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Abstract
Programming languages with sufficiently expressive type
systems provide users with differentmeans of data ‘bundling’.
Specifically, in dependently-typed languages such as Agda,
Coq, Lean and Idris, one can choose to encode information
in a record either as a parameter or a field. For example, we
can speak of graphs over a particular vertex set, or speak of
arbitrary graphs where the vertex set is a component. These
create isomorphic types, but differ with respect to intended
use. Traditionally, a library designer would make this choice
(between parameters and fields); if a user wants a different
variant, they are forced to build conversion utilities, as well
as duplicate functionality. For a graph data type, if a library
only provides a Haskell-like typeclass view of graphs over
a vertex set, yet a user wishes to work with the category of
graphs, they must now package a vertex set as a component
in a record along with a graph over that set.

We design and implement a language feature that allows
both the library designer and the user to make the choice
of information exposure only when necessary, and other-
wise leave the distinguishing line between parameters and
fields unspecified. Our language feature is currently im-
plemented as a prototype meta-program incorporated into
Agda’s Emacs ecosystem, in a way that is unobtrusive to
Agda users.

CCS Concepts • Software and its engineering → Ex-
tensible languages;Modules / packages; Functional lan-
guages; Polymorphism; Source code generation; Integrated and
visual development environments.

Keywords Agda, meta-program, extensible, Emacs, pack-
ages, modules, dependent-types
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1 Introduction — Selecting the ‘Right’
Perspective

Library designers want to produce software components
that are useful for the perceived needs of a variety of users
and usage scenarios. It is therefore natural for designers
to aim for substantial generality, in the hopes of increased
reusability. One such particular “choice” will occupy us here:
When creating a record to bundle up certain information
that “naturally” belongs together, what parts of that record
should be parameters and what parts should be fields? This is
analogous to whether functions are curried and so arguments
may be provided partially, or otherwise must be provided
all-together in one tuple.
The subtlety of what is a ‘parameter’ — exposed at the

type level — and what is a ‘field’ — a component value — has
led to awkward formulations and the duplication of existing
types for the sole purpose of different uses. Tom Hales [5] is
quite eloquent in his critique of Lean:

Structures are meaninglessly parameterized from
a mathematical perspective. [. . . ] I think of the
parametric versus bundled variants as analogous
to currying or not; are the arguments to a function
presented in succession or as a single ordered tu-
ple? However, there is a big difference between cur-
rying functions and currying structures. Switch-
ing between curried and uncurried functions is
cheap, but it is nearly impossible in Lean to curry
a structure. That is, what is bundled cannot be
later opened up as a parameter. (Going the other
direction towards increased bundling of structures
is easily achieved with sigma types.) This means
that library designers are forced to take a conserva-
tive approach and expose as a parameter anything
that any user might reasonably want exposed, be-
cause once it is bundled, it is not coming back.

This is the problem we are solving.
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For example, each Haskell typeclass can have only one in-
stance per datatype; since there are several monoids with the
datatype Bool as carrier, in particular those induced by con-
junction and disjunction, the de-facto-standard libraries for
Haskell define two isomorphic copies All and Any of Bool,
only for the purpose of being able to attach the respective
monoid instances to them.

But perhaps Haskell’s type system does not give the pro-
grammer sufficient tools to adequately express such ideas.
As such, for the rest of this paper we will illustrate our ideas
in Agda [2, 7]. For the monoid example, it seems that there
are three contenders for the monoid interface:

record Monoid0 : Set1 where
field
Carrier : Set
_#_ : Carrier → Carrier → Carrier
Id : Carrier
assoc : ∀ {x y z}

→ (x # y) # z ≡ x # (y # z)
leftId : ∀ {x} → Id # x ≡ x
rightId : ∀ {x} → x # Id ≡ x

record Monoid1 (Carrier : Set) : Set where
field
_#_ : Carrier → Carrier → Carrier
Id : Carrier
assoc : ∀ {x y z}

→ (x # y) # z ≡ x # (y # z)
leftId : ∀ {x} → Id # x ≡ x
rightId : ∀ {x} → x # Id ≡ x

record Monoid2
(Carrier : Set)
(_#_ : Carrier → Carrier → Carrier)

: Set where
field
Id : Carrier
assoc : ∀ {x y z}

→ (x # y) # z ≡ x # (y # z)
leftId : ∀ {x} → Id # x ≡ x
rightId : ∀ {x} → x # Id ≡ x

In Monoid0, we will call Carrier “bundled up”, while we call
it “exposed” in Monoid1 and Monoid2. The bundled-up ver-
sion allows us to speak of a monoid, rather than a monoid on
a given type which is captured by Monoid1. While Monoid2
exposes both the carrier and the composition operation, we
might in some situation be interested in exposing the iden-
tity element instead — e.g., the discrepancy ‘.’ and indistin-
guishability ‘≡’ operations on the Booleans have the same
identities as conjunction and disjunction, respectively. More-
over, there are other combinations of what is to be exposed
and hidden, for applications that we might never think of.

Rather than code with interface formulations we think peo-
ple will likely use, we can instead try to commit to no particu-
lar formulation and allow the user to select the form most
convenient for their use-cases. This desire for reusability
motivates a new language feature: The PackageFormer.
Moreover, it is often the case that one begins working

with a record of useful semantic data, but then, say, for proof
automation, may want to use the associated datatype for
syntax. For example, the syntax of closed monoid terms can
be expressed, using trees, as follows.

data Monoid3 : Set where
_#_ : Monoid3 → Monoid3 → Monoid3
Id : Monoid3

We can see that this can be obtained from Monoid0 by discard-
ing the fields denoting equations, then turning the remaining
fields into constructors.

We show how these different presentations can be derived
from a single PackageFormer declaration via a generative
meta-program integrated into the most widely-used Agda
“IDE”, the Emacs mode for Agda. In particular, if one were
to explicitly writeM different bundlings of a package with
N constants then one would write nearly N × M lines of
code, yet this quadratic count becomes linear N +M by hav-
ing a single package declaration of N constituents with M
subsequent instantiations. We hope that reducing such du-
plication of effort, and of potential maintenance burden, will
be beneficial to the software engineering of large libraries of
formal code — and consider it the main contribution of our
work.

2 PackageFormers — Being Non-committal
as Much as Possible

We claim that the above monoid-related pieces of Agda code
can be unified as a single declaration which does not distin-
guish between parameters and fields, where PackageFormer
is a keyword with similar syntax as record:
PackageFormer MonoidP : Set1 where
Carrier : Set
_#_ : Carrier → Carrier → Carrier

Id : Carrier
assoc : ∀ {x y z}

→ (x # y) # z ≡ x # (y # z)
leftId : ∀ {x} → Id # x ≡ x
rightId : ∀ {x} → x # Id ≡ x

(For clarity, this and other non-native Agda syntax is left un-
coloured.)
Then, with various directives that let one declare what

should be parameters and what should be fields, we can
reproduce the above presentations. The directives can be
built from the following grammar:

id : Variational
record : Variational
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typeclass : Variational
termtype : String → Variational
unbundled : N → Variational
exposing : List Name → Variational
_−→⊕ _ : Variational

→ Variational → Variational

A package former is used via instantiations, written as low-
precedence juxtapositions of a package former name and
expression of type Variational. Notice that some variation-
als have arguments. For example, exposing explicitly lists
the names that should be turned into parameters, in that
sequence, “unbundled n” exposes the first n names declared
in the package former.
An instantiation juxtaposition is written PFv to indicate

that the PackageFormer named PF is to be restructred accord-
ing to scheme v . A composition of variationals is denoted
using the symbol ‘−→⊕ ’; for example,

PFv1 −→⊕ v2 −→⊕ · · · −→⊕ vn

denotes the forward-composition of iterated instantiations,
namely (((PFv1)v2) · · · )vn , since we take prefix instanti-
ation application to have higher precedence than variational
composition. In particular, an empty composition is the iden-
tity scheme, which performs no alteration, and has the ex-
plicit name id. Since PF id ≈ PF and id is the identity of
composition, we may write any instantiation as a sequence
of −→⊕ -separated clauses:

PF−→⊕ v1 −→⊕ v2 −→⊕ · · · −→⊕ vn

The previous presentations can be obtained as follows.
0. To make Monoid0’ the type of arbitrary monoids (that

is, with arbitrary carrier), we declare:

Monoid0’ = MonoidP record

1. We may obtain the previous formulation of Monoid1
in two different equivalent ways:

Monoid1’ = MonoidP record−→⊕ unbundled 1
Monoid1’’ = Monoid0’ exposing (Carrier)

It is interesting to note that PackageFormer MonoidP is
treated on the same footing as record Monoid0’: Both
may be subjected to variationals.

2. As with Monoid1, there are also different ways to ob-
tain Monoid2.

Monoid2’ = MonoidP record−→⊕ unbundled 2
Monoid2’’ = Monoid0’ exposing (Carrier; _#_)

3. Metaprogramming is clearly needed to produce the
term language:

Monoid3’ = MonoidP termtype "Carrier"

Our running example uses the theory of monoids,
which is a single-sorted theory. In general, a Pack-
ageFormer may have multiple sorts — as is the case
with graphs — and so one of the possibly many sorts

needs to be designated as the universe of discourse, or
carrier, of the resulting inductively defined term type.
Such a purpose is served by the single argument to
termtype.
We may also want to have terms over a particular
variable set, and so declare the following after ex-
tending the system with a user defined variational
termtype-with-variables.

Monoid4 = MonoidP
termtype-with-variables "Carrier"

Since a parameter’s name does not matter, due to α-
equivalence, an arbitrary, albeit unique, name for the
variable set is introduced along with an embedding
function from it to the resulting term type. For brevity,
the embedding function’s name is inj and the user
must ensure there is no name clash. The resulting
elaboration is as follows.

data Monoid4 (Vars : Set) : Set where
inj : Vars → Monoid4 Vars
_#_ : Monoid4 Vars

→ Monoid4 Vars → Monoid4 Vars
Id : Monoid4 Vars

Note that these instantiations implicitly drop equa-
tions, such as associativity from MonoidP. This is what
is commonly done in Universal Algebra. If we were
instead doing n-category theory, these would be kept,
but will be the subject of future work.

We also have elaborations into nested dependent-sums,
which is useful when looking at coherent substructures.
Alongside unbundled, we also have infix combinators for
extending an instantiation with additional fields or construc-
tors, and the renaming of constituents according to a user
provided String-to-String function. Moreover, just as syntac-
tic datatype declarations may be derived, we also allow sup-
port for the derivation of induction principles and structure-
preserving homomorphism types. Our envisioned system
would be able to derive simple, tedious, uninteresting con-
cepts; leaving difficult, interesting ones for humans to solve.

Quadratic to Linear: Notice that the previous
5 monoid presentations, Monoid0 to Monoid4,
spanned 32 lines (8 for the original, 24 for the
variants). Using MonoidP and our operators, this
can be done in 7 + 6 = 13 lines. This corresponds
to using a 2-part code, with the initial lines being
a model, and then 1-2 lines to specify variants.

3 Variational Polymorphism
Suppose we want to produce the function concat, which
folds over the elements of a list according to a composition-
ality scheme — examples of this include summing over a
list, multiplication over a list, checking all items in a list are
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true, or at least one item in the list is true. Depending on the
selected instantiation, the resulting function may have types
such as the following:

concat0 : {M : Monoid0}
→ let C = Monoid0.Carrier M

in List C → C

concat1 : {C : Set} {M : Monoid1 C}
→ List C → C

concat2 : {C : Set} {_#_ : C → C→ C}
{M : Monoid2 C _#_}

→ List C → C

concat3 : let C = Monoid3
in List C → C

Given our previous work, and providing that the variationals
are already defined, we add a new declaration which, unlike
the rest, comes equipped with a definition.

concat : List Carrier → Carrier
concat = foldr _#_ Id

This is known as a definitional extension (of a theory), which
is known to be conservative (i.e. has the same models).

The variationals is where this power comes from. Further-
more, we have alluded to the fact that the type of variationals
is extensible; this is achieved by having

Variational � (PackageFormer → PackageFormer)

Indeed, our implementation relies on 5 meta-primitives to
form arbitrarily complex schemes that transform abstract
PackageFormers into other grouping mechanisms. The meta-
primitives were arrived at by codifying a number of struc-
turing mechanisms directly then carefully extracting the
minimal ingredients that enable them to be well-defined.

4 How Does This Work?
We have implemented our system as an “editor tactic” meta-
program.
In actual use, an Agda programmer declares what they

want using the combinators above (inside special Agda code
comments). The comments are read by Emacs Lisp and le-
gitimate Agda is produced in a generated file, which is then
automatically imported into the current file — examples are
provided in an appendix. The generated file never needs to be
consulted, as the declared names are furnished with tooltips
rendering the elaborated Agda form, see Figure 1. Moreover,
we also provide a feature to extract a ‘bare bones’ version of
a file that strips out all PackageFormer annotations, leaving
only Agda as well as the import to the generated file. Finally,
since the elaborations are just Agda, one only needs to use
the system once and future users are not forced to know
about it.

The existing prototype already has the following nice
properties:

Extensible Users may extend the collection of variation-
als by providing the intended elaboration scheme.
We have provided a number of auxiliary, derived, com-
binators that can be used to construct complex and
common schemes. Furthermore, the user has full and
direct access to the entirety of Emacs Lisp as a pro-
gramming language for restructuring PackageFormers
into any desired shape — the well-formedness of which
is a matter the user must then worry about.

Practical The user manual demonstrates how boiler-
plate code for renamings, hidings, decorations, and
generations of hierarchical structures can be formed; [3].

Pragmatic The prototype comes equipped with a num-
ber of menus to display the abstract PackageFormer’s
defined, as well as the variationals defined, and one
may enable highlighting for these syntactical items,
have them folded away, or simply extract an Agda file
that does not mention them at all.

Figure 1. Hovering to show details. Notice special syntax
has default colouring: Red for PackageFormer delimiters,
yellow for elements, and green for variationals.

The details of the implementation and numerous common
structuring mechanisms derived from the meta-primitives
can be found on the prototype’s homepage:

https://alhassy.github.io/next-700-module-
systems/prototype/package-former.html

5 Conclusion and Next Steps
We have outlined a new language feature that is intended
to reduce duplicated effort involved in taking different per-
spectives on structures — and to solve Hales’ problem of
premature commitment to a particular encoding. Moreover,
on the road to making this tractable, we have unearthed a
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novel form of polymorphism and demonstrated its usefulness
with some examples.

We have presented our work indirectly by using examples,
which we hope are sufficiently clear to indicate our intent.
We next intend to provide explicit (elaboration) semantics
for PackageFormer within a minimal type theory; [4].
Furthermore, there are additional pieces of future work,

including:

1. Explain how generative modules [6] are supported by
this scheme.

2. How do multiple default, or optional, clauses for a
constituent fit into this language feature.

3. Explore inheritance, coercion, and transport along
canonical isomorphisms.

Finally, the careful reader will have noticed that our abstract
mentions graphs, yet there was no further discussion of that
example. We have avoided it for simplicity; the prototype
accommodates multi-sorted structures where sorts may de-
pend on one another, as edge-sets depend on the vertex-set
chosen. Examples can be found on the prototype’s webpage.

This short paper proposes a language feature that enables
users to selectively choose how information is to be organ-
ised, such as which parts are exposed as parameters, thereby
reducing effort when taking different perspectives on struc-
tures. To demonstrate that this feature seems useful in prac-
tice, we have implemented a meta-program to generate Agda
using special code comments that specify how package ele-
ments are to be organised, such as their selective exposure
as parameters which is a common issue with libraries in
dependently-typed languages.
Our variationals cannot yet be directly defined in Agda.

Instead, we are making use of Emacs Lisp, a language close to
the Agda ecosystem. Going forward, one of the aims of our
work is to have variationals definable directly within Agda —
rather than having our users learn yet another language. Our
exploratory efforts suggest that we may be able to realise
PackageFormers as Agda records of ‘elements’ —a tuple of
qualifier, name, type, and definitional clauses— and, so, the
result is a conservative extension to Agda’s underlying type
theory. However, from a practical standpoint, it is highly
likely that we will extend Agda to support the new syntax.
Our resulting system has turned hand-written instances of

structuring schemes from a design pattern into full-fledged
library methods. In turn, the system addresses the following
extremely unsatisfactory points of hand-written instances,
mentioned by the “Deriving Via” [1] group:

1. It is not obvious that we are instantiating a gen-
eral principle.

2. Because the general principle is not written down
in code with a name and documentation, it has
to be communicated through folklore or in com-
ments and is difficult to discover and search for.
Our code has lost a connection to its origin.

3. There are many such rules, some quite obvious,
but others more surprising and easy to overlook.

4. While the work required to define instances
manually for Monoid—which only has 6 constituents—
is perhaps acceptable, it quickly becomes ex-
tremely tedious and error-prone for packages
with many constituents.

Paraphrasing [1], we believe that PackageFormers have
the potential to dramatically change the way we write in-
stances of structuring mechanisms, as it encourages giving
names and documentation to recurring patterns and reusing
them where needed.

A Appendices
Full code scripts may be found on the prototype’s repository;
below are snippets for the presented fragments.

A.1 Module Header
open import Data.List hiding (concat)
open import Relation.Binary.PropositionalEquality

using (_≡_)

module gpce19 where

open import gpce19-generated

The import of the generated file is automatically produced
and inserted by the system, if need be.

A.2 Plain MonoidP PackageFormer
{-700
PackageFormer MonoidP : Set1 where
Carrier : Set
_#_ : Carrier → Carrier → Carrier
Id : Carrier
assoc : ∀ {x y z} → (x # y) # z ≡ x # (y # z)
leftId : ∀ {x : Carrier} → Id # x ≡ x
rightId : ∀ {x : Carrier} → x # Id ≡ x

-}

A.3 Variational record and 3 Instantiations
In the paper proper we mentioned “unbundled”, which in
the prototype takes the form of the meta-primitive :waist.
{-lisp
(V record
= "Reify a variational as an Agda “record”.

Elements with equations are construed as
derivatives of fields ---the elements
without any equations.

"
:kind record
:alter-elements

(λ es → (--map (map-qualifier
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(λ _ → (unless (element-equations it)
"field")) it) es)))

-}

Notice that the organisational mechanism not only has a
name and documentation, but also an unambiguous imple-
mentation. We may use it as follows.
{-700
Monoid0’ = MonoidP record
Monoid1’’ = MonoidP record−→⊕ :waist 1
Monoid2’’ = MonoidP record−→⊕ :waist 2
-}

A.4 termtype Variationals
We may also have shorter variational definitions directly in
700-blocks.
{-700
V-termtype carrier = · · ·

V-termtype-with-variables carrier = · · ·

Monoid3’ = MonoidP termtype "Carrier"
Monoid4 = MonoidP termtype-with-variables "Carrier"
-}

A.5 PackageFormers with Equations
{-700
PackageFormer MonoidPE : Set1 where

-- A few declarations
Carrier : Set
_#_ : Carrier → Carrier → Carrier
Id : Carrier
assoc : ∀ {x y z} → (x # y) # z ≡ x # (y # z)

-- A few declarations with equations
Rid : Carrier → Carrier
Rid x = x # Id
concat : List Carrier → Carrier
concat = foldr _#_ Id

-- More declarations
leftId : ∀ {x : Carrier} → Id # x ≡ x
rightId : ∀ {x : Carrier} → Rid x ≡ x

-}

A.6 concat0 and concat3

{-700
V-decorated by = · · ·
Monoid0 = MonoidPE decorated "0"−→⊕ record
Monoid3 = MonoidPE−→⊕ decorated "3"

−→⊕ termtype "Carrier3"
-}

Then, concatenation over an arbitrary monoid:
concat0 : {M : Monoid0}

→ let C = Monoid0.Carrier0 M
in List C → C

concat0 {M} = Monoid0.concat0 M

As well as, concatenation over an arbitrary closed monoid
term:
concat3 : let C = Monoid3

in List C → C
concat3 = concat3
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