the following additional structure:

– a bifunctor ⊗ called the monoidal or tensor product,
– an object I called the unit object, and
– natural isomorphisms αA,B,C ∶ (A⊗B)⊗C

∼

→ A⊗(B⊗C), λA ∶ I⊗A
∼

→ A, and
ρA ∶ A⊗I

∼

→ A, such that the two diagrams below (known as the associativity
pentagon and the triangle for unit) commute.

((A⊗B)⊗C)⊗D) (A⊗B)⊗ (C ⊗D)

(A⊗ (B ⊗C))⊗D A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗C)⊗D)

α

α⊗idD α

α idA⊗α

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

α

ρA⊗idB idA⊗λB

Definition 8 (Braided and Symmetric Monoidal Categories). A monoidal
category is braided if it has an isomorphism σA,B ∶ A⊗B

∼

→ B ⊗A where σ is a
natural transformation which satisfies the unit coherence triangle (below on the
left) and the bilinearity hexagon below. A braided monoidal category is symmet-
ric if it additionally satisfies the symmetry triangle (below on the right).

A⊗ I

I ⊗A A

σ ρA

λA

A⊗B

B ⊗A A⊗B

σ idA⊗idB

σ

A⊗ (B ⊗C)

(A⊗B)⊗C (B ⊗C)⊗A

(B ⊗A)⊗C B ⊗ (C ⊗A)

B ⊗ (A⊗C)

σα

σ⊗idC α

α idB⊗σ

According to Mac Lane’s coherence theorem, the triangle and pentagon co-
herence laws for monoidal categories are justified by the desire to equate any
two isomorphisms built using σ, λ, and ρ and having the same source and tar-
get. Similar considerations justify the coherence laws for symmetric monoidal
categories. It is important to note that the coherence conditions do not imply
that every pair of parallel morphisms with the same source and target are equal.
Indeed, as Dosen and Petric explain:

In Mac Lane’s second coherence result of [...], which has to do with sym-
metric monoidal categories, it is not intended that all equations between
arrows of the same type should hold. What Mac Lane does can be de-
scribed in logical terms in the following manner. On the one hand, he
has an axiomatization, and, on the other hand, he has a model category
where arrows are permutations; then he shows that his axiomatization is
complete with respect to this model. It is no wonder that his coherence
problem reduces to the completeness problem for the usual axiomatiza-
tion of symmetric groups [9].

From a different perspective, Baez and Dolan [2] explain the source of these
coherence laws as arising from homotopy theory. In this theory, laws are only
imposed up to homotopy, with these homotopies satisfying certain laws, again
only up to homotopy, with these higher homotopies satisfying their own higher
coherence laws, and so on. Remarkably, they report, among other results, that
the pentagon identity arises when studying the algebraic structure possessed by a

space that is homotopy equivalent to a loop space and that the hexagon identity
arises in the context of spaces homotopy equivalent to double loop spaces.

As a concrete example relating homotopies and coherence conditions, the
homotopy between pf3 and pf4 discussed in Sec. 3.2 follows from the coherence
conditions of symmetric monoidal categories as follows:

pf3 = trans≃ (swap+≃ ⊎≃ id≃) (unite+≃ ⊎≃ id≃)
≋ (trans≃ swap+≃ unite+≃) ⊎≃ id≃ (⊎≃ is a functor)
≋ unite+′≃ ⊎≃ id≃ (unit coherence law)

≋ trans≃ assoc+≃ (id≃ ⊎≃ unite+≃) (triangle)
= pf4

The derivation assumes that the category of types and equivalences is symmetric
monoidal — a result which will be proved in a more general form in Thm. 2.

5.2 Weak Symmetric Rig Groupoids

Symmetric monoidal categories are the categorification of commutative monoids.
The categorification of a commutative semiring is called a symmetric rig category.
It is built from a symmetric bimonoidal category to which distributivity and
absorption natural isomorphisms are added, and accompanying coherence laws.
Since we can set things up so that every morphism is an isomorphism, it will
also be a groupoid. Also, as the laws of the category only hold up to a higher
equivalence, the entire setting is that of weak categories (aka bicategories).

There are several equivalent definitions of rig categories; we use the following
from the nLab [28].

Definition 9 (Rig Category). A rig category C is a category with a symmet-
ric monoidal structure (C,⊕,0) for addition and a monoidal structure (C,⊗,1)
for multiplication together with left and right distributivity natural isomorphisms:

d` ∶ x⊗ (y ⊕ z)
∼

→ (x⊗ y)⊕ (x⊗ z)

dr ∶ (x⊕ y)⊗ z
∼

→ (x⊗ z)⊕ (y ⊗ z)

and absorption/annihilation isomorphisms a` ∶ x ⊗ 0
∼

→ 0 and ar ∶ 0 ⊗ x
∼

→ 0
satisfying coherence conditions [26] discussed below.

Definition 10 (Symmetric Rig Category). A symmetric rig category is a
rig category in which the multiplicative structure is symmetric.

Definition 11 (Symmetric Rig Groupoid). A symmetric rig groupoid is a
symmetric rig category in which every morphism is invertible.

The coherence conditions for rig categories were worked out by Laplaza [26].
Pages 31-35 of his paper report 24 coherence conditions numbered I to XXIV
that vary from simple diagrams to quite complicated ones including a diagram

with 9 nodes showing that two distinct ways of simplifying (A ⊕B) ⊗ (C ⊕D)

to (((A⊗C)⊕ (B ⊗C))⊕ (A⊗D))⊕ (B ⊗D) commute. The 24 coherence con-
ditions are however not independent and it is sufficient to verify one of various
smaller subsets, to be chosen depending on the situation. Generally speaking,
the coherence laws appear rather obscure but they can be unpacked and “un-
formalized” to relatively understandable statements. They all express that two
different means of getting between two equivalent types are equivalent. Thus we
can give programming-oriented descriptions of these along the following lines:

I given A⊗ (B ⊕C), swapping B and C then distributing (on the left) is the
same as first distributing, then swapping the two summands;

II given (A⊕B)⊗C, first switching the order of the products then distributing
(on the left) is the same as distributing (on the right) and then switching
the order of both products;

IX given (A ⊕ B) ⊗ (C ⊕ D), we can either first distribute on the left, map
right-distribution and finally associate, or we can go “the long way around”
by right-distributing first, then mapping left-distribution, and then a long
chain of administrative shuffles to get to the same point;

and so on.
Going through the details of the proof of the coherence theorem in [26] with

a “modern” eye, one cannot help but think of Knuth-Bendix completion. Al-
though it is known that the coherence laws for some categorical structures can
be systematically derived in this way [3], it is also known that in the presence of
certain structures (such as symmetry), Knuth-Bendix completion will not ter-
minate. It would be interesting to know if there is indeed a systematic way to
obtain these laws from the rewriting perspective but, as far as we know, there
are no published results to that effect. The connections to homotopy theory cited
by Baez and Dolan [2] (and mentioned in the previous section) appear to be the
best hope for a rational reconstruction of the coherence laws.

5.3 The Symmetric Rig Groupoid of Types and Type Equivalences

We are now ready for the generalization of our model of types and type equiv-
alences to a symmetric rig weak groupoid and this will, by construction, prove
all equivalences between type equivalences like pf3 ≋ pf4 that should be equated,
while, again by construction, not identifying type equivalences like pf1 and pf2
that should not be equated.

Theorem 2. The category whose objects are Agda types and whose morphisms
are type equivalences is a symmetric rig groupoid.

Proof. The definition of Category that we use is parametrized by an equivalence
relation for its collection of morphisms between objects. Since we want a category
with equivalences as morphisms, we naturally use ≋ for that notion of morphism-
equality. These morphisms directly satisfy the axioms stated in the definitions
of the various categories. The bulk of the work is in ensuring that the coherence

conditions are satisfied up to homotopy. We only show the proof of one coherence
condition, the first one in Laplaza’s paper:

A⊗ (B ⊕C) (A⊗B)⊕ (A⊗C)

A⊗ (C ⊕B) (A⊗C)⊕ (A⊗B)

distl

idA⊗swap
+

swap
+

distl

We first have a lemma that shows that the two paths starting from the top left
node are equivalent:

A×[B⊎C]→[A×C]⊎[A×B] : {A B C : Set} →
(TE.distl ○ (id {A = A} ×→ TE.swap+ {B} {C})) ∼ (TE.swap+ ○ TE.distl)

A×[B⊎C]→[A×C]⊎[A×B] (x , inj1 y) = refl
A×[B⊎C]→[A×C]⊎[A×B] (x , inj2 y) = refl

The lemma asserts the that the two paths between A⊗ (B ⊕C) and (A⊗C)⊕

(A⊗B) are homotopic. To show that we have a groupoid, we also need to know
that the converse lemma also holds, i.e. that reversing all arrows also gives a
diagram for a homotopy, in other words:

[A×C]⊎[A×B]→A×[B⊎C] : {A B C : Set} →
((id ×→ TE.swap+) ○ TE.factorl) ∼ (TE.factorl ○ TE.swap+ {A × C} {A × B})

[A×C]⊎[A×B]→A×[B⊎C] (inj1 x) = refl
[A×C]⊎[A×B]→A×[B⊎C] (inj2 y) = refl

Finally we show that the forward equivalence and the backward equivalence are
indeed related to the same diagram:

laplazaI = eq A×[B⊎C]→[A×C]⊎[A×B] [A×C]⊎[A×B]→A×[B⊎C]

where eq is the constructor for ≋. ⊓⊔

6 Programming with Equivalences of Equivalences

Following the lead of Sec. 4, we now develop an actual programming language
whose terms denote equivalences of equivalences. Since we already have Π whose
terms denote equivalences, what we actually need is a language whose terms
denote equivalences of Π terms. One can think of such a language as a language
for expressing valid program transformations and optimizations of Π programs.
We will call the terms and combinators of the original Π language, level-0 terms,
and the terms and combinators of the new language, level-1 terms.

As explained in the previous section, there is a systematic way to “discover”
the level-1 terms which is driven by the coherence conditions. During our proofs,
we collected all the level-1 terms that were needed to realize all the coherence
conditions. This exercise suggested a refactoring of the original level-0 terms and
a few iterations.

Let c1 ∶ t1 ↔ t2, c2 ∶ t2 ↔ t3, and c3 ∶ t3 ↔ t4:

c1 ⊙ (c2 ⊙ c3)⇔ (c1 ⊙ c2)⊙ c3
(c1 ⊕ (c2 ⊕ c3))⊙ assocl+⇔ assocl+ ⊙ ((c1 ⊕ c2)⊕ c3)
(c1 ⊗ (c2 ⊗ c3))⊙ assocl∗⇔ assocl∗ ⊙ ((c1 ⊗ c2)⊗ c3)
((c1 ⊕ c2)⊕ c3)⊙ assocr+⇔ assocr+ ⊙ (c1 ⊕ (c2 ⊕ c3))
((c1 ⊗ c2)⊗ c3)⊙ assocr∗⇔ assocr∗ ⊙ (c1 ⊗ (c2 ⊗ c3))

assocr+ ⊙ assocr+⇔ ((assocr+ ⊕ id↔)⊙ assocr+)⊙ (id↔ ⊕assocr+)
assocr∗ ⊙ assocr∗⇔ ((assocr∗ ⊗ id↔)⊙ assocr∗)⊙ (id↔ ⊗assocr∗)

Fig. 3. Signatures of level-1 Π-combinators: associativity

Let a ∶ t1 ↔ t2, b ∶ t3 ↔ t4, and c ∶ t5 ↔ t6:

((a⊕ b)⊗ c)⊙ dist ⇔ dist ⊙ ((a⊗ c)⊕ (b⊗ c))
(a⊗ (b⊕ c))⊙ distl ⇔ distl ⊙ ((a⊗ b)⊕ (a⊗ c))
((a⊗ c)⊕ (b⊗ c))⊙ factor ⇔ factor ⊙ ((a⊕ b)⊗ c)
((a⊗ b)⊕ (a⊗ c))⊙ factorl ⇔ factorl ⊙ (a⊗ (b⊕ c))

Fig. 4. Signatures of level-1 Π-combinators: distributivity and factoring

6.1 Revised Syntax of Level-0 Terms

The inspiration of symmetric rig groupoids suggested a refactoring of Π with
the following additional level-0 combinators:

unite+r ∶ τ + 0↔ τ ∶ uniti+r
unite∗r ∶ τ ∗ 1↔ τ ∶ uniti∗r
absorbl ∶ τ ∗ 0↔ 0 ∶ factorzr

distl ∶ τ1 ∗ (τ2 + τ3)↔ (τ1 ∗ τ2) + (τ1 ∗ τ3) ∶ factorl

The added combinators are redundant, from an operational perspective, ex-
actly because of the coherence conditions. They are however critical to the proofs,
and in addition, they are often useful when representing circuits, leading to
smaller programs with fewer redexes.

6.2 Syntax of Level-1 Terms

The big addition to Π is the level-1 combinators which are collected in Figs. 3 –
12. To avoid clutter we omit the names of the combinators (which are arbitrary)
and omit some of the implicit type parameters. The reader should consult the
code for full details.

Generally speaking, the level-1 combinators arise for the following reasons.
About a third of the combinators come from the definition of the various nat-
ural isomorphisms αA,B,C , λA, ρA, σA,B , dl, dr, al and ar. The first 4 natural

Let c, c1, c2, c3 ∶ t1 ↔ t2 and c′, c′′ ∶ t3 ↔ t4:

id↔ ⊙ c⇔ c c ⊙ id↔⇔ c c ⊙ !c⇔ id↔ !c⊙ c⇔ id↔

c⇔ c
c1 ⇔ c2 c2 ⇔ c3

c1 ⇔ c3

c1 ⇔ c′ c2 ⇔ c′′

c1 ⊙ c2 ⇔ c′ ⊙ c′′

Fig. 5. Signatures of level-1 Π-combinators: identity and composition

Let c0 ∶ 0↔ 0, c1 ∶ 1↔ 1, and c ∶ t1 ↔ t2:

unite+l ⊙ c⇔ (c0 ⊕ c)⊙ unite+l uniti+l ⊙ (c0 ⊕ c)⇔ c⊙ uniti+l

unite+r ⊙ c⇔ (c⊕ c0)⊙ unite+r uniti+r ⊙ (c⊕ c0)⇔ c⊙ uniti+r

unite∗l ⊙ c⇔ (c1 ⊗ c)⊙ unite∗l uniti∗l ⊙ (c1 ⊗ c)⇔ c⊙ uniti+l

unite∗r ⊙ c⇔ (c⊗ c1)⊙ unite∗r uniti∗r ⊙ (c⊗ c1)⇔ c⊙ uniti∗r

unite∗l ⇔ distl ⊙ (unite∗l ⊕ unite∗l)
unite+l ⇔ swap

+
⊙ uniti+r unite∗l ⇔ swap

∗
⊙ uniti∗r

Fig. 6. Signatures of level-1 Π-combinators: unit

isomorphisms actually occur twice, once for each of the symmetric monoidal
structures at play. Each natural isomorphism is composed of 2 natural trans-
formations (one in each direction) that must compose to the identity. This in
turn induces 4 coherence laws: two naturality laws which indicate that the com-
binator commutes with structure construction, and two which express that the
resulting combinators are left and right inverses of each other. We note that the
mere desire that ⊕ be a bifunctor induces 3 coherence laws. And then of course
each “structure” (monoidal, braided, symmetric) comes with more, as outlined
in the previous section, culminating with 13 additional coherence laws for the
rig structure.

In our presentation, we group the level-1 combinators according to the dom-
inant property of interest, e.g., associativity in Fig. 3, or according to the main
two interacting properties, e.g., commutativity and associativity in Fig. 7. It is
worth noting that most (but not all) of the properties involving only ⊕ were al-
ready in Agda’s standard library (in Data.Sum.Properties to be precise), whereas
all properties involving only ⊗ were immediately provable due to η expansion.
Nevertheless, for symmetry and clarity, we created a module Data.Prod.Properties
to collect all of these. None of the mixed properties involved with distributivity
and absorption were present, although the proofs for all of them were straight-
forward. Their statement, on the other hand, was at times rather complex (see
Data.SumProd.Properties).

Let c1 ∶ t1 ↔ t2 and c2 ∶ t3 ↔ t4:

swap
+
⊙ (c1 ⊕ c2)⇔ (c2 ⊕ c1)⊙ swap

+
swap

∗
⊙ (c1 ⊗ c2)⇔ (c2 ⊗ c1)⊙ swap

∗

(assocr+ ⊙ swap
+
)⊙ assocr+⇔ ((swap+ ⊕ id↔)⊙ assocr+)⊙ (id↔ ⊕swap

+
)

(assocl+ ⊙ swap
+
)⊙ assocl+⇔ ((id↔ ⊕swap

+
)⊙ assocl+)⊙ (swap+ ⊕ id↔)

(assocr∗ ⊙ swap
∗
)⊙ assocr∗⇔ ((swap∗ ⊗ id↔)⊙ assocr∗)⊙ (id↔ ⊗swap

∗
)

(assocl∗ ⊙ swap
∗
)⊙ assocl∗⇔ ((id↔ ⊗swap

∗
)⊙ assocl∗)⊙ (swap∗ ⊗ id↔)

Fig. 7. Signatures of level-1 Π-combinators: commutativity and associativity

Let c1 ∶ t1 ↔ t2, c2 ∶ t3 ↔ t4, c3 ∶ t1 ↔ t2, and c4 ∶ t3 ↔ t4.
Let a1 ∶ t5 ↔ t1, a2 ∶ t6 ↔ t2, a3 ∶ t1 ↔ t3, and a4 ∶ t2 ↔ t4.

c1 ⇔ c3 c2 ⇔ c4

c1 ⊕ c2 ⇔ c3 ⊕ c4
c1 ⇔ c3 c2 ⇔ c4

c1 ⊗ c2 ⇔ c3 ⊗ c4
id↔ ⊕ id↔⇔ id↔ id↔ ⊗ id↔⇔ id↔
(a1 ⊙ a3)⊕ (a2 ⊙ a4)⇔ (a1 ⊕ a2)⊙ (a3 ⊕ a4)
(a1 ⊙ a3)⊗ (a2 ⊙ a4)⇔ (a1 ⊗ a2)⊙ (a3 ⊗ a4)

Fig. 8. Signatures of level-1 Π-combinators: functors

6.3 Example Level-1 Programs

A pleasant outcome of having the level-1 terms is that they also give rise to
an interesting programming language which, in our context, can be viewed as a
language for expressing transformations and optimizations of boolean circuits.
We illustrate the idea with a few small examples.

Figs. 3–12 contain rules to manipulate well-typed code fragments by rewrit-
ing them in a small-step fashion. In their textual form, the rules are certainly
not intuitive. They however become “evidently correct” transformations on cir-
cuits when viewed diagrammatically. As an example, consider two arbitrary Π-
combinators representing circuits of the given types:

c1 : {B C : U} → B ↔ C
c2 : {A D : U} → A ↔ D

Now consider the circuits p1 and p2 which use c1 and c2 as shown below:

p1 p2 : { A B C D : U } → PLUS A B ↔ PLUS C D
p1 = swap+ ⊙ (c1 ⊕ c2)
p2 = (c2 ⊕ c1) ⊙ swap+

As reversible circuits, p1 and p2 evaluate as follows. If p1 is given the value
inl a, it first transforms it to inr a, and then passes it to c2. If p2 is given the
value inl a, it first passes it to c2 and then flips the tag of the result. Since

unite+r ⊕ id↔ ⇔ assocr+ ⊙ (id↔ ⊕unite+l)
unite∗r ⊗ id↔ ⇔ assocr∗ ⊙ (id↔ ⊗unite∗l)

Fig. 9. Signatures of level-1 Π-combinators: unit and associativity

Let c ∶ t1 ↔ t2:

(c⊗ id↔)⊙ absorbl ⇔ absorbl ⊙ id↔ (id↔ ⊗c)⊙ absorbr ⇔ absorbr ⊙ id↔
id↔ ⊙ factorzl ⇔ factorzl ⊙ (id↔ ⊗c) id↔ ⊙ factorzr ⇔ factorzr ⊙ (c⊗ id↔)

absorbr ⇔ absorbl

absorbr ⇔ (distl ⊙ (absorbr ⊕ absorbr))⊙ unite+l

unite∗r ⇔ absorbr absorbl ⇔ swap
∗
⊙ absorbr

absorbr ⇔ (assocl∗ ⊙ (absorbr ⊗ id↔))⊙ absorbr

(id↔ ⊗absorbr)⊙ absorbl ⇔ (assocl∗ ⊙ (absorbl ⊗ id↔))⊙ absorbr

id↔ ⊗unite+l ⇔ (distl ⊙ (absorbl ⊕ id↔))⊙ unite+l

Fig. 10. Signatures of level-1 Π-combinators: zero

c2 is functorial, it must act polymorphically on its input and hence the two
evaluations must produce the same result. The situation for the other possible
input value is symmetric. This extensional reasoning is embedded once and for
all in the proofs of coherence and distilled in a level-1 combinator (see the first
combinator in Fig. 7):

swapl+⇔ : {t1 t2 t3 t4 : U} {c1 : t1 ↔ t2} {c2 : t3 ↔ t4} →
(swap+ ⊙ (c1 ⊕ c2)) ⇔ ((c2 ⊕ c1) ⊙ swap+)

Categorically speaking, this combinator expresses exactly that the braid-
ing σA,B is a natural transformation, in other words that σA,B must commute
with ⊕. Pictorially, swapl+⇔ is a 2-path showing how the two programs can be
transformed to one another. This can be visualized by imagining the connections
as wires whose endpoints are fixed: holding the wires on the right side of the top
path and flipping them produces the connection in the bottom path:

swapl+⇔

((c2 ⊕ c1) ⊙ swap+)

(swap+ ⊙ (c1 ⊕ c2))

A

B

C

D

c1

c2

c2

c1

((assocl+ ⊗ id↔)⊙ dist)⊙ (dist ⊕ id↔)⇔ (dist ⊙ (id↔ ⊕dist))⊙ assocl+

assocl∗ ⊙ distl ⇔ ((id↔ ⊗distl)⊙ distl)⊙ (assocl∗ ⊕ assocl∗)
(distl ⊙ (dist ⊕ dist))⊙ assocl+ ⇔ dist ⊙ (distl ⊕ distl)⊙ assocl+ ⊙

(assocr+ ⊕ id↔) ⊙
((id↔ ⊕swap

+
)⊕ id↔) ⊙

(assocl+ ⊕ id↔)

Fig. 11. Signatures of level-1 Π-combinators: associativity and distributivity

(id↔ ⊗swap
+
)⊙ distl ⇔ distl ⊙ swap

+

dist ⊙ (swap
∗
⊕ swap

∗
)⇔ swap

∗
⊙ distl

Fig. 12. Signatures of level-1 Π-combinators: commutativity and distributivity

The fact that the current syntax is far from intuitive suggests that it might be
critical to have either a diagrammatic interface similar to Quantomatic [8] (which
only works for traced symmetric monoidal categories) or a radically different
syntactic notation such as Penrose’s abstract tensor notation [23, 24].

We conclude this section with a small but complete example showing how to
prove the equivalence of two circuits implementing boolean negation. The first
circuit uses the direct realization of boolean negation:

NOT1 : BOOL ↔ BOOL
NOT1 = Pi0.swap+ F

T

F

T

The second circuit is more convoluted:

NOT2 : BOOL ↔ BOOL
NOT2 =

uniti⋆l ⊙
Pi0.swap⋆ ⊙
(Pi0.swap+ ⊗ id↔) ⊙
Pi0.swap⋆ ⊙
unite⋆l

()

F

T

()

F

T

Here is a complete proof in level-1 Π using the small-step rewriting style that
shows that the two circuits are equivalent. The proofs uses the names of the
level-1 combinators from the accompanying code.

negEx : NOT2 ⇔ NOT1

negEx = uniti⋆l ⊙ (Pi0.swap⋆ ⊙ ((Pi0.swap+ ⊗ id↔) ⊙ (Pi0.swap⋆ ⊙ unite⋆l)))
⇔⟨ id⇔ � assoc⊙l ⟩

uniti⋆l ⊙ ((Pi0.swap⋆ ⊙ (Pi0.swap+ ⊗ id↔)) ⊙ (Pi0.swap⋆ ⊙ unite⋆l))
⇔⟨ id⇔ � (swapl⋆⇔ � id⇔) ⟩

uniti⋆l ⊙ (((id↔ ⊗ Pi0.swap+) ⊙ Pi0.swap⋆) ⊙ (Pi0.swap⋆ ⊙ unite⋆l))
⇔⟨ id⇔ � assoc⊙r ⟩

uniti⋆l ⊙ ((id↔ ⊗ Pi0.swap+) ⊙ (Pi0.swap⋆ ⊙ (Pi0.swap⋆ ⊙ unite⋆l)))
⇔⟨ id⇔ � (id⇔ � assoc⊙l) ⟩

uniti⋆l ⊙ ((id↔ ⊗ Pi0.swap+) ⊙ ((Pi0.swap⋆ ⊙ Pi0.swap⋆) ⊙ unite⋆l))
⇔⟨ id⇔ � (id⇔ � (linv⊙l � id⇔)) ⟩

uniti⋆l ⊙ ((id↔ ⊗ Pi0.swap+) ⊙ (id↔ ⊙ unite⋆l))
⇔⟨ id⇔ � (id⇔ � idl⊙l) ⟩

uniti⋆l ⊙ ((id↔ ⊗ Pi0.swap+) ⊙ unite⋆l)
⇔⟨ assoc⊙l ⟩

(uniti⋆l ⊙ (id↔ ⊗ Pi0.swap+)) ⊙ unite⋆l
⇔⟨ unitil⋆⇔l � id⇔ ⟩

(Pi0.swap+ ⊙ uniti⋆l) ⊙ unite⋆l
⇔⟨ assoc⊙r ⟩

Pi0.swap+ ⊙ (uniti⋆l ⊙ unite⋆l)
⇔⟨ id⇔ � linv⊙l ⟩

Pi0.swap+ ⊙ id↔
⇔⟨ idr⊙l ⟩

Pi0.swap+ ◻

6.4 Example Level-1 Proof

In addition to proving circuit optimizations, we can also prove equivalences of
semiring proofs. As discussed in Sec. 2.3, we expect pf3π and pf4π to be equivalent
proofs. The following derivation shows the derivation using level-1 combinators:

pfEx : {A B : U} → pf3π {A} {B} ⇔ pf4π {A} {B}
pfEx {A} {B} =

(Pi0.swap+ ⊕ id↔) ⊙ (unite+l ⊕ id↔)
⇔⟨ hom⊙⊕⇔ ⟩

(Pi0.swap+ ⊙ unite+l) ⊕ (id↔ ⊙ id↔)
⇔⟨ resp⊕⇔ unite+r-coh-r idl⊙l ⟩

unite+r ⊕ id↔
⇔⟨ triangle⊕l ⟩

Pi0.assocr+ ⊙ (id↔ ⊕ unite+l) ◻

6.5 Semantics

Each level-1 combinator whose signature is in Figs. 3–12 gives rise to an equiva-
lence of equivalences of types. Furthermore, the level-1 combinators are coherent
with the respect to the level-0 semantics. Formally, in Agda, we have:

cc2equiv : {t1 t2 : U} {c1 c2 : t1 ↔ t2} (ce : c1 ⇔ c2) →
PiEquiv.c2equiv c1 ≋ PiEquiv.c2equiv c2

In other words, equivalent programs exactly denote equivalent equivalences.

This is all compatible with the operational semantics as well, so that equiv-
alent programs always give the same values; more amusingly, if we run one
program then run an equivalent program backwards, we get the identity:

≋⇒≡ : {t1 t2 : U} (c1 c2 : t1 ↔ t2) (e : c1 ⇔ c2) → eval c1 ∼ eval c2
ping-pong : {t1 t2 : U} (c1 c2 : t1 ↔ t2) (e : c1 ⇔ c2) → (evalB c2 ○ eval c1) ∼ id

It should be stressed that c1 and c2 can be arbitrarily complex programs (albeit
equivalent), and still the above optimization property holds. So we have the
promise of a very effective optimizer for such programs.

The next theorem is both trivial (as it holds by construction), and central to
the correspondence: we distilled the level-1 combinators to make its proof trivial.
It shows that the two levels of Π form a symmetric rig groupoid, thus capturing
equivalences of types at level-0, and equivalences of equivalences at level-1.

Theorem 3. The universe U and Π terms and combinators form a symmetric
rig groupoid.

Proof. The objects of the category are the syntax of finite types, and the mor-
phisms are the Π terms and combinators. Short proofs establish that these
morphisms satisfy the axioms stated in the definitions of the various categories.
The bulk of the work is in ensuring that the coherence conditions are satisfied.
As explained earlier in this section, this required us to add a few additional
level-0 Π combinators and then to add a whole new layer of level-1 combinators
witnessing enough equivalences of level-0 Π combinators to satisfy the coherence
laws (see Figs. 3–12).

7 Conclusion

The traditional Curry-Howard correspondence is based on “mere logic (to use the
HoTT terminology).” That is, it is based around proof inhabitation: two types,
like two propositions, are regarded as “the same” when one is inhabited if and
only if the other is. In that sense, the propositions A and A ∧A, are indeed the
same, as are the types T and T × T . This is all centered around proof irrelevant
mathematics.

What we have shown is that if we shift to proof relevant mathematics, com-
putationally relevant equivalences, explicit homotopies, and algebra, something
quite new emerges: an actual isomorphism between proof terms and reversible
computations. Furthermore, what algebraic structure to use is not mysterious:
it is exactly the algebraic structure of the semantics. In the case of finite types
(with sums and products), this turns out to be commutative semirings.

But the Curry-Howard correspondence promises more: that proof transfor-
mations correspond to program transformations. In a proof irrelevant setting,
this is rather awkward; similarly, in a extensional setting, program equivalence is
a rather coarse concept. But, in our setting, both of these issues disappear. The
key to proceed was to realize that there exist combinators which make equiva-
lences look like a semiring, but do not actually have a semiring structure. The

next insight is to “remember” that a monoidal category is really a model of a
typed monoid ; in a way, a monoidal category is a categorified monoid. So what
we needed was a categorified version of commutative semirings. Luckily, this
had already been done, in the form of Rig categories. Modifying this to have
a weaker notion of equivalence and having all morphisms invertible was quite
straightforward.

Again, being proof relevant mattered: it quickly became apparent that the
coherence laws involved in weak Rig Groupoids were exactly the program equiv-
alences that were needed. So rather than fumbling around finding various equiv-
alences and hoping to stumble on enough of them to be complete, a systematic
design emerged: given a 1-algebra of types parametrized by an equivalence ≃,
one should seek a 2-algebra (aka typed algebra, aka categorification of the given
1-algebra) that corresponds to it. The coherence laws then emerge as a complete
set of program transformations. This, of course, clearly points the way to further
generalizations.

The correspondence between rigs and types established in the paper provides
a semantically well-founded approach to the representation, manipulation, and
optimization of reversible circuits with the following main ingredients:

– reversible circuits are represented as terms witnessing morphisms between
finite types in a symmetric rig groupoid;

– the term language for reversible circuits is universal; it could be used as a
standalone point-free programming language or as a target for a higher-level
language with a more conventional syntax;

– the symmetric rig groupoid structure ensures that programs can be combined
using sums and products satisfying the familiar laws of these operations;

– the weak versions of the categories give us a second level of morphisms that
relate programs to equivalent programs and is exactly captured in the coher-
ence conditions of the categories; this level of morphisms also comes equipped
with sums and products with the familiar laws and the coherence conditions
capture how these operations interact with sequential composition;

– a sound and complete optimizer for reversible circuits can be represented as
terms that rewrite programs in small steps witnessing this second level of
morphisms.

From a much more general perspective, our result can be viewed as part of
a larger programme aiming at a better integration of several disciplines most
notably computation, topology, and physics. Computer science has tradition-
ally been founded on models such as the λ-calculus which are at odds with the
increasingly relevant physical principle of conservation of information as well
as the recent foundational proposal of HoTT that identifies equivalences (i.e.,
reversible, information-preserving, functions) as a primary notion of interest.5

Currently, these reversible functions are a secondary notion defined with ref-
erence to the full λ-calculus in what appears to be a detour. In more detail,
5 The λ-calculus is not even suitable for keeping track of computational resources;
linear logic [16] is a much better framework for that purpose but it does not go far
enough as it only tracks “multiplicative resources” [31].

current constructions start with the class of all functions A → B, then intro-
duce constraints to filter those functions which correspond to type equivalences
A ≃ B, and then attempt to look for a convenient computational framework for
effective programming with type equivalences. As we have shown, in the case of
finite types, this is just convoluted since the collection of functions correspond-
ing to type equivalences is the collection of isomorphisms between finite types
and these isomorphisms can be inductively defined, giving rise to a well-behaved
programming language and its optimizer.

More generally, reversible computational models — in which all functions
have inverses — are known to be universal computational models [4] and more
importantly they can be defined without any reference to irreversible functions,
which ironically become the derived notion [17]. It is, therefore, at least plausible
that a variant of HoTT based exclusively on reversible functions that directly
correspond to equivalences would have better computational properties. Our
current result is a step, albeit preliminary, in that direction as it only applies to
finite types. However, it is plausible that this categorification approach can be
generalized to accommodate higher-order functions. The intuitive idea is that our
current development based on the categorification of the commutative semiring
of the natural numbers might be generalizable to the categorification of the ring
of integers or even to the categorification of the field of rational numbers. The
generalization to rings would introduce negative types and the generalization to
fields would further introduce fractional types. It is even possible to conceive of
more exotic types such as types with square roots and imaginary numbers by
further generalizing the work to the field of algebraic numbers. These types have
been shown to make sense in computations involving recursive datatypes such
as trees that can be viewed as solutions to polynomials over type variables [5,
12, 13].

Acknowledgement.We would like sincerely thank the reviewers for their ex-
cellent and detailed comments. This material is based upon work supported by
the National Science Foundation under Grant No. 1217454.

Bibliography

[1] John Baez and Mike Stay. Physics, topology, logic and computation: A
Rosetta stone. arXiv:0903.0340 [quant-ph], 2009.

[2] John C. Baez and James Dolan. Categorification. In Higher Category
Theory, Contemp. Math. 230, 1998, pp. 1-36., 1998.

[3] Tibor Beke. Categorification, term rewriting and the knuth–bendix proce-
dure. Journal of Pure and Applied Algebra, 215(5):728 – 740, 2011.

[4] C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev.,
17:525–532, November 1973.

[5] A. Blass. Seven trees in one. Journal of Pure and Applied Algebra, 103(1-
21), 1995.

[6] William J. Bowman, Roshan P. James, and Amr Sabry. Dagger traced
symmetric monoidal categories and reversible programming. In RC, 2011.

[7] Erik P. DeBenedictis. Reversible logic for supercomputing. In Proceedings
of the 2Nd Conference on Computing Frontiers, CF ’05, pages 391–402, New
York, NY, USA, 2005. ACM.

[8] Lucas Dixon and Aleks Kissinger. Open graphs and monoidal theories.
arXiv:1011.4114, 2010.

[9] K. Dosen and Z. Petric. Proof-Theoretical Coherence. KCL Publications
(College Publications), London, 2004. (revised version available at: http:
//www.mi.sanu.ac.yu/~kosta/coh.pdf).

[10] Richard Feynman. Simulating physics with computers. International Jour-
nal of Theoretical Physics, 21:467–488, 1982.

[11] M. P. Fiore, R. Di Cosmo, and V. Balat. Remarks on isomorphisms in typed
calculi with empty and sum types. Annals of Pure and Applied Logic, 141(1-
2):35–50, 2006.

[12] Marcelo Fiore. Isomorphisms of generic recursive polynomial types. In
POPL, pages 77–88. ACM, 2004.

[13] Marcelo Fiore and Tom Leinster. An objective representation of the Gaus-
sian integers. Journal of Symbolic Computation, 37(6):707 – 716, 2004.

[14] Michael P. Frank. Reversibility for efficient computing. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.

[15] E. Fredkin and T. Toffoli. Conservative logic. International Journal of
Theoretical Physics, 21(3):219–253, 1982.

[16] J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
[17] Alexander S. Green and Thorsten Altenkirch. From reversible to irreversible

computations. Electron. Notes Theor. Comput. Sci., 210:65–74, July 2008.
[18] Masahito Hasegawa. Recursion from cyclic sharing: Traced monoidal cate-

gories and models of cyclic lambda calculi. In TLCA, pages 196–213, 1997.
[19] Md. Saiful Islam. A novel quantum cost efficient reversible full adder gate

in nanotechnology. arXiv:1008.3533, 2010.
[20] Roshan P. James and Amr Sabry. Information effects. In POPL, pages

73–84. ACM, 2012.

http://www.mi.sanu.ac.yu/~kosta/coh.pdf
http://www.mi.sanu.ac.yu/~kosta/coh.pdf

[21] Roshan P. James and Amr Sabry. Isomorphic interpreters from logically
reversible abstract machines. In RC, 2012.

[22] Roshan P. James and Amr Sabry. Theseus: A high-level language for re-
versible computation. In Reversible Computation, 2014. Booklet of work-
in-progress and short reports.

[23] Aleks Kissinger. Abstract tensor systems as monoidal categories.
arXiv:1308.3586, 2013.

[24] Aleks Kissinger and David Quick. Tensors, !-graphs, and non-commutative
quantum structures. arXiv:1412.8552, 2014.

[25] R. Landauer. Irreversibility and heat generation in the computing process.
IBM J. Res. Dev., 5:183–191, July 1961.

[26] MiguelL. Laplaza. Coherence for distributivity. In G.M. Kelly, M. Laplaza,
G. Lewis, and Saunders Mac Lane, editors, Coherence in Categories, volume
281 of Lecture Notes in Mathematics, pages 29–65. Springer Verlag, Berlin,
1972.

[27] Saunders Mac Lane. Categories for the working mathematician. Springer-
Verlag, 1971.

[28] nLab. rig category. http://ncatlab.org/nlab/show/rig+
category, 2015.

[29] Asher Peres. Reversible logic and quantum computers. Phys. Rev. A, 32(6),
Dec 1985.

[30] Mikael Rittri. Using types as search keys in function libraries. In FPCA,
1989.

[31] Zachary Sparks and Amr Sabry. Superstructural reversible logic. In 3rd
International Workshop on Linearity, 2014.

[32] Tommaso Toffoli. Reversible computing. In Proceedings of the 7th Collo-
quium on Automata, Languages and Programming, pages 632–644. Springer-
Verlag, 1980.

[33] Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations of Mathematics. http://homotopytypetheory.org/book,
Institute for Advanced Study, 2013.

http://ncatlab.org/nlab/show/rig+category
http://ncatlab.org/nlab/show/rig+category
http://homotopytypetheory.org/book

	Computing with Semirings and Weak Rig Groupoids

