
Probabilistic inference by program
transformation in Hakaru (system description)?

Praveen Narayanan1, Jacques Carette2, Wren Romano1, Chung-chieh Shan1,
and Robert Zinkov1

1 Indiana University {pravnar,wrengr,ccshan,zinkov}@indiana.edu
2 McMaster University carette@mcmaster.ca

Abstract. We present Hakaru, a new probabilistic programming sys-
tem that allows composable reuse of distributions, queries, and infer-
ence algorithms, all expressed in a single language of measures. The
system implements two automatic and semantics-preserving program
transformations—disintegration, which calculates conditional distribu-
tions, and simplification, which subsumes exact inference by computer
algebra. We show how these features work together by describing the
ideal workflow of a Hakaru user on two small problems. We highlight our
composition of transformations and types in design and implementation.

1 Introduction

To perform probabilistic inference is to answer a query about a probability
distribution. The longstanding enterprise of probabilistic programming aims to
perform probabilistic inference in a modular way, so that the distribution, query,
and inference algorithm can be separately reused, composed, and modified.

The modularity we envision is motivated by the typical machine-learning
paper published today. Often the first section presents a problem, the second
section presents a distribution and query, and the third section presents an infer-
ence algorithm that answers the particular query for the particular distribution.
Just as the second section composes its content using words such as “mixture”
and “condition”, the third section composes its content using words such as
“proposal” and “integrate out”. From this description using English and math,
a person skilled in the art of probabilistic inference can write the specialized
code that reproduces the results of the paper.

We aim to automate this code-generation task, so that changes to programs
that perform probabilistic inference become easier to try out and carry out. We
focus on making inference compositional—that is, on making the third section of
the typical machine-learning paper executable—because less is known about it.
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Contributions Hakaru is a new, proof-of-concept probabilistic programming sys-
tem that achieves unprecedented modularity by two means:

1. a language of measures that represents distributions and queries as well as
inference algorithms;

2. semantics-preserving program transformations based on computer algebra.

The two main transformations are

1. disintegration, which calculates conditional distributions and probability den-
sities, and

2. simplification, which subsumes exact inference and supports approximate
inference, by making use of Maple.

All our transformations take input and produce output in the same language, so
we can compose them to express inference algorithms.

This paper shows how these features work together by describing the ideal
workflow of a Hakaru user on two small problems.

2 Inference example on a discrete model

In Pearl’s classic textbook on probabilistic reasoning [9], Example 1 (page 35)
begins as follows:

Imagine being awakened one night by the shrill sound of your burglar
alarm. What is your degree of belief that a burglary attempt has taken
place?

The workflow of a Hakaru user is that of Bayesian inference:

1. Model the world as a prior probability distribution on what is observed
(alarm or not) and what is to be inferred (burglary or not). Hakaru defines
a language of distributions that formalizes this modeling.

2. Turn the prior into a conditional distribution, which is a function that maps
what is observed to a distribution on what is to be inferred. Hakaru provides
transformations that automate this conditioning.

3. Apply the function to what is actually observed (true, the alarm did sound)
to get the posterior distribution on what is to be inferred (burglary or not,
given that the alarm did sound). Hakaru can show the distribution not only
by generating a stream of samples, but also as a term in the language.

2.1 Modeling

We start with an example of step 1. The prior distribution given by Pearl can
be expressed as the following Hakaru term:

model :: (Mochastic repr) => repr (HMeasure (HPair HBool HBool))

model = bern 0.0001 `bind` \burglary ->

bern (if_ burglary 0.95 0.01) `bind` \alarm ->

dirac (pair alarm burglary)
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Hakaru is a language embedded in Haskell in “finally tagless” form [1], so the
code above is actually parsed and type-checked by the Haskell compiler GHC.
In the type signature, (Mochastic repr) => repr is due to the finally-tagless
embedding, HBool is Hakaru’s boolean type, HPair is Hakaru’s product type
constructor, and HMeasure turns a type of values into a type of distributions.
The type constructor HMeasure is a monad [3, 10], whose unit and bind oper-
ations are spelled dirac and bind. In this embedding style the types of dirac
and bind do not unify with Haskell’s return and >>=. Although we could use
-XRebindableSyntax to obtain do notation, we avoid doing so in this work.

As usual, the monad HMeasure is made interesting by the primitive operations
Hakaru provides for it. In the model above, bern 0.0001 is the distribution on
booleans that is true 0.01% of the time and false the other 99.99% of the
time. Its type is (Mochastic repr) => repr (HMeasure HBool). The boolean
randomly produced by this distribution is fed to Hakaru’s if_, which models
how burglary influences alarm.

Besides reading it, another way to understand this model is to run it as a
sampler. Each run produces a pair of booleans: runSample model usually prints
Just (False,False). The sampler chooses burglary, the second component of
the pair, followed by alarm, the first component.

2.2 Conditioning

To answer Pearl’s question, we should focus on the portion of the distribution
where alarm is true. We could run model over and over as a sampler and collect
only the samples where alarm is true, but the vast majority of samples would
have alarm be false, so it would take a long time to gather enough samples
to answer Pearl’s question with any accuracy. Instead, we move to step 2 of
our workflow. We apply Hakaru’s disintegrate transformation to obtain the
conditional distribution of burglary given alarm:

conditional :: (Mochastic repr, Lambda repr)

=> repr (HBool :-> HMeasure HBool)

conditional = disintegrate model

In general, Hakaru’s disintegrate transformation turns a Hakaru program of
type HMeasure (HPair a b) into a Hakaru function (:->) from a to HMeasure b.
The particular function produced in this case is shown in Figure 1. This is
produced by Hakaru’s pretty-printer.

The generated code is large and full of reducible expressions, such as

superpose [(1, weight (19/20) $

weight (1/10000) $

dirac true),

(1, weight (1/100) $

superpose [])]

To explain what this expression means and how it can be reduced, we need to
describe the semantics of Hakaru.
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lam $ \x1 ->
superpose [(1,

superpose [(1,
superpose [(1,

superpose [(1,
if_ x1

(superpose [(1,
weight (19/20) $
weight (1/10000) $
dirac true),

(1,
weight (1/100) $ superpose [])])

(superpose [])),
(1,
superpose [(1, superpose []),

(1,
if_ x1 (superpose []) (superpose []))])]),

(1,
superpose [(1, if_ x1 (superpose []) (superpose [])),

(1,
superpose [(1, superpose []),

(1,
if_ x1

(superpose [])
(superpose [(1,

weight (1/20) $
weight (1/10000) $
dirac true),

(1,
weight (99/100) $
superpose [])]))])])]),

(1,
superpose [(1,

superpose [(1,
if_ x1

(superpose [(1, weight (19/20) $ superpose []),
(1,
weight (1/100) $
weight (9999/10000) $
dirac false)])

(superpose [])),
(1,
superpose [(1, superpose []),

(1,
if_ x1 (superpose []) (superpose []))])]),

(1,
superpose [(1, if_ x1 (superpose []) (superpose [])),

(1,
superpose [(1, superpose []),

(1,
if_ x1

(superpose [])
(superpose [(1,

weight (1/20) $
superpose []),

(1,
weight (99/100) $
weight (9999/10000) $
dirac false)]))])])])]),

(1, superpose [])]

Fig. 1: The output of disintegrating the burglary model

A Hakaru program of HMeasure type can be understood in two ways: as
an importance sampler and as a measure. An importance sampler is a ran-
dom procedure that produces an outcome along with a weight (or fails, which
is like producing the weight 0). A weight is a non-negative real number. For
example, dirac true produces the outcome true with the weight 1. In gen-
eral, dirac always produces the weight 1, whereas the weight produced by
m `bind` \x -> k x is the product of the weights produced by m and k x.
The weight produced by weight (1/10000) $ m is 1/10000 times the weight
produced by m. A typical use of an importance sampler is to run it repeatedly
while maintaining a running weighted average of some function of the outcome.
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The syntax of superpose in Hakaru is that it takes a list of weight-measure
pairs [(w1,m1), . . . , (wn,mn)] and produces a measure. What a sampler built
with superpose does is to choose one of the measures mi, with probability
proportional to the weights wi, and sample from it. The weight produced by
superpose is

∑n
i=1 wi times the weight produced by mi. If the list is empty

(that is, n = 0) then superpose simply fails. Hence, the fragment displayed
above produces the outcome true with weight (1 + 1) · (19/20) · (1/10000) half
of the time, and fails the other half of the time.

This sampler is not preserved when we simplify a Hakaru expression. What
is preserved is the measure. A measure is like a probability distribution, but it
doesn’t necessarily sum to 1, thanks to weight and superpose in the language.
The measure denoted by weight (1/10000) $ m is the measure denoted by m

scaled by 1/10000. And superpose represents a linear combination of measures,
so superpose [] denotes the zero measure.

The following equations on measures are valid, like in linear algebra:

weight w $ superpose [] = superpose []

weight w $ weight w' $ m = weight (w * w') $ m

superpose [(w, m), (w', m)] = weight (w + w') $ m

superpose [(w, m), (w', superpose [])] = weight w $ m

Consequently, the fragment displayed above denotes the same measure as the
simpler expression: weight ((19/20) * (1/10000)) $ dirac true.

This latter program as a sampler always produces the outcome true with
weight (19/20) · (1/10000). This behavior is not the same but better, because a
running weighted average would converge to the same result more quickly when
we don’t throw away half of our samples.

Instead of simplifying Figure 1 by hand, we can apply Hakaru’s simplify

transformation:

simplified = simplify conditional

The result produced by Hakaru’s pretty-printer is:

lam $ \x1 ->

if_ x1

(superpose [(19/200000, dirac true), (9999/1000000, dirac false)])

(superpose [(1/200000, dirac true), (989901/1000000, dirac false)])

This result both runs more efficiently (because again, it fails less often) and
reads more easily (because again, it is shorter). It is a Hakaru function (con-
structed using lam) that takes the observed alarm as input and returns a measure
on burglary. In this instance, Hakaru performed linear-algebra-like reductions
with the help of the computer algebra system Maple, and produced a compact
representation of the conditional distribution. In this sense, simplification sub-
sumes exact inference. We can easily read off that, if we apply this function to
true in step 3 of our workflow, then we would get a posterior distribution that is
19/200000 parts burglary and 9999/1000000 parts no burglary. (These numbers
do not sum to 1, nor do we expect them to.)
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2.3 Sampling

The simplified posterior is a Hakaru program and it can be run as a sampler:
runSample (app simplified true) usually prints Just False.

3 Inference example on a continuous model

We now turn to an example that involves random real numbers. Imagine the
task of building thermometers to measure room temperatures. To build a reliable
thermometer we would like to calibrate two attributes of the device. The first
attribute is the amount of temperature noise—how much the room temperature
fluctuates over time. The second attribute is the amount of measurement noise—
how much the thermometer measures the same actual temperature as a different
value each time it is used because of its imperfections. Calibrating a thermometer
would mean approximating these attributes as best as possible. We can then build
a thermometer that corrects its measurements with accurate knowledge of the
temperature noise and measurement noise.

3.1 Modeling

To perform our calibration task, we would like to make several experimental
measurements and then infer the noises from these measurements. We need
step 2 of our workflow to produce a conditional distribution on noises given
measurements. So we begin in step 1 by defining a distribution on pairs of
measurements and noises:

thermometer :: (Mochastic repr)

=> repr (HMeasure (HPair (HPair HReal HReal)

(HPair HProb HProb)))

thermometer =

liftM unsafeProb (uniform 3 8) `bind` \noiseT ->

liftM unsafeProb (uniform 1 4) `bind` \noiseM ->

normal 21 noiseT `bind` \t1 ->

normal t1 noiseM `bind` \m1 ->

normal t1 noiseT `bind` \t2 ->

normal t2 noiseM `bind` \m2 ->

dirac (pair (pair m1 m2) (pair noiseT noiseM))

The type of thermometer shows it is a measure on pairs. The first component
of the pair has type HPair HReal HReal. That is, we take only two measure-
ments in this simplistic model. To determine the noises accurately, we should use
thousands of measurements, not just two. That is why we need to add arrays to
Hakaru. In order to handle arrays, the simplification and disintegration program
transformations would have to be modified, which is the focus of ongoing work.
Here we describe a system without container data-types and show its use on
examples having a low number of dimensions.
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The second component is a pair of non-negative reals, which are denoted by
the HProb type in Hakaru. The HProb type is like HReal but records the knowl-
edge that the number is non-negative. This knowledge is useful in at least two
ways. First, knowing that noiseT is positive helps the simplification transforma-
tion produce noiseT instead of sqrt(noiseT^2). Second, during sampling an
HProb number is typically a probability and represented by its log in floating
point. This alleviates the common probabilistic computation problem of under-
flow errors in extremely small probabilities.

In thermometer we express prior beliefs about how noises are distributed,
which are seen in the calls to uniform. Often such beliefs about distributions
(and their parameters such as 3, 8 and 1, 4 above) come from domain knowledge.
Furthermore, we model temperatures and measurements as being Gaussian dis-
tributed with some noisy perturbations. This is expressed in Hakaru by normal:

normal :: (Mochastic repr) => repr HReal -> repr HProb -> repr (HMeasure HReal)
normal mu sd = lebesgue `bind` \x ->

superpose [( exp_ (- (x - mu)^2
/ fromProb (2 * pow_ sd 2))

/ sd / sqrt_ (2 * pi_)
, dirac x )]

The first argument to normal is the mean of the Gaussian distribution. The
second argument is the standard deviation, which must be non-negative, as the
type HProb above shows. Actually, it has to be positive. The term lebesgue

denotes the Lebesgue measure on the reals.
Besides expressing these distributions, we model the network of influences

among the random variables. First we draw the candidate noise values noiseT

and noiseM from their respective distributions. We want to use these noises as
standard deviations for the normal distributions. However, the uniform distri-
bution is over HReal values since uniform distributions can, in general, produce
negative real numbers. But, because the parameters to the uniform distributions
are positive, we know that values drawn from them must in fact be positive.
Thus, we use the unsafeProb construct (which is safe in this case) to produce
the HProb-typed noiseT and noiseM.

The initial room temperature t1 is centered around 21◦C, and the later tem-
perature t2 is centered around t1. Both are drawn with standard deviation
noiseT. We can think of this as a random walk starting at 21◦C. Finally, mea-
surements m1 and m2 are taken of each temperature, with standard deviation
noiseM. These dependencies amount to a hidden Markov model, more specifically
a linear dynamic model in one dimension.

3.2 Conditioning

For our inference goal we need to obtain a conditional distribution on the noises
given the measurements. We can get it by applying the disintegration transfor-
mation, as in Section 2. A conditional distribution on noises given measurements
is a function from measurements to a distribution on noises. This is precisely
what the function type of thermConditional says.
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thermConditional :: (Mochastic repr, Lambda repr)

=> repr (HPair HReal HReal

:-> HMeasure (HPair HProb HProb))

thermConditional = disintegrate thermometer

Hakaru’s pretty-printer, used on thermConditional, produces Figure 2. Of
course, this expression is different from thermometer. The measurements m1 and
m2, which used to be drawn from normals, are now the input variables x2 and x3

(bound by deconstructing the argument x1 using unpair). In place of the two
measurement calls to normal, the distribution is now weighted by the density of
each Gaussian at the corresponding measurement. Unlike a distribution, a density
is a function from HReal to HProb.

lam $ \x1 ->
x1 `unpair` \x2 x3 ->
uniform 3 8 `bind` \x4 ->
normal 21 (unsafeProb x4) `bind` \x5 ->
uniform 1 4 `bind` \x6 ->
normal x5 (unsafeProb x4) `bind` \x7 ->
weight (exp_ (-(x3 - x7) * (x3 - x7)

/ fromProb (2 * pow_ (unsafeProb x6) 2))
/ unsafeProb x6
/ sqrt_ (2 * pi_)) $

weight (exp_ (-(x2 - x5) * (x2 - x5)
/ fromProb (2 * pow_ (unsafeProb x6) 2))

/ unsafeProb x6
/ sqrt_ (2 * pi_)) $

dirac (pair (unsafeProb x4) (unsafeProb x6))

Fig. 2: The thermometer model after disintegration

The reader might wonder why Figure 1 is rather large, given the simple
model it came from, while Figure 2 is modest though the model it comes from
seems more complex. This is because the burglar model contains discrete choices
(calls to bern), which tend to inflate the output of disintegration, while the
thermometer model is a straight-line program.

While thermConditional represents the correct posterior distribution, it is
not yet efficient for inference. This is because of the two calls to normal that
still exist. Our prior distribution thermometer does not return the variables
drawn from these normals, which are the temperatures t1 and t2. The mea-
sure is a marginal distribution on only m1, m2, noiseT, and noiseM. Similarly,
thermConditional, when given measurements, returns a distribution only on
the noises, not on the variables x5 and x7. Because the distribution uses the
random variables x5 and x7 only internally, running it as a sampler amounts to
naive numerical integration over them, which is inaccurate and slow.

It would be better to integrate over x5 and x7 exactly. We can use the
simplification transformation to do it:

thermSimplified = simplify thermConditional

The pretty-printed output of simplifying the conditional distribution is shown
in Figure 3. The remaining calls to normal have disappeared and all the weight
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factors are combined into a single formula. By removing x5 and x7 and storing
the intermediate factors that are the results of integrating these variables, Hakaru
has performed what is known as marginalization or variable elimination.

lam $ \x1 ->
weight (recip pi_ * (1/6)) $
uniform 3 8 `bind` \x2 ->
uniform 1 4 `bind` \x3 ->
weight (exp_ ((x2 * x2

* ((x1 `unpair` \x4 x5 -> x4) * (x1 `unpair` \x4 x5 -> x4))
* 2
+ x2 * x2 * (x1 `unpair` \x4 x5 -> x4) * (x1 `unpair` \x4 x5 -> x5)
* (-2)

+ x2 * x2
* ((x1 `unpair` \x4 x5 -> x5) * (x1 `unpair` \x4 x5 -> x5))

+ x3 * x3
* ((x1 `unpair` \x4 x5 -> x4) * (x1 `unpair` \x4 x5 -> x4))

+ x3 * x3
* ((x1 `unpair` \x4 x5 -> x5) * (x1 `unpair` \x4 x5 -> x5))

+ x2 * x2 * (x1 `unpair` \x4 x5 -> x4) * (-42)
+ x3 * x3 * (x1 `unpair` \x4 x5 -> x4) * (-42)
+ x3 * x3 * (x1 `unpair` \x4 x5 -> x5) * (-42)
+ x2 * x2 * 441
+ x3 * x3 * 882)
* recip (x2 * x2 * (x2 * x2) + x2 * x2 * (x3 * x3) * 3

+ x3 * x3 * (x3 * x3))
* (-1/2))

* recip (sqrt_ (unsafeProb (x2 ** 4 + x2 ** 2 * x3 ** 2 * 3
+ x3 ** 4)))

* 3) $
dirac (pair (unsafeProb x2) (unsafeProb x3))

Fig. 3: The result of simplifying thermConditional

Once again, simplification subsumes exact inference with help from computer
algebra. While this code could be made yet more concise by let-binding, it already
makes for an efficient sampler.

3.3 Sampling

The next step in the workflow of a Hakaru user is to sample from the posterior.
In this example, the posterior distribution is only 2-dimensional, so it is easy
to tune the noise parameters by importance sampling or by searching a grid
exhaustively. In higher dimensions, most parameter combinations are very bad,
and exhaustive search is intractable, so we often want to use a Markov chain
Monte Carlo (MCMC) technique in order to get an answer in a reasonable
amount of time. That is what we demonstrate here.

MCMC means that the sampler generates not a single random sample but
a chain of them, each dependent on the previous one. Most MCMC algorithms
require specifying an easy-to-sample proposal distribution that depends on the
current element of the chain [7]. This distribution is sampled to propose a can-
didate for the next element in the chain. We show here the Metropolis–Hastings
method (MH), a popular MCMC algorithm that compares the posterior and pro-
posal densities at the current and proposed elements in order to decide whether
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the next element of the chain should be the proposed element or a repetition
of the current element. This decision mathematically ensures that the chain is
composed of samples that represent the posterior accurately.

A good proposal distribution will propose samples that are representative
of the posterior. In this sense, the proposal embodies a strategy for searching
and approximating the posterior space. Hakaru lets us specify our own proposal
distribution based on our understanding of the model. MH practitioners know
that custom proposal distributions are an important way to improve MH perfor-
mance. Here we show a proposal distribution that a Hakaru user could write for
the current example.

proposal :: (Mochastic repr)

=> repr (HPair HReal HReal)

-> repr (HPair HProb HProb)

-> repr (HMeasure (HPair HProb HProb))

proposal _m1m2 ntne =

unpair ntne $ \noiseTOld noiseEOld ->

superpose [(1/2, uniform 3 8 `bind` \noiseT' ->

dirac (pair (unsafeProb noiseT') noiseEOld)),

(1/2, uniform 1 4 `bind` \noiseE' ->

dirac (pair noiseTOld (unsafeProb noiseE')))]

This particular proposal distribution leaves one noise parameter unchanged
and draws an update to the other noise parameter from a uniform distribution.
Thus, once the Metropolis–Hastings sampler finds a good setting for one param-
eter, it can remember it and more or less leave it alone for a while as it fiddles
with the other parameter. In contrast, importance sampling tries to hit upon
good settings for both parameters at once, which is less likely to happen. On
the other hand, the chain dependency of Metropolis–Hastings sampling means it
can stay stuck in a globally sub-optimal part of the search space for a long time.

A generic MH algorithm can be defined as a reusable transformation on
Hakaru terms. It has this type:

mh :: (Mochastic repr, Integrate repr, Lambda repr,

env ~ Expect' env, a ~ Expect' a, Backward a a)

=> (forall r'. (Mochastic r') => r' env -> r' a

-> r' (HMeasure a))

-> (forall r'. (Mochastic r') => r' env -> r' (HMeasure a))

-> repr (env :-> (a :-> HMeasure (HPair a HProb)))

The various constraints in the type are a consequence of the finally tagless
embedding. The Expect, Integrate and Lambda constraints require the interpre-
tation (repr) to define operations for expectation, integration, and the lambda
calculus. The Backward constraint is required for the density calculation step
that forms a part of the MH procedure. The sampling interpretation satisfies
these constraints.
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We cam apply the generic mh to our custom proposal and the desired pos-
terior thermSimplified:

mhKernel = mh proposal thermSimplified

This invocation generates a Metropolis–Hastings transition kernel that can
be used to produce samples from the posterior. We first condition the kernel on
observed temperature measurements – pair 29 26. We then run this sampler
for 20000 iterations and use every 5th sample (a process known as thinning) to
produce the plot in Figure 4.

noiseT

noiseE

3

4

5

6

7

8

1

2

3

4

0 1000 2000 3000 4000

0 1000 2000 3000 4000
Sample number

V
al
ue

(a) Traceplot of sampled parameter values given observed temperatures (29◦C,26◦C)

noiseT

noiseE

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

3 4 5 6 7 8

1 2 3 4
Value

D
en
si
ty

noiseT

noiseE

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

3 4 5 6 7 8

1 2 3 4
Value

D
en
si
ty

(b) Density plots for the noise parameters

Fig. 4: Sampling from the conditioned posterior using Metropolis–Hastings

Knowing that the MH kernel likely contains large mathematical expressions
from density calculation, and knowing that the simplify transformation is mod-
ular and reusable, we can attempt to speed up the computation at each iteration
of the MH kernel by invoking simplify mhKernel. The performance gained from
this reuse of algebraic simplification is shown in the middle row of Table 1.

Simplification here introduces efficiency with respect to wall clock time and
not in the number of samples needed for convergence. The third program in
Table 1 is a hand-coded Hakaru sampler written non-compositionally. For com-
parison, we also wrote a model of thermometer in the probabilistic language
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Source of Hakaru code Average run time

Generated by disintegrator 2,015 ± 4ms
Generated, then automatically simplified 569 ± 4
Written by hand 529 ± 10

Table 1: Time needed to draw 20,000 MH samples averaged over 10 runs.

WebPPL [5]; it generates a Metropolis-Hastings sampler that takes 948 ± 8ms.
All measurements were produced on a quad-core Intel i5-2540M processor run-
ning 64-bit Ubuntu 14.04. Hakaru’s samplers use GHC 7.8.3 -O2, and WebPPL’s
sampler is compiled to JavaScript and run on Node.js version 0.10.28.

4 Inference by composable program transformations

As the examples above show, Hakaru transforms a probabilistic program to other
programs in the same language that generate samples or otherwise perform
inference. This major design decision contrasts with most other probabilistic
programming systems, which handle a probabilistic program either by producing
code in a different language, or by generating samples or otherwise performing
inference directly—without staging.

Because Hakaru transformations stay in the same language, we can compose
them. For example, we use disintegration and simplification together to generate
efficient densities, which are at the heart of Metropolis–Hastings sampling, as
well as conditional distributions, which are at the heart of Gibbs sampling. Even
after we apply an approximate inference technique such as Metropolis–Hastings
to a problem, we can still inspect and optimize the generated solution before
running it. We can also compose inference techniques (such as particle filtering
and Metropolis–Hastings) as well as analyses (perhaps to estimate the running
time or accuracy of a sampler).

4.1 Semantic specifications of transformations

Although all our transformations operate on Hakaru syntax, we specify what
they do by referring to Hakaru semantics based on integrators. For example,
for the models in Section 2 and Section 3, the specification of disintegration
guarantees that the denotations of the model and the posterior are related as
below.

model = superpose [(1, dirac true),
(1, dirac false)]

`bind` \alarm ->
app (disintegrate model) alarm

`bind` \burglary ->
dirac (pair alarm burglary)

thermometer = lebesgue `bind` \m1 ->
lebesgue `bind` \m2 ->
app (disintegrate thermometer)

(pair m1 m2)
`bind` \noise ->

dirac (pair (pair m1 m2) noise)

We describe elsewhere the implementation of this specification, which involves
reordering integrals and computing a change of variables [12].



Probabilistic inference by program transformation in Hakaru 13

The specification of simplification is just that its output has the same measure
semantics as the input. Implementing the specification involves translating to
and from an integrator representation of measures, and improving the integral
using computer algebra. We describe this process in detail elsewhere [2].

4.2 Comparison with other embeddings

Like us, Kiselyov and Shan [6] and Ścibior et al. [11] both embed a probabilis-
tic language in a general-purpose functional language, respectively OCaml and
Haskell. Like us, they both express and compose inference techniques as transfor-
mations that produce programs in the same language. But unlike our embedding,
their embeddings are “shallower”: the language defines a handful of constructs
for manipulating distributions, and reuses the host languages’ primitives for all
other expressions.

On one hand, their transformations consequently cannot inspect most of the
input source code, notably deterministic computations and the right-hand side
of >>=. Thus, Hakaru can compute densities and conditional distributions in the
face of deterministic dependencies, and Hakaru can generate Metropolis–Hastings
samplers using a variety of proposal distributions. On the other hand, a shallow
embedding ensures that any deterministic part of a probabilistic program runs
at the full speed of the host language.

WebPPL is a probabilistic language embedded in Javascript, providing infer-
ence methods to transform input programs into a different language [5]. Venture
[8] and Anglican [13] are probabilistic programming systems that build upon
Lisp and Clojure respectively to define strict, impure languages for composing
inference procedures. In all these works, the code – derived via transformations
or building blocks – can perform direct inference but not stage any computation.

5 Expressing semantic distinctions by types

We make crucial use of types to capture semantic distinctions in Hakaru. These
distinctions show up both in the implementation and in the language itself.
Figure 6 illustrates the types of each construct or macro described in this paper,
grouped by the interface (such as Mochastic) that an interpretation (such as
Sample) would need to implement.

5.1 Distinguishing Hakaru from Haskell

The foremost distinction is between Hakaru’s type system and Haskell’s type
system. That is, we distinguish between the universe 3 of Hakaru types, Hakaru,
and the universe of Haskell types, *.

At first this distinction may seem unnecessary, since we can identify Hakaru
types as those which are the argument to some repr. However, making the
distinction eliminates two broad classes of bugs.

3 We implement this universe of types by defining our own Haskell kind using GHC’s
-XDataKinds extension. Thus, we call Hakaru and * both “universes” and “kinds”.
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class (...) => Base (repr :: Hakaru * -> *) where
pair :: repr a -> repr b -> repr (HPair a b)
unpair :: repr (HPair a b) -> (repr a -> repr b -> repr c) -> repr c
true, false :: repr HBool
if_ :: repr HBool -> repr c -> repr c -> repr c
unsafeProb :: repr HReal -> repr HProb
fromProb :: repr HProb -> repr HReal
exp_ :: repr HReal -> repr HProb
pow_ :: repr HProb -> repr HReal -> repr HProb
sqrt_ :: repr HProb -> repr HProb

class (Base repr) => Mochastic (repr :: Hakaru * -> *) where
dirac :: repr a -> repr (HMeasure a)
bind :: repr (HMeasure a) ->

(repr a -> repr (HMeasure b)) -> repr (HMeasure b)
superpose :: [(repr HProb, repr (HMeasure a))] -> repr (HMeasure a)
uniform :: repr HReal -> repr HReal -> repr (HMeasure HReal)
normal :: repr HReal -> repr HProb -> repr (HMeasure HReal)

class Lambda (repr :: Hakaru * -> *) where
lam :: (repr a -> repr b) -> repr (a :-> b)
app :: repr (a :-> b) -> repr a -> repr b

bern :: (Mochastic repr) => repr HProb -> repr (HMeasure HBool)
weight :: (Mochastic repr) => repr HProb -> repr (HMeasure w) -> repr (HMeasure w)
liftM :: (Mochastic repr)

=> (repr a -> repr b) -> repr (HMeasure a) -> repr (HMeasure b)

Fig. 6: The types of language constructs and macros used in the examples

First, there are many types in * which we do not want to allow within Hakaru.
For example, Hakaru has support for arbitrary user-defined regular recursive
polynomial data types. However, Haskell’s data types are far richer, including:
non-regular recursive types, non-strictly-positive recursive types, exponential
types, higher-rank polymorphism, GADTs, and so on. Consequently, we must
not allow users to embed arbitrary Haskell data types into Hakaru. The kind * is
much too large for Hakaru, so by introducing the Hakaru kind we can statically
prohibit all these non-Hakaru types.

Second, distinguishing between Hakaru and * guarantees a form of hygiene
in the implementation. Without the kind distinction it is easy to accidentally
equivocate between Haskell’s types and Hakaru’s types. This equivocation in-
troduces confusion about what exists within the Hakaru language itself, versus
what exists within the interpretation of Hakaru programs. One example of this
confusion is the lub operator used by disintegration to make a nondeterministic
choice between two Hakaru programs that mean the same measure. When in-
troducing the Hakaru kind we noticed that it was not entirely clear whether the
lub operator is in the language or a mere implementation detail.

5.2 Distinguishing values and distributions

Hakaru’s type system draws a hard distinction between individual values (of
type a) and distributions on values (of type HMeasure a). To see why this is
necessary, consider the pseudo-program “x = uniform 0 1; x + x”. As written
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it is unclear what this pseudo-program should actually mean. On one hand,
it could mean that the value x is drawn from the distribution uniform 0 1, and
then this fixed value is added to itself. On the other hand, it could mean that
x is defined to be the distribution uniform 0 1, and then we draw two samples
from this distribution and add them together.

To distinguish these two meanings, stochastic languages like Church [4] must
introduce a memoization operator; however, it is often difficult to intuitively
determine where to use the memoization operator to obtain the desired behavior.
In contrast, Hakaru distinguishes these meanings by distinguishing between let-
binding and monadic-binding:

sampleOnce = uniform 0 1 `bind` \x -> dirac (x + x)

sampleTwice = uniform 0 1 `let_` \x -> liftM2 (+) x x

Importantly, there is no way to mix up the second lines of these programs.
If x is monadically bound, and hence has type HReal, then the expression
liftM2 (+) x x does not type check, because HReal is not a monad so it cannot
be the type of arguments to liftM2 (+). Whereas, if x is let-bound, and hence
has type HMeasure HReal, then the expression dirac (x + x) does not type
check, because we do not define (+) on measures; but even if we did define (+)

on measures, then the expression would have type HMeasure (HMeasure HReal)

which doesn’t match the signature.

5.3 Distinguishing values in different domains

It is often helpful to distinguish between various numeric domains. Although
the integers can be thought of as real numbers, it is often helpful to specify
when we really mean integers. Similarly, although the natural numbers can be
thought of as integers and the positive reals can be thought of as reals, it is
often helpful to explicitly capture the restriction to non-negative numbers. Thus,
Hakaru provides four primitive numeric types: HNat, HInt, HProb, and HReal.

There are at least four reasons for making these distinctions. First, it helps
with human understanding to say what we mean. Second, many of the built-in
distributions are only defined for non-negative parameters, thus the non-negative
types HNat and HProb are necessary to avoid undefinedness. Third, capturing the
integral and non-negative constraints helps with algebraic simplification since
we do not have to worry about the non-occurring cases. Fourth, for the situa-
tions where we must actually compute values (e.g., the sampling interpretation),
knowing that HProb is non-negative means that we can represent these values in
the log-domain in order to avoid problems with underflowing.

5.4 Distinguishing different interpretations of Hakaru

We use a “finally tagless” embedding of Hakaru in Haskell [1]. Thus an inter-
pretation of Mochastic is implemented as an instance. We have several such
interpretations—a sampler, a pretty-printer, and two variants of embedding our
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language into Maple. Transformations are also instances, but where repr ap-
pears as a free variable. For example, we have an expectation transformation
Expect, which takes a measure expression and returns its expectation functional.
Another transformation implements disintegration, which is performed by lazy
partial evaluation of measure terms.

As our use of bind indicates, we use Higher Order Abstract Syntax (HOAS)
to encode Hakaru binding. In exchange for preventing scope extrusion, HOAS
makes some manipulations of bindings difficult to express. Basically, one sig-
nificant advantage of finally tagless is that if we can write your transformation
compositionally, then it will compose beautifully with other such transforma-
tions. But some transformations are hard to write compositionally. For example,
it is easy to write “macros” such as liftM2, as well as the Expect transformation,
but it is hard to implement lazy partial evaluation.

Even for a compositional transformation, finally-tagless style makes our code
hard to debug, because for example Expect repr is implemented in terms of
an abstract repr that is not required to be an instance of Show. This rules out
using Debug.Trace.traceShow in the middle of the implementation of Expect.

We love how the Haskell type of a Hakaru term tracks how the term will be
interpreted, such as Expect PrettyPrint. The flip side is that to apply multiple
interpretations to the same term (like to scale a distribution so it sums to 1), we
must either create the “product” of two interpretations (and using it to interpret
a term takes time exponential in the number of nested binders in the term), or
the Haskell type of a term must be universally quantified over repr. The latter
is very natural for experienced Haskell programmers, but is hard to explain to
others, thus limiting the potential of Hakaru as a general-purpose probabilistic
programming language. Another issue is that the very hygiene which is a strength
of finally-tagless makes it awkward to have “free variables” (parameters) in
a term; these must all be lam bound before a term can be disintegrated or
simplified. This contrasts sharply with how easily a computer algebra system
handles free variables in equivalent terms [2].

6 Conclusion

A major challenge faced by every probabilistic programming system is that
probabilistic models and inference algorithms do not compose in tandem: just
because a model we’re interested in can be built naturally from two submodels
does not mean a good inference algorithm for the model can be built naturally
from good inference algorithms for the two submodels. Due to this challenge,
many systems with good support for model composition resort to a fixed or
monolithic inference algorithm and do their best to optimize it.

Hakaru demonstrates a new way to address this challenge. On one hand,
Hakaru supports model composition like any other embedded monadic DSL does:
on top of primitive combinators such as dirac, bind, and superpose, users can
define Haskell functions to express common patterns of samplers and measures.
On the other hand, because each inference building block is a transformation on
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this DSL, Hakaru supports inference composition like a compiler construction kit
or computer algebra system does: users can define Haskell functions to express
custom pathways from models to inference.

We are working to extend the Hakaru language, to express high-dimensional
models involving arrays and trees, and to express more inference algorithms,
including parallel and streaming ones. We are also working to make Hakaru more
usable: by representing the abstract syntax as a data type, by customizing the
concrete syntax, and by inviting user interaction for transforming subexpressions.
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