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Abstract

Partial Evaluation (PE) is a program transformation technique that generates a spe-
cialized version of a program with respect to a subset of its inputs. PE is an auto-
matic approach to program generation and meta-programming. This thesis presents
a method of partially evaluating Maple programs using a fully online methodology.

We present an implementation called MapleMIX, and use it towards two goals. Firstly
we show how MapleMIX can be used to generate optimized versions of generic pro-
grams written in Maple. Secondly we use MapleMIX to mine symbolic computation
code for residual theorems, which we present as precise solutions to parametric prob-
lems encountered in Computer Algebra Systems.

The implementation of MapleMIX has been modularized using a high-level interme-
diate language called M-form. Several syntax transformations from Maple to M-form
make it an ideal representation for performing program specialization. Many special-
ization techniques have been explored including a novel online approach to handle
partially-static data structures and an on-the-fly syntax transformation technique
that propagates loop context into the body of dynamic conditionals.
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Chapter 1

Introduction

There are two conflicting goals in the practice of computer programming that must
live side by side. On one hand programmers wish to use high levels of abstraction and
generality in order to create programs that are readable, modular, reusable, portable
and maintainable. On the other hand it is necessary to write programs that are effi-
cient. These two goals are in conflict; abstraction usually adds overhead and reduces
the chances for optimization. Meanwhile the need for efficiency pulls the programmer
away from abstraction and promotes the use of platform and algorithm specific opti-
mizations. Compiler optimization is a starting point for reducing overhead involved
in writing programs in a high level language. Compiler optimization techniques are
generally concerned with removing redundancy within source code and generating
optimal code for a particular architecture. They will not however generate several
optimized versions of a particular algorithm based upon different usages of the algo-
rithm, or based upon design decisions that were abstracted from when the algorithm
was written. This type of optimization is in the realm of partial evaluation.

Partial evaluation (PE) is a program transformation technique that uses a subset of
the inputs to a program to generate a specialized version of the program that will then
accept the rest of the inputs. Partial evaluation performs aggressive optimizations
by performing as much computation as possible based on the given inputs while
generating code that will perform the deferred computations. Several specialized
versions of a program section may be generated based upon different usages within
the program. An optimized program generated by a partial evaluator may be larger
in size than the original program but will perform less computations at run-time.

1



1. Introduction 2

1.1 Maple

Maple is a Computer Algebra System (CAS) and visualization environment. It uses
a high-level language, which is also called Maple, to perform symbolic and numeric
computations. Its core library contains a vast amount of mathematical knowledge
and problem solving power. Two problems of interest arise. Firstly since Maple is
high-level there are many opportunities for improvement in terms of efficiency. Sec-
ondly symbolic computation code written in Maple contains a great deal of embedded
knowledge and we wish to be able to extract that knowledge. Partial evaluation is
used toward both of these goals.

1.2 Thesis Aims and Outline

The main contribution of this work is a partial evaluator for Maple called MapleMIX.
It is a program transformation and optimization tool for Maple programs. MapleMIX
is a completely online partial evaluator written in Maple itself. It has the ability
to produce highly specialized results from input programs and user provided static
data. We have used MapleMIX to optimize Maple code and to extract precise answers
to parametric problems from Maple programs written to produce generic solutions.
Several standard approaches have been used in the design of MapleMIX with the
intent of using it for practical situations encountered in Computer Algebra Systems.
As such we have concentrated on real-world solutions and so have not considered
theoretical results such as self-application or generation of generating extensions.
However we have developed many new techniques toward the design of practical
online partial evaluators such as: a unique design for the online environment, an
online approach to partially static data structures, a novel technique for handling
dynamic conditionals within loops, an approach to program transformation that uses
higher level constructs than those available in the input language, and a sound way
of modularizing the internal structure of MapleMIX.

This thesis is organized as follows. In Chapter 2 we provide an introduction to the
Maple programming language and its features of interest to this work. Chapter 3 pro-
vides an exposition of partial evaluation, examines current work and theoretical ideas
and explains our choices in direction. Chapter 4 describes the high-level architecture
of MapleMIX and the various syntax transformations that are performed to facilitate
specialization. Chapter 5 explains expression reduction. Chapter 6 goes into detail



1. Introduction 3

about the specialization of statements and the design of the online environment. In
Chapter 7 several examples and results are presented. Chapter 8 discusses future
work and draws conclusions. The appendix provides a reference for certain technical
information.



Chapter 2

Overview of Maple

Maple is a computer algebra problem-solving and visualization environment. It was
originally developed by the University of Waterloo’s Symbolic Computation Group
(SCG) where the Maple project was started in 1980 1. Waterloo Maple Inc was
created in 1988 for the purpose of refining and commercializing the Maple system as
well as to provide support. Today Maple has an estimated user base of over three
million people 2.

Maple’s support for mathematics is enabled through its large library of symbolic
and numerical routines. At the core of the system is Maple’s built-in programming
language which is also commonly referred to as Maple. Most of the library is written
in Maple with only a small set of routines implemented directly in the Maple kernel.
Maple is a dynamically typed, interpreted language that supports both imperative
and functional features. For the purposes of this thesis we only need to consider a
subset of the Maple language. MapleMIX was written for and tested with Maple
version 10.

2.1 The Maple System

The Maple system consists of three parts:

1http://www.scg.uwaterloo.ca/SCG/history.html
2http://www.nserc.ca/news/2004/p041028bio.htm

4



2. Overview of Maple 5

• At the center of the Maple system is the kernel. It contains the Maple program-
ming language interpreter, the automatic simplifier, built-in arithmetic routines
and the memory manager. It is written in the C programming language to be
small, efficient and portable.

• Built on top of the kernel is the Maple core library. This is where the majority
of Maple’s vast mathematical functionality resides. The Maple library is written
in the high-level Maple programming language and can be viewed and modified
by users.

• The user interface, which comes in both command-line and GUI varieties. The
common worksheet mode is essentially an interactive interpreter prompt.

The Maple language has the following main characteristics:

• Dynamic type system. All type checking occurs at runtime and variables
can be assigned a value of any type. Maple’s extensible runtime type assertion
mechanism provides an easy and powerful way for the programmer to make
explicit type checks.

• Imperative. Characterized by global and local state, statements, side-effects
and loops.

• Functional features. Language support for higher order functions and clo-
sures. Library support for partial application, function composition and pattern
matching.

• Symbolic. All identifiers are called names or symbols and do not have to be
declared. Any name can be used as a value without being initialized. Any
unassigned name will evaluate to itself.

Maple is a very large and complicated language that has evolved over a long period
of time. It is often possible to find multiple ways of doing the same thing. In this
chapter we will only be concerned with the language features that are of interest to
the topic of this thesis. We do not wish to go into detail about the syntax of Maple
and instead informally describe its features and provide examples. For a detailed
discussion of the Maple language refer to [20] and [19].
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2.2 Statement Forms

Maple has the following statement forms: assignment, conditionals, return, loops,
try/catch and error. Additionally any expression may be placed on a line by itself,
this will be referred to as a standalone expression. The statement separators in Maple
are semicolon (;) and colon (:). The Maple worksheet interface will not display the
results of a statement that is terminated by a colon.

2.2.1 Assignment

Most common is the standard form of assignment of an expression to a name. In addi-
tion multiple variables can be assigned at once. In fact Maple accepts any non-empty
sequence of names as an L-value, including sequences of names that are dynamically
built. Assignment to table indices and record fields is also supported. A name can
be unassigned by assigning it to itself. (> is the Maple worksheet prompt.)

> x := 3 ;
x := 3

> (y , z ) := (9 , 1 0 ) ;
y , z := 9 , 10

> a | | ( 1 . . 5 ) := 2 , 4 , 8 , 16 , 32 ;
a1 , a2 , a3 , a4 , a5 := 2 , 4 , 8 , 16 , 32

2.2.2 Conditional statements

If statements consist of at least one conditional expression followed by arbitrarily
many elif branches and an optional else branch. Additionally Maple has a func-
tional style if expression similar to the ternary ?: operator found in languages like C
and Java.

i f a = b then
x := 1 ;

e l i f c >= d then
x := 2 ;

e l i f e < f then
x := 3 ;

else
x := 4 ;

end i f ;
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‘ i f ‘ ( y = z , expr1 , expr2 ) ;

2.2.3 Return

A return statement can be used to explicitly exit the currently executing function
at any point and return a value. All Maple functions return a value, void functions
can be simulated by returning the special value NULL. If a return statement does not
have an argument then NULL will be returned. A return statement is not explicitly
required to return a value from a function. When a function runs off the end without
a return then the last evaluated expression will be returned. It is considered good
style to make use of this implicit return mechanism when possible.

> double := proc ( x )
x ∗ x

end proc ;

2.2.4 Loops

Maple provides two kinds of loop, for-from loops and for-in loops. A for-from

loop iterates an index variable over a range a values, a for-in loop iterates over a
linear data structure such as a list or set. Additionally a while condition may be
attached to a loop, the while condition is checked before each iteration and the loop
is terminated when it evaluates to false. Most of the clauses of a loop definition may
be left blank in which case default values are assumed. A standard while loop can
be simulated by a for-from loop with all clauses left blank except the while clause.

for i from 2 to 10 by 2 while x < 100 do
x := x ∗ i ;

end do ;

for i in [ 1 , 2 , 3 , 4 ] do
pr in t ( i ) ;

end do ;

while x < 20 do
. . .

end do ;
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Within a loop body the next keyword will skip the rest of the current iteration. The
break keyword exits the loop entirely. Additionally a return within a loop will exit
the loop.

2.2.5 Try/Catch and Error

The error statement explicitly triggers an exception to occur. Exceptions may also
be triggered by erroneous computations such as attempting to perform an operation
on a type that does not support the operation. An exception is represented as a string,
which according to convention usually describes the nature of the exception. When
an exception occurs, the execution of the current statement sequence is interrupted.
Control is passed to the appropriate matching clause in the enclosing try/catch

statement. If there is no matching clause then the exception is automatically re-raised
at the next enclosing try/catch. This process continues until a matching catch is
found or the exception propagates all the way to the top level. If the exception is
unhandled, it becomes an error; the message is displayed and the current execution
terminates.

A try may have several catches. Matching of catch clauses is done based on the
exception string. Each catch clause may declare a catch string; if the catch string is
the prefix of the exception string then a successful match has been found. A finally

clause may also be declared which is always executed before control leaves the try

statement.

try
Fi l eToo l s :−MakeDirectory ( dirName ) ;
l p r i n t (” l i b d i r e c t o r y c rea ted ” ) ;

catch ” d i r e c t o r y e x i s t s ” :
p r i n t (” d i r e c t o r y ” , dirName , ” a l r eady e x i s t s ” ) ;

end try ;

2.3 Expressions and Data Types

Complex expressions can be built by combining constants, operator-based expressions,
data structures and function calls. Maple, being a computer algebra system, has a
plethora of numeric and algebraic data types, operators and functions. Many data
structures are available; the most common ones are described here.
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2.3.1 Names

A name is a sequence of characters that uniquely identifies a variable. A name that
has not been bound to a value is called a symbol. Names are first class citizens in
Maple; they can be passed to functions and bound in a different scope than where
they were first created. Names are usually global unless explicitly defined as local to
a particular procedure or module scope. Sometimes when a name is bound it is still
desired that the name evaluate to itself instead of evaluating to its bound value. This
can be achieved through the use of unevaluation quotes (’) around the name.

> x ;
x

> x := 9 ;
x := 9

> x ;
9

> x := ’x ’ ;
x := x

> x ;
x

Maple is a symbolic language, meaning that any unassigned name simply evaluates
to itself. This is in contrast to many common dynamically typed languages where
normally the presence of an unassigned name will trigger an error. A very common
mistake in Maple is to misspell an identifier. However when execution reaches the
misspelled identifier Maple will not issue an error, instead the identifier evaluates to
itself and execution continues. This very common type of programming error can be
difficult to track down, as the error may not manifest itself in the same place that it
was caused. There is no way to tell Maple to treat unassigned names as errors or to
force all variables to be declared.

2.3.2 Tables

The table data structure is a special object for representing a finite map between
keys and values. Tables are implemented directly in the kernel and are very efficient.
Many other data structures use tables in their implementation, such as matrices and
arrays. In Maple it is very common to program with tables and to use them as
part of design patterns. In addition to tables Maple provides many other useful data
structures including lists and sets.
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> t := tab l e ( [ 1 = ”a ” , 2 = ”b ” ] ) :
> t [ 3 ] := ”c ” :
> t [ 1 ] , t [ 2 ] , t [ 3 ] ;

”a ” , ”b” , ”c”

2.3.3 Expression Sequences

A sequence is a group of expressions separated by commas. Sequences are generally
used to form sets, lists and in calling functions. When sequences are nested they
are automatically flattened. The special name NULL represents the empty expression
sequence.

> s := 2 , 3 ;
s := 2 , 3

> 1 , s , 4 , 5 ;
1 , 2 , 3 , 4 , 5

> numlist := [ 1 , s , 4 ] ;
numl ist := [ 1 , 2 , 3 , 4 ]

2.3.4 Functions

Maple has higher-order functions, meaning a function is a value that can be treated
as any other value. Functions can be passed to other functions as arguments, re-
turned from functions or stored in tables. Every Maple function takes one expression
sequence as its argument. Named parameters are matched up to the elements of the
sequence. The standard calling mechanism is call by evaluated name. Each argument
is evaluated then each parameter in the body of the function is substituted by its
corresponding argument. (Duplication is avoided since a Maple program is repre-
sented internally as a DAG 3). Parameter passing is quite flexible. Each parameter
specification may include a type assertion and possibly a default value. Additionally
special optional parameters may be defined that can only be given an explicit value
using a special calling scheme. The terms “procedure” and “function” mean the same
thing in Maple and are often used interchangeably.

3Directed Acyclic Graph
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> p := proc (x , y : : i n t ege r , z : : i n t e g e r := 0 , { verbose := fa l se }) local r e s u l t ;
> # error i f y not an i n t e g e r
> r e s u l t := x + y + z ;
> i f verbose then
> pr in t ( r e s u l t ) ;
> end i f ;
> r e s u l t
> end proc :

> p (1 , 2 , verbose=true ) ; # us ing d e f au l t va lue for z
3

Additionally special expression keywords are available in the body of the function; the
args keyword refers to the entire expression sequence of arguments used in the func-
tion call, nargs evaluates to the number of arguments (equivalent to nops([args])).
Procedures may be defined using the “arrow” syntax. In this case the body of the
procedure must be an expression.

double := x −> x ∗ x ;

2.3.5 Special Functions

Many special functions with non-standard calling semantics exist, usually defined as
built-ins. For example Maple provides a function called seq that is used as an expres-
sion sequence comprehension. This function does not evaluate its arguments before
the function call, instead the first argument is evaluated multiple times according to
the second argument.

> seq ( i ∗2 , i =1 . . 5 ) ;
2 , 4 , 6 , 8 , 10

The assigned function is used to test if a name or a table cell has been assigned to
a value. It is used very often with tables to test if a mapping exists before doing a
lookup.

> as s i gned ( t [ 1 ] ) ;
fa l se

> t [ 1 ] := ”a ” ;
t [ 1 ] := ”a”

> as s i gned ( t [ 1 ] ) ;
true
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2.3.6 Closures

It is possible to describe Maple as having many of the common features that are
associated with functional programming languages, including closures. The need for
function closures arises naturally when nested functions and higher-order functions
are allowed. A function closure can be described as a pair consisting of the code of
the function and an environment that stores values of the variables defined in the
function’s surrounding lexical scope. Since functions are values they may escape the
scope in which they are defined. Closures maintain the state of the lexical environment
in which the function was defined.

The following example demonstrates the use of closures to write clean and com-
pact code. The procedure newCounter returns an inner procedure that will act as a
counter. The inner procedure references the variable x which is defined in the scope
of the outer procedure.

newCounter := proc ( ) local x ;
x := 0 ;
return proc ( )

x := x + 1 ;
return x ;

end proc
end proc :

Counter “objects” can then be created and used. There is no way to access the state
of the closure from outside as closures represent private state. Closures allow some
object oriented patterns and designs to be used in Maple even though Maple is not
considered an object oriented language.

> count1 := newCounter ( ) : count2 := newCounter ( ) :
> count1 ( ) ;

1
> count1 ( ) ;

2
> count1 ( ) ;

3
> count2 ( ) ;

1
> count2 ( ) ;

2

In a lexically 4 scoped language it is possible to implement scopes using a stack. Every

4Lexical scoping gets its name from the fact that it is possible to determine the scope of a name
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time a scope is entered a new environment is pushed onto the stack, and when the
scope is exited the environment is popped. A closure then simply contains one or
more pointers to the outer lexical environments that it references on the stack. When
one of these environments gets popped it is still kept alive by any closures that have
references to it. This is a simple scheme in an implementation that supports garbage
collection. As soon as there are no more references to an environment it becomes
available for garbage collection.

2.3.7 Modules

Modules are similar in functionality to procedures and closures but they differ in
two main respects. Firstly modules can contain locals which act similar to variables
defined in a function’s closure and module locals may be exported. Second, modules
act like a record, allowing several procedures and variables to be treated as a unit.
The syntax of module definition provides a clean way to declare the interface and the
intent of the module.

It is possible for several functions to share the same closure environment and to be
used together to access and update it. This is shown in the following example of a
counter that can be reset.

newResetCounter := proc ( ) local x ;
x := 0 ;
count := proc ( )

x := x + 1 ;
return x ;

end proc ;
r e s e t := proc ( )

x := 0 ;
end proc ;
return count , r e s e t ;

end proc :

> ( count , r e s e t ) := newResetCounter ( ) :
> count ( ) ;

1
> count ( ) ;

2
> r e s e t ( ) : count ( ) ;

1

by examining the program text. Lexical scoping is also known as static scoping.
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In the above example two procedures are returned by newResetCounter which must
be independently maintained. Below is an example of a reset counter generator
implemented using a module. The module must still be nested within a “constructor”
procedure in order to be able to generate many instances of the module. The special
module procedure ModuleApply allows a module name to be used like a procedure.
Module exports are accessed using the module member selection syntax (m:-e).

newResetCounterModule := proc ( )
module ( )

d e s c r i p t i o n ”a counter that increments in s t ep s o f one ” ;
local x ; # pr i va t e
export ModuleApply , r e s e t ; # pub l i c
x := 0 ;
ModuleApply := proc ( )

x := x + 1 ;
return x ;

end proc ;
r e s e t := proc ( )

x := 0 ;
end proc ;

end module ;
end proc ;

> c := newResetCounterModule ( ) :
> c ( ) ; # c a l l s ModuleApply

1
> c ( ) ;

2
> c :− r e s e t ( ) :
> c ( ) ;

1

2.4 Additional Features

2.4.1 Automatic Simplification

Maple automatically simplifies expressions, for example by simplifying a + a to 2a.
Automatic simplification takes place after parsing, so it is common for Maple to
display an expression slightly differently from how it was typed in. Automatic sim-
plification is also applied to function bodies and in specific cases can cause code to be
removed. For example a while loop where the condition is hard-coded to false will
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be removed entirely. This feature sometimes misleads people to think that Maple has
some kind of automatic partial evaluation system built in, but this is not the case.

2.4.2 Last Name Evaluation

Specific evaluation rules apply to certain types of expressions. Most Maple types
are evaluated using standard full recursive evaluation. For example, names that are
assigned to integers are subject to full evaluation.

> x := 20 ;
x := 20

> y := x ;
y := 20

> y ;
20

However some special types are not subject to full evaluation. Instead they are
evaluated to the last name to which they were assigned. This is known as the Last
Name Evaluation (LNE) rule. Procedures, modules and tables are all subject to this
special rule. The eval function can be used to fully evaluate an expression.

> t := tab l e ([1=”a ” ] ) ;
t := tab l e ( [ 1 = ”a ” ] )

> t ;
t

> t [ 1 ] ;
”a”

> s := t ;
s := t

> s ;
t

> s [ 1 ] ;
”a”

> eva l ( s ) ;
t ab l e ( [ 1 = ”a ” ] )

2.4.3 Type Assertions

The Maple language is dynamically typed, meaning that no attempt is made at
statically resolving the types of terms. In order for the programmer to ensure some
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level of type safety, Maple does provide an explicit runtime type assertion system.
The type of an expression can be checked by using the built-in type function or in
certain contexts by using the double colon (::) operator. A type is either a structured
type definition or a predicate that returns true for values of the type. Structured type
definitions are built up by combining simpler, more primitive types. A type predicate
is given by a boolean valued “slash” function of the name ‘type/T‘ where T is the
name of the type. Since a type is just a predicate many interesting types are available
including even, prime, local, global, expanded and many more. There is no well
defined subtyping relation.

2.4.4 Reification and Reflection

In order to apply program transformations and to be able to execute programs af-
ter they have been transformed we require two important operations; reification and
reflection. Reification is the process by which a part of a program is made accessi-
ble to the program itself as a data structure. Reflection is the opposite operation,
allowing a data structure representation to be made into a runnable program. Re-
flection is the process by which a program may alter its own structure and behavior.
Interpreted programming languages are ideally suited to support reflection because a
representation of the source code is available to the interpreter.

Reification is performed in Maple by using the ToInert function and reflection using
FromInert. ToInert takes a maple expression and returns an abstract syntax tree
representation, referred to as the inert form of the expression. This abstract syntax
representation is required for symbolic manipulation.

> i n r t := ToInert ( x+y ) ;
i n r t := Inert SUM ( Inert NAME(”x ”) , Inert NAME(”y ”) )

FromInert takes a valid inert form and converts it into an active Maple object that
may be further evaluated.

> e := FromInert ( Inert SUM ( Inert NAME(”x ”) , Inert NAME(”y ” ) ) ) ;
e := x + y

> x := 1 ; y := 2 ;
x := 1
y := 2

> e ;
3
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The original purpose of ToInert is to convert an active representation into an inert
one that can be freely modified without worry of evaluation. The inert form is essen-
tially an external representation of a data structure that is normally internal to the
interpreter. Naturally ToInert and FromInert are implemented as built-ins.



Chapter 3

Partial Evaluation

Partial evaluation (PE) is a program transformation technique that fixes a subset of a
program’s inputs to specific values then generates a specialized version of the program.
The resulting program is called the residual program or specialized program. Essen-
tially PE attempts to execute a program with some of the inputs missing. Program
statements and expressions that cannot be fully evaluated due to missing informa-
tion are reduced as much as possible and then residualized. The residual program
will finish the computation when the rest of the inputs become available. The fixed
input and all information known at partial evaluation time is known as static. All
program variables that have unknown value are called dynamic. These classifications
are known as binding times.

Partial evaluation performs aggressive optimizations including constant propagation,
loop unrolling, function unfolding and so on. It can be very useful in times when
some particular inputs to a program change infrequently. As much computation is
performed at partial evaluation time as possible and thus the specialized program
should be highly optimized. Consider the following example of a function named pow

written in Maple that computes xn for n ≥ 0.

pow := proc (x , n)
i f n = 0 then

1
else

x ∗ pow(x , n−1)
end i f

end proc

18
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Running MapleMIX on pow with respect to n = 5 yields the following residual pro-
gram. (The multiplication by 1 was removed by the automatic simplifier.)

pow s := proc ( x )
x ∗ x ∗ x ∗ x ∗ x

end proc

All references to the static parameter n have been removed and all of the conditionals,
function calls, subtractions, and parameter bindings have been performed at partial
evaluation time. The only operations remaining are the multiplications that the
partial evaluator could not perform because the input variable x was dynamic. Hence
we have automatically derived a function that computes x to the power of fixed value.
Several different versions of pow computing x to the power of different values could
be automatically generated.

Traditionally PE has been done for declarative expression oriented languages such as
Scheme [16, 28, 11, 27] , ML [5, 12], Prolog [16] and the lambda calculus [26, 23, 16, 18].
However there does exist partial evaluators for imperative languages such as C [1, 10],
Java [30] and Matlab [13]. Most early work was done in the context of Scheme with
the emphasis on writing self-applicable partial evaluators.

Most partial evaluators only support a subset of the language they were designed for.
Having said that, it is worth noting that the PGG system for Scheme supports the
entire language including imperative style code [27]. Scheme as a language is a good
test bed for PE research because it has a simple semantics, is dynamically typed and
is symbolic. Perhaps if PE were considered during the early stages of programming
language design it would become a more widely available tool.

3.1 Mix Equation

A partial evaluator must satisfy the mix equation [16].

[[p]](s , d) = [[([[PE ]](p, s))]](d)

The partial evaluator produces a residual program ps = [[PE ]](p, s) from the subject
program p and the static inputs. When the residual program ps is run on the remain-
ing dynamic inputs the results should be equal to running the subject program p on
all its required inputs [[ps ]](d) = [[p]](s , d). This means that the partial evaluator PE
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must preserve the semantics of p.

3.2 Partial Evaluation Strategies

There are two main flavors of partial evaluation, online and offline. An offline partial
evaluator does not use the concrete values of program variables when making the
decision to remove or residualize a program construct. Instead they depend on a
preprocess known as binding time analysis (BTA) to gather the necessary binding time
information. The remove/residualize decision is made during this preprocess. A BTA
precomputes a division, a classification of sections of the subject program according
to binding time. The division is usually embedded into the subject program via
annotations, then the specializer simply obeys the division (and possibly the results
of other prephase analyses). Traditionally BTA has come in two forms. One method
is abstract interpretation over an abstract value domain consisting of the possible
binding times [16]. The other approach is to use a type inference system to build
a set of constraints on the binding times of program variables. The constraint set
is then solved giving the binding time of each variable [15]. In either case BTA is
essentially a worst case analysis.

A common approach to offline PE is to define a two level syntax for the language
that adds annotations for static and dynamic. The partial evaluator is then defined
as an extended semantics of the two level syntax. Constructs annotated with static
use the standard language semantics and constructs annotated with dynamic use
the extended semantics. It is believed that offline partial evaluators are easier to
write because the partial evaluator is split into two phases yielding good separation
of concerns [29]. Offline partial evaluators are currently the only choice for effective
self-application [16].

A partial evaluator is said to be online if the concrete values of program variables
computed during specialization can affect the choice of action taken. An online PE
makes the remove/residualize decision during specialization and therefore has much
more information available about variables, including possibly their types and values.
The degree of staticness of a variable is directly related to the amount of information
known about the variable. If a concrete value is available then the variable is static.
If only limited information is available such as the type or shape of the variable,
or if the variable represents a compound value for which only certain elements are
known, then it is partially static. If there is no information then it is dynamic. It is
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believed that online partial evaluation is more precise than offline leading to better
specialization [16, 9]. However one must realize that there is no preprocess, therefore
the online partial evaluator is very reactive in its nature because while it is computing
it has no prior knowledge of program points it is yet to encounter.

For example consider the following program construct annotated with s and d for
static and dynamic, assume the variables can only contain integer values.

x d := ad ∗ bs

The variable a is dynamic therefore BTA would be forced to annotate x as dynamic.
Under the offline methodology this statement would always be residualized. An online
PE however would have the value of b available when making this decision. In the
case where b is 0 the value of a does not matter, value of x could be computed to be
0 and the statement could be removed. The degree of specialization resulting from
an online strategy is directly related to the specializer’s ability to infer and maintain
as much static information as possible [21].

Online PE can be more precise than offline, however online specializers are usually less
efficient mainly due to more decision making and environment manipulation during
specialization. In particular the binding times of variables must be examined often.
Hybrid online/offline approaches have been explored in order to exploit the special-
ization benefits of online and the efficiency benefits of offline. For example Sumii
showed how a type-based representation analysis could improve the performance of
an online PE by adding a limited amount of binding time information to optimizes
the specialization process by removing unnecessary computations [24].

A specializer is monovariant if the divisions it computes can contain at most one
classification of binding times for the parameters of a function. The consequence
of this approach is that the most dynamic usage of each parameter will become
the binding time for all usages of that parameter throughout the subject program.
This should be considered a severe restriction, because it is possible for some static
information go unexploited. In contrast, polyvariant specialization can produce more
than one binding time classification for a particular function’s parameters, leading to
better specialization. A result of this approach is that it is possible for the residual
program to be larger than the subject program. This is accepted as long as the
amount of computations required for the residual program to arrive at a result is
reduced. It is also possible to generalize the concept of variance to deal with a wider
class of program points instead of just functions.
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3.3 Parameterization

There are two approaches when attempting to write a program that solves a family
of computational problems; write a family of specific subprograms for each specific
problem or write one generic program that solves all the problems. The generic
program is easier to write, maintain and extend. However it will not be as efficient
as the specialized programs.

Parameterization allows the creation of generic code that can have its behavior con-
trolled by “functional” parameters. For example, the Java language provides a sorting
method that can sort any List object according to the natural ordering of its ele-
ments. However, it is also possible to supply a Comparator object as a additional
parameter to the sort method. The Comparator provides a custom method used to
compare elements in the List. This pattern is both flexible and extensible. Sorting
behavior (i.e. sorting ascending or descending) can be customized. New user defined
data types can be sorted by the existing sort function by providing a new Comparator.
Thus there is only the need for a single sorting function in the Java core library.

Despite obvious advantages to parameterization there is a major disadvantage, re-
duced efficiency. Often in order to write optimized code it is necessary to manually
create specialized versions of an algorithm for specific types of inputs. Gaussian
Elimination (GE) is an example of an algorithm that has the potential to be highly
parameterized. In practice however writing a generic GE procedure has shown to
result in slow and bloated code. Currently in the Maple library there are at least 35
different implementations of GE each exposed through a specialized interface [7].

3.4 Multi-Stage Programming

Multi-stage programming (MSP) is a new paradigm designed specifically for the re-
liable creation of programs that generate programs. MSP allows for generic pro-
gramming while minimizing the runtime cost that naturally comes along with it.
Multi-stage programming is a special case of meta-programming. The key to MSP
is a type system that ensures that both the generic program and the dynamically
generated programs are type-safe. MetaOCaml 1 is an MSP extension to the OCaml
functional programming language [25]. Three new constructs are added to OCaml.

1http://www.metaocaml.org/
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• Brackets (.< expr >.) When inserted around an expression will delay its
execution. Creates an expression of type code.

• Escape (.~ expr ) Allows one code fragment to be included within another.
In this way larger code fragments and ultimately the residual program is built.

• Run (.! expr ) Dynamically compiles and executes generated code within
the MetaOCaml environment.

A new code type is added to distinguish delayed computations from other values.
MSP allows fine grained control over the code generation process while guaranteeing
that generated code is syntactically and type correct. Also MetaOCaml tends to be
quite efficient at generating code and dynamically executing it. Let us consider an
example of a staged powering function written in MetaOCaml.

(* power :: int code -> int -> int code *)
let rec power x n =

if n = 0
then .<1>.
else .< .~x * .~(power x (n-1))>.

;;

We can now use this staged version of power to generate a specialized version.
(# is the MetaOCaml prompt).

# .<fun x -> .~(power .<x>. 3)>. ;;
- : (’a, int -> int) code =
.<fun x_1 -> (x_1 * (x_1 * (x_1 * 1)))>.

MSP and PE can both be used to reduce the computational overhead involved in
writing generic algorithms. However these two approaches differ greatly in one re-
spect. MSP is a programming paradigm and therefore the burden of generating
correct residual programs is on the shoulders of the programmer. In particular the
multi-stage programmer must determine which parts of the program are static and
dynamic, ensure good binding times, avoid code duplication, explicitly control inlin-
ing and may have to write a program in a non-intuitive manner in order to achieve
these requirements. MetaOCaml is purely generative, meaning that generated code
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cannot be manipulated or post-processed in any way. This requires the programmer
to “get it right” in the first place [8]. MSP programs are made more complex by the
additional language constructs and typing rules. Furthermore the strange syntax of
the new MetaOCaml constructs can render its programs difficult to read.

Conversely PE is an automatic technique ideally requiring minimal intervention from
the programmer. Design time and specialization time are separated. At most a
programmer may need to keep certain considerations in mind to help the PE such as
ensuring good termination conditions and keeping good separation of binding times.
A PE may have a post-process to “clean up” by removing or compressing residual
code. However there is usually a great deal of computational overhead involved with
PE.

PE is less restrictive than MSP in that it allows a function to be specialized several
ways with respect to different static permutations of its inputs. MetaOCaml’s type-
system requires that this decision be made at program design time. For example our
Maple pow function could be specialized in two ways, with x static and n dynamic or
with x dynamic and n static. The MetaOCaml power function given above can only
generate code specialized with respect to n, this is directly apparent from its type. In
fact if we try to write the MetaOCaml power function with x static and n dynamic
we quickly run into problems.

(* powerbad :: int -> int code -> int code *)
let rec powerbad x n =

.<if .~n = 0 then 1 else x * .~(powerbad x .<(.~n-1)>.) >.
;;

# .<fun n -> .~(powerbad 3 .<n>.)>.;;
Stack overflow during evaluation (looping recursion?).

The problem is that the condition that terminates the recursion is dynamic (along
with the entire if expression). We have essentially created a strict if expression where
both branches are always evaluated.

Partial evaluators also tend to experience termination problems during specialization
for the same reason. There has been some success in overcoming these problems, one
simple approach is function sharing. When the PE encounters a call to an already
specialized function or to a function that is currently being specialized it reuses the
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specialized body that has already been generated. We will go into more detail about
termination issues of PE in chapter 6.

Carette has shown that MSP allows one to write a general Gaussian Elimination
algorithm and automatically generate specialized versions using the code generation
facilities of MetaOCaml [7]. We will show that PE can also be used toward a similar
goal. Partial evaluation bridges the gap between the conflicting goals of parameter-
ization and efficiency by allowing the automatic generation of optimized versions of
highly parameterized algorithms.

3.5 The Futamura Projections

Partial evaluation is a very powerful technique that has some interesting properties
known as the Futamura Projections, originally discovered by Yoshihiko Futamura in
1971 [14, 16]. The first Futamura Projection states that compilation can be achieved
given just a partial evaluator and an interpreter. First one must realize that the
inputs to a program written in an interpreted language are actually inputs to the
interpreter.

[[source]](d) = [[interpreter ]](source, d)

Then we can achieve compilation of a program written in an interpreted language by
specializing the source code of the interpreter with respect to the program, this is
stated in the first Futamura Projection.

target = [[PE ]](interpreter , source)

The resulting program target is made up of fragments of the interpreter. Intuitively
target is the interpreter specialized to run only one source program. The power of
partial evaluation can be taken even further when we realize that it is possible to apply
a partial evaluator to its own source. This of course comes with the requirement that
the partial evaluator be written in its own input language or be translatable into that
language. The second Futamura Projection states that a compiler can be generated
from self-application and an interpreter.

compiler = [[PE ]](PE , interpreter)
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In order to help understand this projection it is useful to realize which dynamic inputs
are missing from the projection, and to consider what they are. In this case the
dynamic input to compiler is the source program from the first Futamura Projection.
Hence the first Futamura Projection compiles a program while the second shows that
a compiler can be generated by using self-application to delay the results of the first
projection. The third Futamura Projection takes the idea of self-application to the
extreme.

cogen = [[PE ]](PE ,PE )

This states that a compiler generator (called cogen) can be generated through dou-
ble self-application. When cogen is applied to an interpreter it yields a compiler.
The relationship between the three projections can be realized by showing that each
projection simply removes one of the static inputs of the previous projection.

cogen = [[PE ]](PE ,PE )
compiler = [[cogen]](interpreter)
target = [[compiler ]](source)

Hence self-application of a partial evaluator simply delays partial evaluation, and
double self-application delays partial evaluation twice.

3.6 The cogen Approach

The Futamura Projections are actually more specific than necessary and their scope
can be expanded. Consider the second Futamura projection:

compiler = [[PE ]](PE , interpreter)

The static input does not have to be an interpreter, in fact it can be any program.
When self-application of PE is done with respect to an arbitrary program p the result
is pgen , the generating extension of p.

pgen = [[PE ]](PE , p)

A generating extension pgen is a program that when given some of the inputs to p
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will output ps , the specialized version of p. Thus pgen is a program generator.

ps = [[pgen ]](s)

The specialized program ps is normally given using the standard vision of partial
evaluation given by the mix equation.

ps = [[PE ]](p, s)

Thus we can generate ps by directly applying PE to the program p and its static
inputs s , or we can first generate a generating extension pgen and use that with s to
generate ps . This indeed shows that self-application simply delays partial evaluation.
It has been shown that using a generating extension to create many specialized ver-
sions of a program is more efficient that using a partial evaluator directly [26]. Now
consider the third Futamura projection:

cogen = [[PE ]](PE ,PE )

A compiler is a program generator, therefore a compiler generator is a program gen-
erator generator, and this is exactly what is achieved through double-self-application.
Thus a simple renaming is at hand.

PGG = [[PE ]](PE ,PE )

Running PGG on program p produces the generating extension of p.

pgen = [[PGG ]](p)

If a program p must be specialized several times with respect to different static
inputs then first generating the generating extension pgen and using that to generate
the specialized versions of p may yield performance gains [26].

In practice writing a partial evaluator that is self-applicable has shown to be very
difficult to achieve [16]. A self-applicable PE must be written in its own input language
and many existing partial evaluators only support a subset of the language they were
designed for. The more complex the input language becomes the more complex the
partial evaluator must be. However, researchers have noticed that it is possible to
write PGG directly by hand. This has become known as the cogen approach to partial
evaluation (referred to as cogen for historical reasons) [26]. This approach sidesteps
the need for self-application. Thiemann showed how an offline cogen PE could be
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derived from an interpreter [26] and Sumii showed a similar process for deriving an
online cogen PE [24].

The cogen approach has the following benefits:

• PGGs generated through double self-application tend to be bloated and ineffi-
cient. The cogen approach is more efficient at generating generating extensions.

• Easier to write than a self-applicable PE. Separation of binding times must be
taken into consideration when writing a self-applicable PE. Furthermore the
PE must be kept as small as possible, every level of self-application has the
potential to expand the size of the residual program.

• There are no constraints on the language that PGG is written in, a self-applicable
PE must be written in its own input language. A PGG can be written in a dif-
ferent language than its input and output languages.

The cogen approach has been realized in an offline setting by defining the semantics
of annotated syntax. Evaluation of the annotated program under the extended se-
mantics yields a specialized program. With this scheme an annotated program is a
generating extension and the BTA is the PGG. However, in order to achieve this, the
need for environment manipulation must be removed from the extended semantics.
This is achieved through the use of higher order abstract syntax (HOAS) which moves
the burden of variable binding to the meta level [26, 12, 23].

The cogen approach is also possible in an online setting. The idea is to replace the
standard operators of the language with smarter ones. They will behave exactly the
same when applied to static arguments but also have the extended functionality of
correctly treating dynamic arguments by returning residual code [24, 2]. For exam-
ple consider an extended plus operator +’ that would behave as expected for static
arguments but also work with dynamic arguments.

(5 +’ 4) -> 9
(5 +’ d) -> Plus(Int(5), Var("d"))

In either case the cogen approach is realized by extending the semantics of the source
language to correctly treat values that are dynamic. A program becomes its own
generating extension under the extended semantics.
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3.7 Type-directed PE

A syntax-directed partial evaluator performs specialization by symbolically manipu-
lating an abstract syntax tree. Type-directed partial evaluation (TDPE) is a different
approach [23, 22, 12]. Specialization is performed by first expanding a term into a
two-level term which mixes the meta language and the abstract language. This expan-
sion is done according to the type of the term and not its syntactical structure. The
two-level term is then reduced using standard evaluation of the meta-language. In
theory this is more efficient because the underlying evaluator is used directly, remov-
ing the need for symbolic manipulation. However expanding a term into a two-level
term is non-trivial and may even be impossible for certain types. The situation be-
comes even worse for dynamically typed languages because it may not be possible to
determine the exact type of a term. This approach to TDPE is unsuited to practical
programming languages [23].

3.8 PE Functionality

If a partial evaluator is applied to a subject program with all its inputs static then
the residual program generated should simply consist of a single return that gives the
static result. This shows that a PE subsumes the functionality of an interpreter. In
fact one can view a standard PE as an interpreter with the added ability of generating
residual programs. Even with the cogen approach this is still true. A generating
extension can be thought of as a compiled program. When applied to all the expected
input it will have all the information necessary to compute a final result. Furthermore
if a PE is applied to a subject program with no static inputs given then the PE may
still be able to perform many optimizations such as constant propagation and function
inlining. This shows that a PE can be considered complimentary to an optimizing
compiler. In reality a partial evaluator merges the functionality of an interpreter and
a compiler. Since it evaluates a program it is an interpreter and since it generates
code it is a compiler [2].

Many compiler optimization techniques do not require much intervention on behalf
of the programmer. More powerful optimizations may be possible if the programmer
were to provide additional information not readily available in the source program
such as invariants. A partial evaluator gains extra power over an optimizing compiler
since the specialization process is explicitly initiated by the programmer. Further-
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more the programmer must supply additionally information to be exploited in the
optimizing process. In the case of partial evaluation the extra information is in the
form of static inputs. Additionally running a partial evaluator does not come with
the guarantee of termination which is standard with virtually all compilers 2.

3.9 Partial Evaluation of Maple

If a partial evaluator is written in its own input language and that language is inter-
preted, then it may hand off static computations to the underlying interpreter. This
is the approach used in this thesis. We present a partial evaluator for Maple called
MapleMIX. To our knowledge this is the first attempt at creating a partial evaluator
for Maple.

MapleMIX has the following characteristics:

• Online. No pre-analysis of the code is performed. The PE is written to exploit
as much static information as possible in order to achieve good specialization.
Furthermore we have implemented a novel online approach to handling partially
static data-structures such as lists and polynomials.

• Written in Maple. This allows direct access to the reification/reflection func-
tions of Maple (i.e. FromInert and ToInert) as well as access to the underlying
interpreter. This permits us to stay as close to the semantics of Maple as possi-
ble. Additionally, scanning and parsing of Maple programs does not need to be
considered. Maple’s automatic simplification feature, instead of hindering us,
sometimes helps to slightly clean up residual code.

• Not self-applicable. We are more concerned with manipulating Maple code
than with producing generating extensions. Thus we focus on offering the
largest amount of features and supporting the largest subset of Maple as pos-
sible. This is made much easier by not placing restrictions on what language
features may be used when writing the partial evaluator.

• Standard approach. Since we are not concerned with producing generating
extensions we are free to take the standard approach to PE. This allows the PE

2Some compilers for languages that support dependent typing generally do not guarantee termi-
nation.
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to be written in a direct way similar to an interpreter which will make it easier
to refine and add new features to the partial evaluator in the future. Having
said that, the specializer contains an expression reducer that has been inspired
by the online cogen approach.

• Function-point polyvariant. Whenever necessary, the partial evaluator will
generate several specialized versions of a function.

• Syntax-directed. Maple allows easy access to the abstract syntax tree of a
term through its ToInert function. In this way the entire core library of Maple
may be easily retrieved. Furthermore we have used transformations on the
abstract syntax to facilitate the specialization process. We believe this approach
leads to a highly modular design for practical online partial evaluators.



Chapter 4

Syntax Transformations and
Internal Architecture

In this chapter we present the high level architecture of the Maple partial evaluator
MapleMIX. We also present several program transformations that are performed be-
fore and after the specialization phase. The internal organization of MapleMIX is
motivated by the need to perform these transformations. Dividing MapleMIX into
several modules that communicate via syntax representations allows for a highly mod-
ular design and good separation of concerns. The same idea is often employed in the
design of compilers [3].

MapleMIX can be thought of as an interpreter that has the additional functionality
of generating residual code for deferred computations that cannot be performed at
partial evaluation time. MapleMIX is loaded into the Maple system in the same
scope as the core library. This way through Maple’s reification function ToInert it
has access to the code of almost the entire core library. Only the bodies of built-in
routines are unaccessible because they are implemented directly in the Maple kernel.

4.1 Input and Output

Traditionally the input to a partial evaluator is the entire source text of a program
and this will be the only code that is considered. In contrast MapleMIX has access
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to all the code that is loaded into the current Maple session. Therefore the special-
ization process must be initiated in a controlled manner. Input to MapleMIX is a
single function, called the goal function, which will be treated as the starting point
of specialization. The goal function is a regular Maple function, it does not need a
special name. The parameter list of the goal function will be the dynamic inputs to
the specialized program. A user supplied goal function is in contrast to some other
partial evaluators that automatically create a goal function or treat a function with
a particular name as the goal function. For example, the C partial evaluator C-Mix
takes the main() function as the goal function and if it doesn’t exist then it takes
the first function in the program [1]. We believe that a user supplied goal function is
an easy way to call MapleMIX. The pow example of Chapter 3 was created with the
following command.

> pow S := OnPE( proc ( x ) pow(x , 5) end proc ) :

MapleMIX may generate several residual functions, these are packaged together with
the specialized goal function and returned as a module. The specialized goal function
will become the ModuleApply function of the returned module. The name of the
returned module is supplied by the user.

4.2 M-form

MapleMIX is a syntax-directed partial evaluator, meaning it proceeds through the
specialization process by following the structure of abstract syntax. The Maple reifi-
cation function ToInert will return the abstract syntax tree of a procedure, referred
to as the inert form 1. However, MapleMIX does not directly manipulate inert forms.
Instead they are first translated into a new form which we shall simply call M-form.
The M-form of a procedure is designed to be much more convenient for specialization.

> i n r t := ToInert ( x + y ) ;
i n r t := Inert SUM ( Inert NAME(”x ”) , Inert NAME(”y ”) )

> m := M:−ToM( i n r t ) ;
m := MSum(MName(”x ”) , MName(”y ”) )

Traditionally many existing partial evaluators first transform their input into a sim-
pler language (that may be a subset of the input language). For example the C
partial evaluator C-mix first transforms its input into a base language called Core C

1The executable form of a Maple procedure is sometimes referred to as the active form.
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[1]. Many of the constructs of C are removed and replaced with more basic constructs.
For example all loops are removed and replaced with conditional jumps and GOTOs.
This approach reduces the syntactic forms that the specializer must support. The
possible disadvantage of this approach is that invariants inherent with certain syn-
tactic forms are lost. For example some languages have for loops that are guaranteed
to terminate.

M-form is not a subset of inert form. M-form simplifies the inert form in some ways
and adds to it in others. Since MapleMIX is syntax-directed, syntax transformations
and new syntactic forms can naturally be used to direct the specializer. We have
found that adding syntactic forms does not add to the length of the specializer but
in fact makes it more compact. The removal of syntactic forms can actually add
complexity because the specializer may have to infer information that is lost.

We want to keep all the knowledge inherent in the inert form intact while keeping
translation between M-form and inert form a straightforward process. M-form is
designed to meet the needs of the specializer, and especially to keep the specializer
as small and simple as possible. In this chapter we describe where M-form differs
from inert form and the motivations for such changes. Translation from inert form
to M-form is done by the ToM module and translation back is done by the FromM
module.

4.2.1 Expressions

Maple is an imperative language with global variables, therefore expressions may be
side-effecting. Since Maple has no ++ operator and does not allow statements in
expression context, the only expression form that may be side-effecting is a function
call. In order to separate the concerns of expression reduction and environment
update M-form stipulates that all expressions must be side-effect free.

The M-form translator maintains a list of known intrinsic functions. An intrinsic
function will never be specialized, instead any call to an intrinsic function will be
treated as an atomic operation that may be performed at partial evaluation time.
Most built-in functions are considered intrinsic except side-effecting IO functions.
Some library functions are also considered intrinsic in order to simplify residual code.
All non-intrinsic function calls are removed from expressions by generating a new
assignment statement for each call and then replacing the original calls by the names
generated. This transformation is known as splitting expressions, see figure 4.1.
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Original Code Transformed Code

a := f ( g (x ) ) + h(x ) ; m1 := g (x ) ;
m2 := f (m1) ;
m3 := h(x ) ;
a := m2 + m3;

Figure 4.1: Splitting of functions from expressions

A new syntactic form of assignment is added, MAssignToFunction, specifically for
assignments of a function to a variable that have been generated by the splitting
transformation. This way the specializer can syntactically distinguish between sit-
uations where simple reduction of an expression is sufficient or specialization of an
entire function body must be performed.

The splitting transformation has the unfortunate effect of possibly creating many
new assignment statements. However, if the specializer decides not to unfold a split
function call, or if the function unfolds into a single assignment statement, then we
know that the new variable is only assigned to once and only used once. The form
MSingleUse is added to track variables that are generated by the splitting transfor-
mation. This allows the FromM translator to easily re-inline expressions that were
split out by ToM.

Maple allows expressions to be used in statement context. This is often used in
conjunction with Maple’s implicit return mechanism. However we would not like the
statement specializer to have to account for every expression form. The solution is to
wrap standalone expressions within MStandaloneExpr, and wrap standalone function
calls in MStandaloneFunction.

4.2.2 Assignment

Inert form has one type of assignment, M-form has several. We have already shown
the need for a special MAssignToFunction form to tell the specializer that a function
must be specialized. However there are other variations in assignment that must be
taken into special consideration. The first is assignment to a indexed table element.
Tables are treated specially in the environment therefore we separate assignment to
a table index into its own M-form, MAssignTableIndex. Furthermore Maple allows
multiple table indices on the left side of an assignment. We simplify this situation
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by only allowing one table index in an assignment, this is done by another splitting
transformation.

Original Code Transformed Code

t [ x ] [ y ] := e ; m1 := t [ x ] ;
m1[ y ] := e ;

Figure 4.2: Splitting of table indices

Furthermore we must identify assignment statements that are created in this manner.
This is required because Maple allows the implicit creation of tables. In the above
example if t was unassigned then it would have been implicitly assigned to a newly
instantiated table, then t[x] would also be instantiated to a table. We must indicate
to the specializer this special case when it must create a table. Therefore we have
an assignment form for generated assignments where the right side is a simple table
lookup, MAssignToTable. Multiple assignment is currently not supported.

4.2.3 If Statements

If statements in Maple may have arbitrarily many elif blocks and an optional else
block. M-form has a simpler MIfThenElse construct that always consists solely of
a conditional expression and two branches. Any Maple if statement with a list of
elif blocks is converted into nested MIfThenElse statements. Empty else blocks are
added as necessary, see figure 4.3.

Original Code Transformed Code

i f C1 then
S1

e l i f C2 then
S2

end i f

i f C1 then
S1

else
i f C2 then

S2
else
end i f

end i f

Figure 4.3: Transformation of if statements

This transformation works hand-in-hand with the splitting transformation in order to
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correctly maintain the ordering of function calls in conditional expressions, see Figure
4.4.

Original Code Transformed Code

i f f ( x ) then
S1

e l i f g (x ) then
S2

end i f

m1 := f (x ) ;
i f m1 then

S1
else

m2 := g (x ) ;
i f m2 then

S2
else
end i f

end i f

Figure 4.4: Transformation of if statements with splitting

4.2.4 Loops

Inert form has two kinds of loop, both variations of for loops.

• Inert FORFROM Represents a common for loop of the form:

for i from 1 to 10 do . . . end do

• Inert FORIN Represents a loop that accesses all elements of a linear data
structure such as a list or set, also commonly called a foreach loop.

for e in [ 1 , 2 , 3 ] do . . . end do

Both loops have an optional while clause, the boolean expression in the while clause is
checked on the start of each iteration of the loop and if the expression is false the loop
is exited. Maple allows most clauses of a loop definition to be optional. A while loop
is actually a for-from loop with all the clauses unspecified except the while clause. In
inert form the missing clauses are given default values. For example:

while x < y do
x := x + 1 ;

end do ;
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In inert form (pretty printed) we can see that the slots for the loop variable and its
value range have been given default values. The loop variable has an empty expression
sequence (NULL) as its default value.

FORFROM
EXPSEQ
INTPOS 1
INTPOS 1
EXPSEQ
LESSTHAN

NAME ”x”
NAME ”y”

STATSEQ
ASSIGN

NAME ”x”
SUM

NAME ”x”
INTPOS 1

For loops and while loops are inherently different. A proper for loop where all write
access to the loop index variable is controlled by the loop statement itself has a strong
invariant that the loop is guaranteed to terminate. This guarantee is an absolute must
if the partial evaluator is to reliably unroll loops without risking non-termination. It
would be possible for the specializer to tell if a loop is a proper for loop or a while
loop by checking for the presence of the known default values. We prefer to lift this
concern from the specializer to the M-form translator. Therefore in M-form we specify
three types of loop instead of two. Assignment to the loop index variable is currently
not supported.

• MWhile(whileCondition, body) A regular while loop consisting of just a
while condition and the loop body.

• MWhileForFrom(loopVar, fromVal, toVal, byVal, whileCondition, body)
A for-from loop with a while condition. This type of loop can be unrolled but
the while condition must be checked on each iteration. At the point where the
condition evaluates to false the unrolling of the loop is stopped. Any assignment
statements created by splitting the loop condition are added both before the
loop and inside the loop after the original loop body.

• MWhileForIn(loopVar, loopVar, inVal, body) A for-in loop with a while
condition.
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The while condition is executed on each iteration of the loop. Any assignments that
are generated by splitting function calls out of the while condition expression are
inserted before the loop and in the body of the loop at the bottom. See figure 4.5.

Original Code Transformed Code

while f ( x ) do
. . .

end do

m1 := f (x ) ;
while m1 do

. . . ;
m1 := f (x ) ;

end do

Figure 4.5: Splitting of while condition

Currently MapleMIX does not support the use of next or break inside a loop. If one
is encountered during translation to M-form an exception is thrown. However there
is one case where a simple transformation can remove the use of next, see Figure 4.6.

Original Code Transformed Code

. . . do
i f C then next end i f ;
S1 ;

end do ;

. . . do
i f not C then

S1 ;
end i f ;

end do ;

Figure 4.6: Removal of next

4.2.5 Parameter Passing

Parameter passing in Maple can become quite complex. MapleMIX supports all forms
of parameter passing and most usages of args and nargs. Parameter passing is a
feature that has evolved slowly over successive versions of Maple, the result being that
the inert form of function parameter lists is unnecessarily complex. We simplify and
standardize all parameter specification forms. The M-form of a procedure will have
two lists of parameter specifications, MParamSeq and MKeywords for regular and
keyword parameters respectively. A MParamSpec consists of the parameter’s name,
an optional default value and an optional type assertion. Figure 4.7 shows a pretty
printed view of the the part of a procedure that defines the parameters in both inert
and M-forms. Note that MKeywords is added at the end of the proc structure as to
not renumber the operands that already existed.



4. Syntax Transformations and Internal Architecture 40

> p := proc ( x : : int , y : : i n t := 0 , {z : : i n t := 0})
. . .

end proc :

Original Code Transformed Code

> i n r t := ToInert ( eva l (p ) ) :
> InertForms :−Print ( i n r t ) ;
PROC

PARAMSEQ
DCOLON

NAME ”x”
NAME ” in t ”

ASSIGN
DCOLON

NAME ”y”
NAME ” in t ”

INTPOS 0
SET

EXPSEQ
ASSIGN

DCOLON
NAME ”z”
NAME ” in t ”

INTPOS 0
. . .

> m := M:−ToM( i n r t ) :
> M:−Print (m) ;
MProc

MParamSeq
MParamSpec

”x”
MType

i n t
MDefault

MParamSpec
”y”
MType

i n t
MDefault

MInt 0
. . .
MKeywords

MParamSpec
”z”
MType

i n t
MDefault

MInt 0

Figure 4.7: Parameter specifications

4.2.6 Tables

Maple allows the creation and initialization of a table at the same time using the
built-in table function. Uses of this particular function are transformed into a series
of table index assignment statements. This relieves the specializer from having to
deal with the table function as a special case. Some of the resulting assignments
may be static and some may be dynamic at specialization time and will be treated
accordingly.

Inert form has a special structure Inert TABLE to allow the full definition of tables
to be defined directly in abstract syntax. We have found that Inert TABLE can
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Original Code Transformed Code

A := tab l e ( [
( 1 , 1 ) = 1 , (1 , 2)=x−3,
( 2 , 1 ) = 2 , (2 , 2)=x ,
(3 , 1 ) =−1, (3 , 2 )=3 ] ) ;

A[ 1 , 1 ] := 1 ; A[ 1 , 2 ] := x − 3 ;
A[ 2 , 1 ] := 2 ; A[ 2 , 2 ] := x ;
A[ 3 , 1 ] :=−1; A[ 3 , 2 ] := 3 ;
A;

Figure 4.8: Transforming table creation to assignments

be removed and replaced with a call to Maple’s builtin table creation function. The
result is the removal of a syntactic form that is unnecessary. When a table is defined
directly in abstract syntax it is usually the case that the table is completely static,
therefore we do not perform the transformation to assignments described above in
this case.

4.3 Architecture

MapleMIX consists of several modules, key modules and their roles are listed below.

• OnPE. The core of the specializer. Contains the statement block partial eval-
uator. Generates specialized functions and decides when to share already spe-
cialized functions. Maintains a call stack of environments. Decides when a
specialized function should be unfolded. Maintains a table that stores gener-
ated residual code.

• ToM. Translator from inert form to M-form.

• FromM. Translator from M-form to inert form.

• OnENV. The online environment. Stores values of static variables and par-
tially static tables. Has a unique implementation that allows for easy treatment
of dynamic conditionals. This will be discussed in detail in the next chapter.

• ReduceExp. The expression reducer. When given the M-form of an expression
will reduce it as far as possible using the static information provided by the en-
vironment. May return a static value or a dynamic M-form. Its implementation
is inspired by the online cogen approach.

• Unfold. Performs the function unfolding program transformation.
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• BuildModule. Takes the residual code generated by OnPE and packages it as
an active Maple module.

• NameGenerator. Responsible for generating new unique names for use during
M-form translation and during specialization.

4.4 Summary

MapleMIX is a syntax-directed partial evaluator that process a form of abstract syn-
tax called M-form. This M-form is designed to translate inert form into a represen-
tation that is more palatable to the needs of a specializer. In most respects M-form
is virtually identical to inert form except for certain key areas including: expressions,
if statements, loops, assignments, and parameter specifications. We believe that in-
venting an intermediate language specially designed for the specializer is a good way
of modularizing a syntax-directed online partial evaluator.



Chapter 5

Expression Reduction

The expression reducer serves the role of evaluating expressions as far as possible
given the available static information stored in the environment. The reducer sup-
ports operations on most Maple data types from simple numbers and strings to lists,
polynomials, higher-order functions and tables. The implementation of the reducer
is inspired by an online cogen approach to PE as outlined by Sumii [23]. The idea is
to replace the underlying operators of the language with smarter ones that correctly
handle dynamic arguments. Sumii first proposed this idea as a solution to the limi-
tations of type-directed partial evaluation. Here we use the essence of the idea in a
syntax-directed online setting. A reduction function is created for each pure Maple
operator that works as follows. If all arguments are static then apply the underlying
Maple operator on the arguments, this essentially hands control over to the Maple
interpreter to perform the actual static operation. Otherwise, in the case that any of
the arguments are dynamic, build a dynamic expression and return it. It is easy to
see that reduction is implemented as an extension to the already existing semantics
of Maple expressions.

For example, reduction of the term x + y when the static values x = 1 and y = 2
are bound in the environment yields MStatic(3). Reduction of the same term with
x = 1 static and y dynamic yields MSum(MStatic(1), MLocal("y")). The special
M-form tag MStatic is used to “wrap” static values returned by the reducer. This
has the following advantages:

• It is very easy to test the binding time of a reduced term.
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• Static values can be embedded within the dynamic representation in a straight-
forward way. This allows static values to be easily lifted, as will be explained in
greater detail in the next chapter.

• It is necessary to wrap static expression sequences within an MStatic to avoid
expression sequence flattening.

• Wrapping of values that are subject to last-name evaluation rules prevents them
from picking up names defined in the specializer.

5.1 Online Approach to Partially Static Data

For a program specializer to produce good results it must utilize as much static
information as possible. There are often situations where a concrete value cannot be
known, however the type or the shape of the value can still be statically known. For
example a list may have dynamic elements, however it may still be possible to know
the size of the list. Avoiding unnecessary approximations is key to preserving static
information [21]. For example, an online PE may treat a list with a dynamic element
by making the approximation that the list is completely dynamic, thereby treating
it as an “unknown” value. While this approximation is safe, in the sense that the
residual code will be correct, it does not make good use of static information.

Our approach to supporting partially static data is to take the idea of “smart op-
erators” a step further, by extending certain intrinsic functions with the additional
ability to properly handle dynamic terms. For example a dynamic list [a, b, 2]

where a and b are dynamic will be represented in M-form as:

MList(MExpSeq(MLocal("a"), MLocal("b"), MStatic(2)))

It is easy to see that the size of the list is statically known in this case by simply
examining the structure of the abstract syntax. Our approach is to exploit the static
information present within the dynamic representation. For example, the built-in
Maple nops function has been extended to return a static result in such cases. Several
of Maple’s intrinsic functions have been extended to add support for partially static
lists and polynomials. Syntactic constructs such as indexing and list appending have
also been extended in a similar way.



5. Expression Reduction 45

In order to propagate dynamic terms through the program they will be stored in
the environment alongside static values. When the reducer encounters a variable it
will retrieve its representation from the environment which may store a static value,
dynamic representation or not have a binding at all. If the variable is bound to a
dynamic representation then it is substituted. Special care must be taken not to
introduce duplicate computations. A special syntactic form MSubst is introduced by
the reducer to track such substitutions. MSubst consists of the variable name and the
dynamic representation retrieved from the environment. For example:

MSubst(
Local("x"),
MList(MExpSeq(MLocal("a"), MLocal("b"), MStatic(2)))

)

If the dynamic expression is not consumed during further reduction then the entire
MSubst will be output by the reducer. Later, when the M-form representation of the
residual program is being transformed into inert form, the dynamic representation
part of the MSubst will be discarded and the name used instead.

Support for partially static terms has been explored mostly within the context of
offline PE. One approach is to use a BTA to determine the binding times of individual
elements of a partially static data structure [16]. Another approach uses an abstract
interpretation as a shape analysis to gather static shape information as a pre-phase
[13]. Our approach is completely online and has the potential to exploit the full
information available during specialization. However it must be noted that quite
a bit of custom support for various dynamic representations must be added to the
reducer in order to achieve this.

In traditional PE, especially when a BTA is used, it is very common for values to
go from static to dynamic. Thus a snowball effect may be observed in which more
and more constructs become dynamic. With our approach it is possible for reduction
involving a dynamic term to still result in a static value. One side effect of this
approach is that the PE tends to generate residual code that becomes dead code
when dynamic information leads to static computations. Dead code is removed by a
simple post-phase cleanup.
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5.2 Input and Output

The reducer has the following preconditions:

• The input term must be in M form.

• All function calls in the term must be to Maple built-in functions and must also
be pure, this ensures the expression is side-effect free.

• There must be an online environment provided. Every time a variable is en-
countered the environment is queried for the binding time of the variable and
if static also its value.

The output of the reducer will be in one of three different binding times:

• Static: Will return a value wrapped in a MStatic constructor.

• Dynamic: Will return an M form other that MStatic and MBoth. This term
is reduced as far as possible and may contain static data embedded within it.

• Both: This binding time is used exclusively with tables. MBoth has a dynamic
part and a static part. The dynamic part is the result of reduction with partially
static tables treated as dynamic and vice versa. This allows the specializer to
identify situations when the environment must both be updated with a static
value and residual code must be generated. We will discuss this situation in
more detail later in this chapter.

All function calls within the expression must be to functions that are considered
intrinsic. These are pure functions that the specializer will treat as atomic in the
sense that it will never try to specialize them. If a call to an intrinsic function has
all arguments static then the function will be applied at partial evaluation time.
Since any side-effects will go unnoticed it is essential that the function be side-effect
free. Most built-in functions are pure except for some IO functions such as print

and read. These will not be considered intrinsic but will still be detected as built-
in and so will be treated as a special case by the specializer. IO functions will be
split out of expressions and always be residualized. Many non-built-in functions can
also be treated as intrinsic such as curry, which performs partial application. Some
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library functions have non-standard semantics such as seq (the function for sequence
comprehensions). These are treated as special cases by the reducer. Every time
a function call is encountered a table of special functions is first checked to see if a
custom handler for the function exists. All calls to eval functions such as eval, evalb
and evalf are always residualized.

A call to the assigned function is treated as a special case. Sometimes it is possible
to statically know whether a name is assigned to a value even if the value is unknown
(dynamic). In general if an assignment statement is dynamic we cannot assume
that the name that is assigned to will actually carry a value because the dynamic
expression may be the variable’s own unevaluated name (this is how a name becomes
unassigned). However only limited usage of unevaluation quotes is supported. The
expression between the quotes must be syntactically identifiable as a single name.
This means that unassignment of table cells is not supported by MapleMIX. This
restriction allows the partial evaluator to know when a table cell will have a value at
runtime even though the value is unknown at partial evaluation time. Detection of
this case is implemented as a simple extension of the online environment’s dynamic
masking feature which will be explained in detail in section 6.3.5.

Some expressions are subject to last name evaluation rules. This poses a certain
challenge for writing the reducer. Expressions such as procedures, tables and modules
always pick up the last name they were assigned to. It is possible for raw LNE rule
values to pick up local names defined in the MapleMIX source if special care is
not taken. The solution is to never directly assign values in the reducer, instead
intermediate results are always wrapped in a list. This keeps the value isolated from
the internals of the partial evaluator.

MapleMIX supports the use of static function closures in the subject program. The
requirement for a function closure is that its surrounding lexical environment (its
closure) must contain a static value for any lexical local that is encountered during
the evaluation of the function body. Or put more simply, when a lexical local is
encountered its value must be static. This means that the function’s closure can have
dynamic parts as long as they are never accessed. This may occur if a dynamic lexical
local is in a branch of a static conditional that is never evaluated. A lexical local may
become dynamic at one point and then acquire a static value again later, as long as
it is not accessed while dynamic our restriction is not violated.

Maple is a dynamically typed language and as a result existing Maple code contains
a great deal of dynamic type tests (usually as part of error checking code). Therefore,
to be semantically correct, it is necessary that the reducer not change the type of
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any static term. This poses a challenge for handling function closures, they must be
represented as an active Maple function in order to be consistent in our treatment
of static values. However the values of the function’s lexical locals are stored in
the partial evaluator’s environment. This problem is solved by performing a simple
transformation on the body of the function. Each lexical local is replaced by an
application of an inline function. These “thunks” will call back into the partial
evaluator to retrieve the variable’s value, and will throw an exception if there is
no static value available. The M-form of the closure is then converted into active
Maple code. This way a static function closure can be simply applied when needed,
a feature essential for supporting higher-order built-in functions such as map and
fold. If applied to some dynamic arguments it will be converted back into M-form
and specialized. This converting of code to and from active Maple is inefficient but
unavoidable with this scheme.

5.3 Dead Code Removal

We use a simple, easy to implement scheme for dead code removal. The algorithm
starts at the bottom of a function body and proceeds upwards. For every statement,
if it is not dead then add any names referenced to a set of live variables. When an
assignment is encountered the name on the left side must be in the set of live variables
or the statement is dead code and is removed. For if statements perform this process
on each branch, then union the two sets of live variables produced to get a new set.
For loops it is necessary to find loop dependent variables, these are variables that are
referenced in the loop. The loop dependent variables are then added to the set of live
variables before the body of the loop is processed.

This algorithm is sufficient to remove many cases of dead code but it has shortcomings.
Some dead code, especially within loops, may not be removed. A better approach
would be to do dead code removal as an optimizing compiler would, by using data-flow
analysis. However our simple approach is sufficient for the time being.

5.4 Summary

The expression reducer in MapleMIX is inspired by the online cogen approach. It has
the ability to reduce a wide variety of Maple expressions, including support for a novel
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online approach to partially static data structures. Some tricky situations, such as
intrinsic functions with non-standard semantics, are simply handled as special cases.
Higher-order functions are supported by transforming the active body of the function
by adding callbacks that retrieve static values from the specializer’s environment. A
special binding time MBoth is meant specifically for partially static tables which are
handled in a special way in the online environment. In the next chapter we will discuss
the specialization of statements and the inner workings of the online environment.



Chapter 6

Statement Specialization and the
Online Environment

The specialization process begins with the supplied goal function. The partial eval-
uator converts the goal function into M-form, creates a new empty environment and
begins by specializing its body. Each non-intrinsic function call encountered initiates
the following process. If the function has not been encountered before then retrieve
its source from the Maple library using ToInert and convert it to M-form. Cache the
M-form for easy retrieval if a call to the same function is encountered again. A call
stack of function environments and a separate global environment are maintained.
Specialization of a function begins by creating a new environment, initializing it with
the function’s static parameters and pushing it onto the call stack. Specialization
terminates when the end of the goal function is reached. Finally all residual functions
are converted into active Maple code, packaged together as a module and returned
to the user.

6.1 Side Effects and Termination

Pure functional languages are characterized by referential transparency, meaning that
multiple calls to a function with the same arguments will always produce the same
result. This property allows a specialization strategy where the partial evaluator
does not have to be concerned with the order of specialization of function points [16].

50



6. Statement Specialization and the Online Environment 51

The presence of side-effects and global state puts a restriction on the specialization
strategy. The ordering of statement execution must be respected during specialization
and be preserved in the residual code [1]. The result is a specialization strategy
that is depth-first. Every time a function call is encountered it must be specialized
immediately. There may be several functions in the process of specialization at the
same time.

6.1.1 Function Sharing and Termination Issues

MapleMIX uses a simple function sharing scheme for two purposes. Firstly to reuse
specialized functions in cases where multiple calls to the same function with the
same static arguments are encountered. And secondly to avoid termination problems
inherent with recursive procedures. When a function call is encountered its call
signature is computed. It will consist of values of static arguments and placeholders
for dynamic ones. If the call signature has not been encountered before then the
function is specialized. The call signature is then saved along with the specialized
code. The next time the same call signature is encountered the specialized code is
simply retrieved and reused, avoiding unnecessary specialization.

This strategy also improves termination properties of the partial evaluator as call
signatures are used to help detect static recursion. The depth-first specialization
strategy makes it possible for several functions to be in the process of deferred spe-
cialization. If one of those functions is recursive (or mutually recursive) then the
problem of infinite specialization arises. The partial evaluator can tell when a call
signature refers to a function that is currently in the process of being specialized.
When such static recursion is detected a call to the recursive function is simply resid-
ualized. This strategy relies on detection of identical call signatures, if some static
value is changing under dynamic control then infinite specialization is still likely [16].

For example specialization of the pow example of chapter 3 with x having the static
value 2 and n dynamic results in a function that computes 2n :

pow 1 := proc (n)
i f n = 0 then

1
else

2 ∗ pow 1 (n − 1)
end i f

end proc
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The difficulty with termination is caused by the fact that the termination condition
(n = 0) is dynamic. When the specializer encounters the recursive call to pow it first
examines the call signature, in this case (x = 2, n = DYN ). It realizes that it is
currently specializing pow with respect to that signature and simply inserts a residual
call to pow 1.

The function sharing mechanism is currently incompatible with the online environ-
ment’s support for storing dynamic representations. The abstract syntax dynamic
representation may have an effect on how a function is specialized. Therefore any
dynamic representations passed to a function must be considered part of its call
signature. Doing this in a naive way would hurt the termination properties of the
specializer as less cases for reuse would be encountered. We have found in our experi-
ments the need for either function sharing or partially static data structures, but not
both at the same time. Therefore, currently in MapleMIX they are implemented as
mutually exclusive features. An option can be provided when calling MapleMIX to
choose which feature to turn on. We leave it as future work to make these two features
work together in a suitable way, possible approaches will be discussed in chapter 8.

6.1.2 Global State

In a language with global state is is usually necessary for functions to be specialized
with respect to static parameters and static global variables. Moreover the effect of
the function on global state must be remembered if a function is to be shared, and
when a function is shared the global state must be effected accordingly [1]. Global
state is used often in imperative languages such as C, however it is not an integral part
of many Maple programs. Therefore we will not concern ourselves with the problem
of coordinating shared functions and global state. Extending MapleMIX with this
functionality in the future should be straightforward. Instead we take the following
conservative approach; a function may not be shared if it reads from or writes to
global state. The specializer maintains a call stack of environments for function calls
and also maintains a separate global environment.
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6.2 Function Specialization

When a function to be specialized is encountered, the first thing that must be done is
matching up of argument expressions to the parameters of the function. Some of the
argument expressions may be static and some may be dynamic. Parameters can have
type assertions and default values. Also special optional parameters can be defined.
It is also common for a function to declare no parameters at all and instead access
parameters through args and nargs.

A new environment for the function is created that will be initialized with bindings
for static parameters. Each argument expression is processed one at time, starting
with the leftmost one. Two other things must be produced: the residual function
call (with static arguments removed and dynamic arguments reduced) and the new
parameter list of the specialized function. Each static argument is matched up with its
corresponding parameter if one exists. If a type assertion is attached to the parameter,
it is checked. If the assertion fails, the default value is taken if it exists; if there is no
default value then an error is issued. Maple allows any expression to be given for a
default value, however, MapleMIX only supports constant values. A binding is then
added to the environment and the parameter is removed from the parameter list of
the specialized function. If the argument is dynamic, then it is added to the residual
call. Once all the arguments have been resolved, the function body is specialized.

There is a caveat to Maple parameter passing. All functions essentially take a sin-
gle expression sequence, and expression sequences are automatically flattened. If we
have a dynamic argument to a function there is the possibility that at runtime this
argument will be an expression sequence. Therefore as soon as a dynamic argument
is encountered we can no longer reliably match up arguments to parameters. All
remaining arguments must be residualized and unmatched parameters will be dy-
namic. This is a severe restriction that can lead to a heavy loss of static information.
In practice expression sequences are rarely used directly;j they are often used only
to build lists and sets. Therefore MapleMIX currently does not consider expression
sequences when matching up arguments to parameters.

6.2.1 Unfolding

Unfolding is a well-known program transformation which replaces a function call by
the body of the function. It is used to reduce the overhead involved in the function
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invocation mechanism, and to enable further transformations. MapleMIX performs
unfolding after a function has been specialized. Unfolding cannot be performed when
the function has been detected as being recursive, because the recursive function
is currently in the process of being specialized. There are several concerns when
unfolding a function body, these concerns will be outlined in the following paragraphs.

Local variable names of the unfolded function may clash with variables defined in the
calling function. This is solved by consistently renaming the local variables of the
unfolded function to new unique names.

The function may use returns, which will not have the same meaning when the body is
unfolded. This is solved in most cases by transforming the body of the function in such
a way as to remove the need for returns. We shall call the result of this transformation
return normal form. The transformation works by scanning a code block starting at
the top. When a return is encountered all the code in the statement sequence below
the return is discarded. When an if-statement is encountered any code below it is
removed and copied into the bottom of both branches of the if. Each branch of the
if is then processed recursively. In the resulting code all returns may be removed
because they are no longer necessary. There are some cases when this transformation
is not possible, for example when a return exists within a dynamic loop. If this
transformation cannot be performed then the function will not be unfolded.

Dynamic parameters must be replaced by their corresponding argument expressions.
It is not sufficient to simply substitute each occurrence of a parameter by its corre-
sponding expression. In the case that a parameter name appears multiple times in
the body of the specialized function the expression would be duplicated. Code dupli-
cation is not the concern here but rather computation duplication which defeats the
purpose of partial evaluation as an optimizing transformation. Instead a technique
known as let-insertion is used to avoid duplication [16]. An assignment statement for
each argument expression is generated which binds the expression to a new variable
name. The parameter is then substituted by this name (it would have to be renamed
anyway). In the case where an argument expression is just a simple variable then the
substitution can be performed directly as there is no risk of computation duplication.

Use of the args and nargs keywords must be removed, because, like return, they will
no longer have the same meaning when the function is unfolded. The solution is to
generate a new name for args, bind the entire argument expression sequence to this
name and then substitute all occurrences of the keyword with the name. If nargs is
dynamic then again a new name is generated for the purpose of substitution and this
name is bound to the expression nops([ name-of-args ]) where name-of-args is
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the new name generated for args. These assignments are only generated if the args

or nargs keywords are used in the body of the function. Since unfolding occurs after
specialization the use of these keywords may have been specialized away. Consider
the following example:

f := proc (x , y )
g (x , y ) ;

end proc ;

g := proc ( )
args [ 1 ] + args [ 2 ] ;

end proc ;

Partial evaluation of the f function produces:

proc (x , y ) local args1 ;
args1 := x , y ;
args1 [ 1 ] + args1 [ 2 ]

end proc

The function call may be on the right side of an assignment statement. In this case
the name on the left side must be bound to the correct value when the function
is unfolded. Transforming the function into return normal form facilitates another
simple transformation. Implicit returns are simply standalone expressions at the
bottom of statement sequences. Each of theses expressions is simply replaced with
an assignment statement.

6.2.2 Higher-Order Functions and Closures

All functions in Maple are first-class citizens, they are just values assigned to names.
This is apparent from the Maple syntax for procedure declaration which consists of
an assignment statement of an expression that evaluates to a procedure. When any
non-intrinsic function application is encountered the reducer is first called on the
name of the applied function. The reducer will attempt to return the function as a
static value which may have been retrieved from either the core library or the online
environment. The function is then converted to M-from and specialization takes place
as described above.

If a function was retrieved from the online environment then it likely has a closure.
As described in the chapter on expression reduction, all lexical locals of the func-
tion are replaced with thunks that call into the closure environment to retrieve the
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corresponding static value. These thunks contain references to the function’s closure
environment which keep it from being garbage collected after it has been popped from
the call stack. When there are no longer any references to the function it will be avail-
able for garbage collection along with its closure environment. This scheme works
similar to a common simple approach to implementing closures in an interpreter [3].

6.3 If Statements and the Online Environment

M-form has a very simple if statement that consists of a conditional expression and
two statement sequence branches. Partial evaluation is done by fist reducing the
conditional expression. If it statically reduces to a boolean value then the appropriate
branch is simply fed to the statement sequence specializer. The much more interesting
case is when the conditional reduces to a dynamic expression. The partial evaluator
does not know which branch to follow so it must follow both.

Handling of if statements is very different than handling if expressions in partial eval-
uation of expression oriented languages. In particular there are two main challenges.
First, each branch must be able to mutate the environment independently leading
to the creation of two likely different environments. This can be done by copying
the environment [1, 13]. However, for efficiency reasons we do not wish to create
two environments by copying (all or part of) the initial environment. We also wish
to have a solution that scales to handling nested if statements in a straightforward
manner. Second, code that is below the if statement must be handled correctly. This
code may have to be specialized with respect to two different environments. We have
implemented the online environment specifically with these two challenges in mind.

Our solution is to implement each online environment as a stack of variable bindings.
We shall call each element of this stack a setting. The stack will grow with each
branch of a dynamic conditional. Any modifications to the environment are recorded
in the topmost setting. An environment lookup initiates a linear search for the binding
starting with the topmost setting and working downwards. Thus a binding in a setting
will override any bindings of the same name in settings below it in the stack. Each
setting maintains a dynamic mask to represent static variables that become dynamic.
After the first branch of a dynamic conditional has modified the environment it can
be restored to the state before the stack was grown by simply popping the stack
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6.3.1 DAG Form

Specialization of a dynamic if statement requires that all the code that could execute
after the if statement be specialized with respect to each branch. In order to facilitate
this, M-form will be further translated before specialization into a DAG (Directed
Acyclic Graph) representation. A pointer is added to the bottom of each branch that
will point to the code that comes below the if statement. The code that comes below
is then removed from its original location. The transformation is then performed
recursively on each branch. The result is a DAG representation in which all code
that can be executed after a branch of an if statement can be easily visited by simply
following pointers. The DAG form of the following example can be found in figure
6.1.

if B1 then
    if B2 then
        x := 1;

    else
        x := 2;

    end if;
    
else
    x := 3;

end if

   x := x * 10;

print(x);

if B1 then
    if B2 then
        x := 1;
    else
        x := 2;
    end if;
    x := x * 10;
else
    x := 3;
end if
print(x);

Figure 6.1: DAG form

6.3.2 Dynamic Conditional Specialization Algorithm

Let us begin by describing the high level idea of the specialization algorithm for if
statements using the online environment. Each branch of the if statement must be
specialized one at a time. Specialization of the first branch begins with growing
the stack by pushing a new empty setting. All effects of the statements in the first
branch are recorded in this topmost setting. Simply popping the stack restores the
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environment to the state it was in before specializing the first branch. The stack
is then grown again and the second branch is specialized with respect to the initial
environment. Also, we can now easily compare the effects of each branch by comparing
the top settings created by each branch. We will now describe the algorithm again,
this time in more detail with regard to code of the following form:

i f B then
C1

else
C2

end i f ;
S

First B is reduced; if it is dynamic then the following process is initiated. The
environment is grown and C1 is specialized. If C1 does not end with a return or
error statement, then the environment is grown once more and S is specialized; this
produces a version of S, which we shall call S1, that is specialized with respect to
the environment created by C1. The environment is popped twice, once to remove
the effects of S1 and second to remove the effects of C1; however, the setting created
by C1 is saved. Specialization of C2 can now take place in the initial environment
which is grown again with a new empty setting. After C2 is specialized, an important
point is reached: the setting produced by C1 is compared to the setting produced by
C2. If they are the same, then S1 is simply residualized below the if statement, and
specialization of the if statement terminates. The following code will be output:

i f B’ then
C1 ’

else
C2 ’

end i f ;
S1

If the two settings are different then another version of S, called S2, is specialized
in the current environment (there is no need to grow the environment again for this
version of S). The two versions of S are residualized by inserting S1 into the first
branch below C1 and similarly for S2 and the second branch.

i f B’ then
C1 ’ ;
S1

else
C2 ’ ;
S2

end i f ;
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Special care is taken to not unnecessarily specialize S in the case that C1 or C2 ends
with a return or error statement. Duplication of S is avoided in situations where
execution of either branch would both effect the environment in the same way. This
is common with error checking code where the body of the if simply has an error
statement. In the situation where each branch produces a different state we get two
specialized versions of S, which results in a high level of polyvariance. The DAG form
ensures that no code is specialized in an invalid environment. An example of the
results of this algorithm can be seen in figure 6.2.

Original Code Specialized Code

p := proc ( . . . ) local x ;
i f <dynamic> then

i f <dynamic> then
x := 1 ;
p r i n t ( x ) ;

else
x := 2 ;

end i f ;
p r i n t ( x ∗10 ) ;

else
x := 3 ;

end i f ;
p r i n t ( x ∗100) ;

end proc :

ps := proc ( . . . )
i f <dynamic> then

i f <dynamic> then
pr in t ( 1 ) ;
p r i n t ( 1 0 ) ;
p r i n t (100)

else
pr in t ( 2 0 ) ;
p r i n t (200)

end i f
else

pr in t (300)
end i f

end proc

Figure 6.2: Example of if statement specialization

6.3.3 Comparison with Merging Environments Approach

A natural approach to specializing if statements is by merging environments [13].
The initial environment is duplicated by copying it, then each branch of the dynamic
conditional is specialized. The two environments are then merged at the end in such
a way that only commonalities between the two environments are preserved. For
example consider the following code:

i f <dynamic> then
x := 1 ;

else
x := 2 ;

end i f ;



6. Statement Specialization and the Online Environment 60

The two specialization environments will record different values for x . The merged
environment would then store as much static data as possible such as type, shape or
a set of values. In our example we could store that x is a positive integer or that it
may have a value from the set {1, 2}. This way certain expressions involving x may
still be static such as type(x, integer) or x < 5, while others may be dynamic such
as x > 1. This approach discards static data by making approximations, which may
lead to an unsatisfactory level of specialization. Furthermore the merging process
may be complex, environments are copied and the reducer is more complicated. Our
approach does not make approximations and it never copies environments. However
our approach may result in overspecialization in that the differences between the code
specialized in each branch may be minimal.

6.3.4 Comparison with Offline Methods

Binding Time Analysis is essentially a worst case analysis. The dynamic binding time
takes precedence over static. As a result the dynamic binding time tends to propagate
through the program creating a snowball effect. The same is mostly true for online
methods as well. However in an online imperative setting it is possible for a variable
to change binding time. For example it is possible for a static variable to become
dynamic due to assignment to a dynamic expression or assignment within a dynamic
context. Any expressions involving that variable will also be dynamic causing the
snowball effect. However with our online partial evaluator that is written in a similar
way to an interpreter it is possible for a dynamic variable to become static (however
unlikely it may be to find code that does this).

x := <dynamic>;
. . .
x := 5 ;

In this example the last line causes x to be bound to the static value 5 in the online
environment, regardless of the fact that x was dynamic before.

6.3.5 Dynamic Masking

It is possible for a variable to change binding time in a particular setting; however,
when the setting is popped, the binding time of the variable in the previous setting
must be restored. Special care must be taken when a variable becomes dynamic in
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the top setting. This is done by storing a dynamic mask in each setting which is
simply a set of names. When an environment lookup is requested the search stops
when the binding is found or the variable is found in a dynamic mask. Consider
partially evaluating the following Maple code fragment:

1 p := proc (d) local x ;
2 x := 1 ;
3 i f d < 100 then
4 x := x + d ;
5 else
6 x := x + 1 ;
7 end i f ;
8 pr in t ( x ) ;
9 end proc ;

After line 2 the environment will consist of a single setting with the binding for x
(the assignment is removed because it is static). At this point the environment looks
like:

[x=1]
{}

The environment is grown for the first branch of the dynamic conditional. The bottom
setting of the environment contains the binding x = 1 therefore the expression x + d
on line 4 reduces to 1 + d . The assignment is residualized and x is added to the
dynamic mask in the topmost setting. Now the environment has the two settings:

[]
{x}

[x=1]
{}

Then the code below the if statement is processed, the argument expression to print is
dynamic and the print statement is saved for residualization. Then the setting stack
is popped back to its original state. The topmost setting that existed after line 3 is
saved and the stack is grown again. The else branch is processed, here the expression
x + 1 is static, the binding is stored in the topmost setting and the assignment is
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removed.

[x=2]
{}

[x=1]
{}

Then the topmost setting is compared with the setting that was previously saved.
They are different and so the print statement is specialized again, this time the
argument is reduced to the static value 2. The resulting code is:

p s := proc (d) local x ;
i f d < 100 then

x := 1 + d ;
p r i n t ( x ) ;

else
pr in t ( 2 ) ;

end i f ;
end proc ;

6.3.6 Tables

MapleMIX fully supports tables as a partially static data-type. Meaning that some
elements of a table may be static while others are dynamic. Also tables require special
treatment because a variable of type table is actually a reference to a table. Therefore
it is possible for a function to be side-effecting through its input parameters. Support
for tables is implemented as an extension to the design of the online environment.
The environment will provide as part of its interface methods for manipulating regular
variables and separate methods for manipulating table elements.

Each environment consists of a stack of settings. Bindings for tables will be kept
separate from bindings for regular values. The idea for handling tables is to be able
to represent only part of a table in one particular setting. The complete table may be
rebuilt by starting at the top of the stack and working downwards. The environment
provides methods for directly querying and retrieving the elements of specific table
indices. The point is to avoid traversal or rebuilding of the entire table when possible.
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Each setting is implemented as a Maple record with the following fields:

• vals :: name → value
Maps (binds) names to regular values.

• dyn :: name → dynamic
Maps names to dynamic representations.

• mask :: set(name)
The dynamic mask for regular values, a set of names.

• tbls :: name → section
Maps a name to a section of a partially static table. Each section is itself
represented as a record that consists of the following fields. It is possible for
more than one name to be mapped to the same section.

– elts :: index → value or section
Maps indices to table elements. Dynamic masking of indices is imple-
mented by mapping the index to the special value DYN. Nested tables are
implemented by mapping an index to a section of the nested table.

– link :: section
Pointer to the next section of the table below the current section in the
stack. Its purpose is to avoid checking every setting on the stack for the
sections of a table. This link makes it easier to traverse all the sections
that make up the table as only the first section has to be searched for,
then all the other sections may be easily accessed in order by following the
links. Traversal of the links stops when the link is NULL.

– dynCount :: integer
Maintains a count of the number of dynamic elements in a section of the
table. When this value is 0 then the section is completely static. The
reducer may query the environment for the binding time of a table, if
the overall dynamic count of the table is greater than 0 then the reducer
returns the binding time of Both. If the count is 0 then the reducer knows
to return the binding time of Static.

An example of the results of this approach can be found in figure 6.3.

As explained above dynamic masking is implemented for table indices by mapping an
index to the special value DYN. A table index is dynamically masked when the spe-
cializer encounters a dynamic assignment to that table index. Therefore the value of
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Original Code Specialized Code

p := proc (d)
t [ 1 ] := ”a ” ;
i f <dynamic> then

i f <dynamic> then
t [ 1 ] := d ;
t [ 2 ] := d ;

else
t [ 2 ] := ”b ” ;

end i f ;
else

t [ 1 ] := ”A” ;
t [ 2 ] := ”B” ;

end i f ;
t [ 1 ] , t [ 2 ] ;

end proc :

ps := proc (d) local t ;
i f <dynamic> then

i f <dynamic> then
t [ 1 ] := d ;
t [ 2 ] := d ;
t [ 1 ] , t [ 2 ]

else
”a ” , ”b”

end i f
else

”A” , ”B”
end i f

end proc

Figure 6.3: Example of tables

the table index is unknown, however it is statically known that the index carries some
run-time value. A call to the assigned function, which is used to test if mappings
exist in a table, can be statically known to be true when the index is dynamically
masked.

6.4 Other Statements

For the remaining statement forms we will now discuss how they are handled by the
specializer. The addition of syntactic forms in M-form make it easier to identify the
required statement specialization strategy using simple case analysis.

6.4.1 Assignments

M-form provides four types of assignment: MAssign, MAssignTableIndex, MAssign-
ToTable and MAssignToFunction. We shall discuss each one in turn.
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MAssign. Simple assignments are relatively easy to handle. The expression on the
right side is reduced and depending on the binding time of the result one of three
actions is taken:

• Static. The environment is updated with the new binding, No code is residu-
alized.

• Dynamic. An assignment to the reduced expression is residualized. If possible
the dynamic representation returned by the reducer is added to the environment.

• Both. This means the expression reduced to a partially static table. The en-
vironment is updated with a new binding. However an assignment statement
must still be residualized so that the dynamic parts of the table may be prop-
agated through the residual program. Consider the partial evaluation of the
following example:

1 p := proc (d) local t , s ;
2 t [ 1 ] := 100 ;
3 t [ 2 ] := d ;
4 s := t ;
5 return [ s [ 1 ] , s [ 2 ] ] ;
6 end proc ;

The assignment on line 3 to t[2] is residualized because the expression is dy-
namic. The assignment on line 4 is also residualized because the expression is a
partially static table. In the residual program the dynamic part of t is assigned
to s and so the expression s[2] will have a value when the residual program is
run.

p s := proc (d) local t , s ;
t [ 2 ] := d ;
s := t ;
return [ 1 00 , s [ 2 ] ]

end proc

The left side of the assignment must be a single name, multiple assignment is not sup-
ported. The name will be identifiable syntactically except when name concatenation
is used. In this case the reducer is called to evaluate the concatenation.

MAssignTableIndex. This is an assignment statement to an indexed name. Treated
similarly to MAssign except the index expression is also reduced and special action
is taken when dynamic. If the index expression is dynamic then the assignment is
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residualized regardless of the binding time of the target expression. Since it is not
known which table index was affected, the entire table must be treated as dynamic
from this point forward, and so the name is added to the dynamic mask. If the index
expression is static then the assignment is treated in a similar way to MAssign.

MAssignToTable. This syntactic form is the result of the elimination of multiple
table indexes on the left side of assignments in conjunction with the need to support
Maple’s implicit table creation feature. It is known that the expression is a table
lookup that itself must evaluate to a table (the result of tables of tables). If the
expression is not assigned then that table index is bound to an empty table. The
assignment is then treated the same as MAssign.

MAssignToFunction. The right side of the assignment is a function call that will
be specialized. It is possible for the function to evaluate completely, resulting in the
body being a single static return statement. If this is the case then the unfolding
transformation will produce an assignment statement to a static expression. This
will be detected and the environment will be updated by binding the name to the
static value. The specialized function is discarded and no code is residualized.

6.4.2 Statement Sequences

A sequence of statements is partially evaluated by processing each statement in turn
while collecting the residual statements into a new residual statement sequence (that
may be empty). A statement sequence will not contain any code below an if-statement
because of the conversion to DAG form. Any statements that occur beneath a re-
turn or error statement are ignored. Once all the residual code for the sequence is
collected any useless standalone expressions are removed and the resulting sequence
is embedded in the residual program.

6.4.3 Return Statements

Return statements are always residualized. It is up to the unfolding transformation
to remove them or replace them with assignment statements. As described above, if
unfolding produces a single static assignment statement then it is removed and the
environment is updated.
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6.4.4 Try/Catch

All of the control flow constructs discussed until this point have involved intrapro-
cedural control flow, meaning control flow is only transferred within the body of the
enclosing procedure. The exception handling mechanism is particularly difficult to
handle because it involves interprocedural control flow. During normal execution an
exception may trigger a jump into the body of another procedure on the call stack at
a point other than the function call that was currently being executed.

MapleMIX does support try/catch statements but in a conservative and restricted
way. Specialization begins by calling the partial evaluator on the statement sequence
inside the try block. However it is not possible to specialize the code within the catch
block with respect to the environment generated by the try block. This is because it is
unknown at specialization time which of the residual statements within the try block
will throw an exception. Therefore it is unknown what the state of the environment
will be when the catch block executes (and furthermore it is unknown which catch
block will execute). Therefore specialization of catch blocks is allowed but only if the
catch blocks do not contain any environment lookups, meaning they cannot contain
any variable names. This is a severe restriction although in practice it is sometimes
the case that a catch block simply contains a statement that prints a hard-coded
message, this will be supported.

If a static exception occurs during specialization of the try block we still cannot
reliably specialize the catch blocks. This is because residual code may have been
generated before the exception occurred and at runtime it may be that residual code
that generates an exception. If a static exception does occur during specialization
at any point it is considered an error and specialization is aborted. Furthermore
since the execution path of a try/catch cannot be reliably known, any code below the
try/catch cannot be reliably specialized.

The specialization algorithm for try/catch proceeds as follows.

• Specialize the try block with respect to the current environment.

• If the try block reduces to an empty statement sequence then simply remove
the entire try/catch, the specialization process continues as normal. Thus a
completely static try/catch where no exception is thrown in the try is processed
as it would be during normal execution.

• If any residual code was generated for the try then check if there is any code
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below the try/catch, if there is abort specialization.

• Specialize each catch block and the finally block with respect to a null environ-
ment. If any construct is encountered that either reads from or writes to the
environment then abort specialization.

6.5 Loops

When all the expression clauses of a for loop definition are static then the loop may
be unrolled. Fortunately, in Maple for loops are guaranteed to terminate, but only
if the body of the loop does not contain an assignment to the loop index variable.
Furthermore, if the body of the loop were to contain a dynamic assignment to the
loop index then the entire loop would effectively become dynamic. Since MapleMIX
is online it needs to be able to fully determine if a loop is static or dynamic before
it decides to unroll the loop. For these two reasons assignment to the loop index is
currently not supported by MapleMIX 1.

6.5.1 Static For Loops

An interesting challenge arises when we consider the case of dynamic conditionals
within a static loop. Our if-statement specialization algorithm relies on the ability
of the specializer to have access to the entire execution path that could occur after
a dynamic if statement, so that this path may be specialized with respect to both
branches. When a conditional is inside a loop then the execution path includes all
of the subsequent iterations of the loop. A dynamic conditional will essentially cause
the path of computations to split. The implementation of the online environment
makes it easy and efficient for the specializer to explore every possible computation
path, and to easily “back up” when the end of a path is reached.

Our solution to allow the computation path of a loop to split is to use a novel on-
the-fly syntax transformation technique. When a static for loop is encountered it is
removed and replaced with a set of loop drivers. The loop drivers are placed at the
end of each DAG path in the body of the loop. The loop index variable is then set to
its initial value in the environment and the newly transformed loop body is given to

1Such code is generally considered bad style anyway.
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the statement sequence specializer. In order to illustrate our solution the following
example will be used.

p := proc (d) local x ;
x := 1 ;
for i from 1 to 2 do

i f d then
x := x + 1 ;

else
x := x + 2 ;

end i f ;
end do ;
p r i n t ( x ) ;

end proc

if d then
    x := x + 1;
    MForFromDriver(   ,   , i, 1, 2, true)
else
    x := x + 2;
    MForFromDriver(    ,   , i, 1, 2, true)
end if;

print(x);

Figure 6.4: Loop Drivers

Loop drivers come in two forms: MForFromDriver and MForInDriver. Here we will
concentrate on MForFromDriver; MForInDriver works in a similar way. The example
will be transformed to look like figure 6.4. MForFromDriver consists of the following:

• A pointer to the top of the loop body.

• A pointer to the code that comes after the loop.

• The name of the loop index variable.

• The by value of the loop.
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• The to value of the loop, the termination value.

• The while condition.

A loop driver acts like a conditional GOTO. When it is encountered the specializer
updates the loop index variable, then tests its new value against the termination value.
If the termination condition fails then the first pointer is taken; if it succeeds the
second pointer is taken. The value of the loop variable is retained in the environment
after the loop has been fully unrolled. If the loop bounds are such that the loop will
never iterate, then the result is that the entire loop is eliminated. If a while condition
exists, it is checked on each iteration; if it evaluates to false at any point then the
unrolling is stopped. The while condition must always be statically reducible to a
boolean value. If at any point it is dynamic an error is issued and specialization is
aborted. MapleMIX currently does not support partial unrolling of a loop.

The result is that the context of the loop is propagated into each computation path
in the body of the loop. The computation path may continue to split several times as
long as there are dynamic conditionals. The advantages to this approach are a high
level of specialization and the lack of any need to merge environments. The main
disadvantage is a possible exponential blowup in the size of the computation tree.
See figure 6.5 for an example of the results of this approach.

Original Code Specialized Code

p := proc (d) local x ;
x := 1 ;
for i from 1 to 2 do

i f d then
x := x + 1 ;

else
x := x + 2 ;

end i f ;
end do ;
p r i n t ( x ) ;

end proc

ps := proc (d)
i f d then

i f d then
pr in t (3 )

else
pr in t (4 )

end i f
else

i f d then
pr in t (4 )

else
pr in t (5 )

end i f
end i f ;

end proc

Figure 6.5: Example of dynamic conditional in static loop
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6.5.2 Dynamic Loops

Dynamic loops pose a significant challenge to specialization. Since it is unknown how
many times a dynamic loop will iterate, it must always be residualized. It would
be unsound to partially evaluate the body of the loop with respect to the current
environment. The problem is that the loop may contain a static assignment, however
the fact that the assignment may be performed an unknown number of times makes
the assignment dynamic.

Partial evaluators for other imperative languages take novel and highly complicated
approaches to analyzing dynamic loop bodies. For example the MATLAB partial
evaluator performs an iterative data-flow analysis involving abstract interpretation
[13]. MapleMIX takes a highly conservative approach to specialization of dynamic
loops. A simple syntactic analysis is done on the body of the loop in order to detect
many cases that are unsupported. However our approach is simple to implement and
still works for many real-world situations. The following situations are considered:

• Any assignment statement would effectively cause the target variable of the
assignment to be dynamic. If a target variable is already dynamic then there is
no problem. If a target variable is currently static then its value must be made
available to the residual program before the loop executes. Its value is then
removed from the environment and it becomes dynamic. Thus, only statically
invariant values are maintained in the environment.

• The entire body of the loop must be analyzed. If a function call exists within
the loop then the body of the function would also have to be analyzed for
statements that affect global state. Furthermore any function calls within its
body would have to be further analyzed. Besides being highly inefficient this
approach would lead to termination problems when a dynamic loop contained a
call to a recursive procedure. For these practical reasons non-intrinsic function
calls are currently not allowed within dynamic loops.

Consider an iterative version of the power function.

i terpow := proc (x , n) local temp , i ;
temp := 1 ;
for i from 1 to n do

temp := temp ∗ x ;
end do ;
return temp ;

end proc :
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When specialized with respect to n = 5 the loop is static and is unrolled a fixed
number of times. (Again the first assignment statement is to the expression x ∗ 1 but
was simplified to x by the automatic simplifier.)

i t e rpow x := proc ( x ) local temp1 ;
temp1 := x ;
temp1 := temp1 ∗ x ;
temp1 := temp1 ∗ x ;
temp1 := temp1 ∗ x ;
temp1 := temp1 ∗ x ;
temp1

end proc

When specialized with respect to x = 5 the results are quite different. The loop is
now dynamic because the value of n is unknown. The first assignment to temp is
initially removed by the specializer. Then when the loop body is analyzed it becomes
known that the static value of the temp variable is needed and so a new assignment
statement is generated and inserted before the loop.

i t e rpow n := proc (n) local temp1 , i 1 ;
temp1 := 1 ;
for i 1 to n do

temp1 := 5 ∗ temp1
end do ;
temp1

end proc

While loops are treated in a similar manner to for loops except unrolling will never
occur. Therefore all while loops are treated in the same manner as dynamic for loops.

6.6 Static Data and Lifting

Sometimes a static value must be embedded within a dynamic context, this process
is known as lifting. Traditionally this is done by inserting a textual representation of
the value within the residual program. This is easily achieved for simple types such
as integers and strings but for more complex types lifting may be difficult or even
not possible [13]. Structured types may be difficult to rebuild, and may not have a
representation that can occur on one line.

Fortunately it is possible for MapleMIX to sidestep the problem of lifting static data
in most situations. MapleMIX does not generate residual code as text, instead it
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generates an inert form representation that is converted by Maple itself directly into
an active (executable) internal representation. Inert form provides a very handy
construct Inert VERBATIM for embedding any Maple value within it.

> FromInert (
Inert SUM ( Inert POWER( Inert NAME(”x ”) , Inert INTPOS (2 ) ) ,

Inert INTNEG ( 5 ) ) ) ;

xˆ2 − 5

> FromInert ( Inert SUM ( Inert VERBATIM(x ˆ2) , Inert VERBATIM( −5)) ) ;

xˆ2 − 5

All static data is represented in M-form by wrapping it in an MStatic constructor.
The FromM translator will translate MStatic directly to Inert VERBATIM, making
the embedding of static data in the residual program an extremely simple operation.
Complex types such as static tables are simply embedded directly into the residual
program. Thus it may not be possible to tell the static values of the table by looking
at the printed representation of the residual program. Dynamic terms may contain
static subterms as the result of reduction.

> x := M:−FromM(MStatic (” He l lo ” ) ) ;

x := Inert VERBATIM(” He l lo ”)

> FromInert ( x ) ;
” He l lo ”

> t b l := tab l e ( [ 1 = ”a ” , 2 = ”b ” ] ) :
> vbtm := M:−FromM(MStatic ( t b l ) ) ;

Inert VERBATIM( tb l )

> t := FromInert (vbtm ) ;
t := tb l

> t [ 1 ] ;
”a”

>m := MProc(MParamSeq(MParamSpec(”x” , MType( ) , MDefault ( ) ) ) ,
MLocalSeq ( ) , MOptionSeq ( ) , MExpSeq ( ) ,
MStatSeq ( MStandaloneExpr ( MTableref (MStatic ( t b l ) , MParam(”x ” ) ) ) ) ,
MDescriptionSeq ( ) , MGlobalSeq ( ) , MLexicalSeq ( ) ,
MEop(MExpSeq(MInt ( 1 ) ) ) , MFlags (MArgsFlag (UNKNOWN) ,
MNargsFlag (UNKNOWN)) , MKeywords ( ) ) :
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> p := FromInert (M:−FromM(m) ) ;

p := proc ( x ) tb l [ x ] end proc ;

> p ( 1 ) ;
”a”

Partially static tables must still be lifted in the sense that their static parts will have
been removed completely from residual programs. If an entire table need be embedded
in the residual program the static part must be rebuilt. This is done by generating
a sequence of assignment statements that will rebuild the table at the point where it
must be residualized.

6.7 Summary

MapleMIX uses highly online strategies when specializing statements. As Maple is
an imperative language, side-effects and global variables must be taken into account.
Side-effects are respected by following a depth-first specialization strategy. Func-
tion sharing is used to provide better termination properties in the face of recursion.
The online environment has been designed with the depth-first strategy and dynamic
conditionals in mind. Transformation to DAG form and a novel approach to treating
static loops by performing on-the-fly syntax transformations allows precise specializa-
tion without the need to discard static information or merge environments. Dynamic
loops however are currently not treated in a precise way. In the next chapter we will
take a look at the results of larger examples.



Chapter 7

Results

In this chapter the effectiveness of MapleMIX will be evaluated based on several
examples. The input programs have been created specifically to demonstrate the
capabilities of MapleMIX based on a wide range of criteria. Furthermore we will show
how partial evaluation is an effective technique for solving the so called specialization
problem that is found in all Computer Algebra Systems.

7.1 Quicksort

Parameterization allows the creation of generic code that can have its behavior con-
trolled by functional parameters. Despite obvious advantages to parameterization
there is usually a major disadvantage, reduced efficiency. PE allows one to write
generic code and have specialized versions generated automatically. Here we present
an example of a parameterized in-place quicksort algorithm found in listing 7.1. It
has been written with extensibility, reusability and readability in mind. Two design
decisions have been abstracted as functional parameters. First the choice of pivot,
which effects the complexity properties of the algorithm. Second the choice of com-
parison function. This allows sorting behavior to be customized (for example the
code can be used to sort ascending or descending) as well as providing extensibility
as new comparison function can be provided for user defined data-types.

75
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Listing 7.1: In-place QuickSort

1 swap := proc (A, x , y ) local temp ;
2 temp := A[ x ] ;
3 A[ x ] := A[ y ] ;
4 A[ y ] := temp ;
5 end proc :
6

7 pa r t i t i o n := proc (A, m, n , pivot , compare )
8 local pivotIndex , pivotValue , s tore Index , i , temp ;
9 pivotIndex := pivot (A, m, n ) ;

10 pivotValue := A[ p ivotIndex ] ;
11 swap (A, pivotIndex , n ) ;
12 s to r e Index := m;
13 for i from m to n−1 do
14 i f compare (A[ i ] , p ivotValue ) then
15 swap (A, store Index , i ) ;
16 s to r e Index := sto re Index + 1 ;
17 end i f ;
18 end do ;
19 swap (A, n , s to r e Index ) ;
20 return s to r e Index ;
21 end proc :
22

23 qu i ck so r t := proc (A, m, n , pivot , compare ) local p ;
24 i f m < n then
25 p := pa r t i t i o n (A, m, n , pivot , compare ) ;
26 qu i ck so r t (A, m, p−1, pivot , compare ) ;
27 qu i ck so r t (A, p+1, n , pivot , compare ) ;
28 end i f ;
29 end proc :

Listing 7.2 shows a function qs1 which calls the quicksort function with the following
functional parameters:

• A pivot function that returns the index of the last element of the section of the
array that is being sorted.

• Maple’s own built-in ‘<=‘ function for use as a compare function.

Listing 7.2: Sorting ascending with pivot last element

1 qs1 := proc (A, m, n) local p , c ;
2 p := (A, m, n) −> n ;
3 c := ‘<=‘;
4 qu i ck so r t (A, m, n , p , c )
5 end proc :
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Listing 7.3 shows the highly specialized result of running MapleMIX on qs1.

Listing 7.3: Specialized QuickSort

1 qu i c k s o r t 1 := proc (A, m, n)
2 local pivotIndex1 , pivotValue1 , temp1 ,
3 s toreIndex1 , i1 , temp2 , temp3 , p ;
4 i f m < n then
5 pivotIndex1 := n ;
6 pivotValue1 := A[ pivotIndex1 ] ;
7 temp1 := A[ pivotIndex1 ] ;
8 A[ pivotIndex1 ] := A[ n ] ;
9 A[ n ] := temp1 ;

10 s to re Index1 := m;
11 for i 1 from m to n − 1 do
12 i f A[ i 1 ] <= pivotValue1 then
13 temp2 := A[ s to re Index1 ] ;
14 A[ s to re Index1 ] := A[ i 1 ] ;
15 A[ i 1 ] := temp2 ;
16 s to re Index1 := store Index1 + 1
17 end i f
18 end do ;
19 temp3 := A[ n ] ;
20 A[ n ] := A[ s to re Index1 ] ;
21 A[ s to re Index1 ] := temp3 ;
22 p := store Index1 ;
23 qu i c k s o r t 1 (A, m, p − 1 ) ;
24 qu i c k s o r t 1 (A, p + 1 , n)
25 end i f
26 end proc

Several things are of note:

• All non-recursive function calls have been inlined, including the functional pa-
rameters which have been integrated into the specialized program at their points
of use. This is a result of MapleMIX’s aggressive approach toward function un-
folding.

• The swap function has been specialized three times and inlined in each of the
three places where it was called in the original program. This is an example of
function-point polyvariance.

• The local variables used by the various functions have been renamed to avoid
name clash.
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• MapleMIX recognized the use of a built-in function ‘<=‘ and residualized it as
an operator application (A[i1] <= pivotValue1) instead of a function appli-
cation (‘<=‘(A[i1], pivotValue1)).

• MapleMIX terminated and produced a correct result in the face of a recursive
algorithm.

Figures 7.1 and 7.2 show the results of timing tests of both the original and the spe-
cialized versions of quicksort (as given by Maple’s profile function). Each algorithm
was tested on an array of 10000 elements where each element is a random integer in
the range 1..5000. The specialized quicksort shows a huge performance gain of al-
most 500 percent, most likely due to the elimination of the overhead involved in the
function calling mechanism.

function depth calls time time% bytes bytes%
---------------------------------------------------------------------------
partition 1 7044 3.285 69.61 46494668 55.31
swap 1 90928 0.859 18.20 25116568 29.88
quicksort 32 14089 0.575 12.18 12445516 14.81
qs1 1 1 0.000 0.00 716 0.00
---------------------------------------------------------------------------
total: 35 112062 4.719 100.00 84057468 100.00

Figure 7.1: Timing results for generic quicksort qs1

function depth calls time time% bytes bytes%
---------------------------------------------------------------------------
quicksort_1 32 14185 0.953 100.00 23724852 100.00
---------------------------------------------------------------------------
total: 32 14185 0.953 100.00 23724852 100.00

Figure 7.2: Timing results for specialized quicksort 1

To further illustrate the ability to produce many specialized versions of one program
we will now show the results of specializing the generic quicksort based upon a different
set of design decisions. Listing 7.4 presents a function qs2 that provides as functional
parameters:

• A more advanced pivot function. The median of the first, middle and last ele-
ment of the partition is chosen. This approach improves the average complexity
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of the quicksort algorithm 1. The use of three elements reduces the chance of a
bad choice of pivot, especially for partially sorted data. The naive pivot func-
tion used in the previous example can result in a worst case complexity of O(n2)
if the input array is already sorted. Since the true median can be computed in
O(n) time this approach improves wost case complexity to O(n log n). However
the additional overhead can be quite costly. Also notice that a nested function
middle is used to choose the median value. The middle function will be part
of the pivot function’s closure.

• Maple’s built-in greater-than function ‘>‘ as a compare function, simply for
the purpose of showing how easy it is to customize sorting behavior with this
approach.

Listing 7.4: Sort descending with mean pivot

1 qs2 := proc (A, m, n) local middle , p , c ;
2

3 middle := proc (mid , y , z )
4 (mid >= y and mid <= z ) or (mid >= z and mid <= y)
5 end proc ;
6

7 p := proc (A, m, n) local midindex , x , y , z ;
8 midindex := iquo (m+n , 2 ) ;
9 x := A[m] ;

10 y := A[ n ] ;
11 z := A[ midindex ] ;
12 i f middle (x , y , z ) then
13 m
14 e l i f middle (y , x , z ) then
15 n
16 else
17 midindex ;
18 end i f ;
19 end proc ;
20

21 c := ‘ > ‘ ;
22 qu i ck so r t (A, m, n , p , c )
23 end proc :

Again MapleMIX produces a highly specialized result as expected. Note how the
middle function has been inlined. The Maple automatic simplifier replaces the use
of > with <.

1http://en.wikipedia.org/wiki/Quicksort
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Listing 7.5: Specialized QuickSort

1 qu i c k s o r t 1 := proc (A, m, n)
2 local midindex1 , x1 , y3 , z3 , m4, pivotIndex1 , pivotValue1 ,
3 temp1 , s tore Index1 , i1 , temp2 , temp3 , p ;
4 i f m < n then
5 midindex1 := iquo (m + n , 2 ) ;
6 x1 := A[m] ;
7 y3 := A[ n ] ;
8 z3 := A[ midindex1 ] ;
9 i f y3 <= x1 and x1 <= z3 or z3 <= x1 and x1 <= y3 then

10 m4 := m
11 else
12 i f x1 <= y3 and y3 <= z3 or z3 <= y3 and y3 <= x1 then
13 m4 := n
14 else
15 m4 := midindex1
16 end i f
17 end i f ;
18 pivotIndex1 := m4;
19 pivotValue1 := A[ pivotIndex1 ] ;
20 temp1 := A[ pivotIndex1 ] ;
21 A[ pivotIndex1 ] := A[ n ] ;
22 A[ n ] := temp1 ;
23 s to re Index1 := m;
24 for i 1 from m to n − 1 do
25 i f pivotValue1 < A[ i 1 ] then
26 temp2 := A[ s to re Index1 ] ;
27 A[ s to re Index1 ] := A[ i 1 ] ;
28 A[ i 1 ] := temp2 ;
29 s to re Index1 := store Index1 + 1
30 end i f
31 end do ;
32 temp3 := A[ n ] ;
33 A[ n ] := A[ s to re Index1 ] ;
34 A[ s to re Index1 ] := temp3 ;
35 p := store Index1 ;
36 qu i c k s o r t 1 (A, m, p − 1 ) ;
37 qu i c k s o r t 1 (A, p + 1 , n)
38 end i f
39 end proc
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7.2 Complexity of Algorithms

The pow example of Chapter 3 is a classical example in partial evaluation. However
it is naive to implement powering in this way because the complexity is linear. It is
illustrative to demonstrate how the complexity of an algorithm has a direct relation
to the number of computations performed by the residual program. For example
when the simple pow example is specialized with respect to n = 72 the result has 71
multiplications. (The 72nd multiplication is a multiplication by 1 and was removed
by the Maple automatic simplifier).

Listing 7.6: Specialized pow

1 proc ( x )
2 x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗
3 x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗
4 x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗
5 x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗
6 x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗
7 x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗
8 x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗x∗x
9 end proc

Listing 7.7 shows a powering algorithm with much better complexity known as binary
powering or fast powering. Binary powering tests for the case when the exponent is
even and recursively splits the computation in half. For example x 72 will result in the
computations ((((((x 2)2)2) ∗ x )2)2)2. When the algorithm is specialized with respect
to n = 72, as shown in listing 7.8, the result contains only seven multiplications.
(Again, all multiplications by 1 are removed by the Maple automatic simplifier.) It is
easy to see that the structure of the residual program matches exactly the expected
computations.

Listing 7.7: Binary Powering

1 pow2 := proc (x , n) local y ;
2 i f n=0 then 1
3 e l i f n=1 then x
4 e l i f (n mod 2 = 0) then
5 y := pow2(x , n /2 ) ;
6 y∗y ;
7 else x∗pow2(x , n−1)
8 end i f ;
9 end proc :
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Listing 7.8: Specialized Binary Powering

1 proc ( x ) local y1 , y2 , y3 , y4 , y5 , y6 ;
2 y1 := x ;
3 y2 := y1 ∗ y1 ;
4 y3 := y2 ∗ y2 ;
5 y4 := x ∗ y3 ∗ y3 ;
6 y5 := y4 ∗ y4 ;
7 y6 := y5 ∗ y5 ;
8 y6 ∗ y6
9 end proc

7.3 Residual Theorems in Computer Algebra

Here we present three examples of using partial evaluation as an approach to solving
parametric problems in Computer Algebra Systems. We use PE to derive residual
theorems from symbolic computation code written in Maple.

7.3.1 Degree

All Computer Algebra Systems (CAS) use generic solutions in their approach to
certain problems. For example when asked degree(a*x∧2 + b*x + c) Maple will
respond with 2 as an answer. However this answer ignores the case where a = 0. If
that expression is viewed as a polynomial in the Domain Z[a, b, c][x ], then Maple’s
answer is indeed correct. If instead one were to view it as a parametric polynomial in
Z[x ] with parameters a, b, c ∈ Z, this becomes a so-called generic solution, in other
words, correct except on a set of co-dimension at least 1. Interestingly enough this is
termed the specialization problem [4], and is encountered in any parametric problem
in which certain side-conditions on the parameters must hold so that the answer to
the global problem is correct. In particular we are looking for precise answers of the
following form:

degree(a · x 2 + b · x + c, x ) =


2 a 6= 0

1 a = 0 ∧ b 6= 0

0 otherwise.
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In order to use partial evaluation toward this goal one must first be willing to change
the representation of answers. In our case we will use a residual program to represent
the answer to a parametric problem, as programs can be a better representation of
answers than expressions for many tasks [6]. In our program encoding of answers the
if-then-else statement will be used to represent the cases.

We will use the power of partial evaluation to extract so called residual theorems from
existing code written to provide generic solutions. The first example is of a small
program that computes the degree of a polynomial. It is safe to use Maple’s built-
in degree function because it will always return a conservative answer as explained
above.

Listing 7.9: Degree

1 c o e f f l i s t := proc (p) local d , i ;
2 d := degree (p , x ) ;
3 return [ seq ( c o e f f (p , x , d−i ) , i =0. . d ) ] ;
4 end proc :
5

6 mydegree := proc (p , v ) local l s t , i , s ;
7 l s t := c o e f f l i s t (p , v ) ;
8 s := nops ( l s t ) ;
9 for i from 1 to s do

10 i f l s t [ i ] <> 0 then
11 return s−i
12 end i f ;
13 end do ;
14 return − i n f i n i t y ;
15 end proc :

In order to use PE to extract the cases we must treat the polynomial coefficients as
dynamic variables. Here most of the structure of the polynomial is static so a large
amount of specialization is possible. Our treatment of partially static data structures
is crucial toward getting a suitable result. Listing 7.10 shows a goal function that will
be used to derive our results.

Listing 7.10: Degree goal

1 goa l := proc ( a , b , c ) local p ;
2 p := a∗xˆ2+b∗x+c ;
3 mydegree (p , x )
4 end proc ;

When called directly with symbols provided for the polynomial coefficients the goal
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function will return 2. However, when it is partially evaluated with no inputs given
the result is a residual program representation of the desired result.

Listing 7.11: Residual Theorem

1 proc ( a , b , c )
2 i f a <> 0 then 2
3 e l i f b <> 0 then 1
4 e l i f c <> 0 then 0
5 else − i n f i n i t y
6 end i f
7 end proc

We provide two more examples of MapleMIX returning a residual program answer for
different polynomials. The following examples show that statically known cases, i.e.
when the application of coeff can be statically reduced to 0, are specialized away
leaving the desired result.

Listing 7.12: Residual Theorem

1 goa l2a := proc ( a , b) local p ;
2 p := a∗xˆ17+b∗x ˆ12 ;
3 mydegree (p , x ) ;
4 end proc ;
5

6 proc ( a , b)
7 i f a <> 0 then 17
8 e l i f b <> 0 then 12
9 else − i n f i n i t y

10 end i f
11 end proc

Listing 7.13: Residual Theorem

1 goa l2c := proc ( a )
2 local p ;
3 p := (a−5)∗xˆ17+(aˆ2−1)∗xˆ12+3∗x ;
4 mydegree (p , x ) ;
5 end proc ;
6

7 proc ( a )
8 i f a − 5 <> 0 then 17
9 e l i f aˆ2 − 1 <> 0 then 12

10 else 1
11 end i f
12 end proc
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7.3.2 Gaussian Elimination

Now we move on to a more complicated example from Linear Algebra. Listing 7.14
provides a simple Maple implementation of fraction-free Gaussian Elimination for
augmented matrices represented as Maple tables.

Listing 7.14: Gaussian Elimination

1 GE := proc (AA, n , m) local B, i , j , k , r , d , s , t , rmar , pivot , i i ;
2 B := tab l e ( ) ; # make a copy
3 for i i to n do for j to m do B[ i i , j ] := AA[ i i , j ] end do end do ;
4 rmar := min (n ,m) ;
5 s := 1 ; d := 1 ; r := 1 ;
6

7 for k to min(m, rmar ) while r <= n do
8 # Search for a p ivot element . Choose the f i r s t
9 pivot := −1;

10 for i from r to n do
11 i f ( p ivot = −1) then
12 i f (B[ i , k ] <> 0) then
13 pivot := i ;
14 end i f ;
15 end i f ;
16 end do ;
17 # inte rchange row i with row r i s nece s sa ry
18 i f pivot>−1 then
19 i f pivot <> r then
20 s := −s ;
21 for j from k to m do
22 t := B[ pivot , j ] ;
23 B[ pivot , j ] := B[ r , j ] ;
24 B[ r , j ] := t
25 end do ;
26 end i f ;
27

28 for i from r+1 to n do
29 for j from k+1 to m do
30 B[ i , j ] := (B[ i , j ]∗B[ r , k]−B[ r , j ]∗B[ i , k ] ) / d ;
31 end do ;
32 B[ i , k ] := 0 ;
33 end do ;
34 d := B[ r , k ] ;
35 r := r + 1 # go to next row
36 end i f ;
37 end do ; # go to next column
38 eva l (B) ;
39 end proc :
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In order to illustrate the generation of residual theorems from this program we will
use the following matrix as a running example.

 1 −2 3 1
2 x 6 6
−1 3 x − 3 0



When the GE algorithm is used directly it produces a generic solution, however when
the special cases x = 0 and x = −4 are considered the results should be different.

generic solution

 1 −2 3 1
0 x + 4 0 4
0 0 x (x + 4) x



when x = −4

 1 −2 3 1
0 4 0 4
0 0 0 0

 when x = 0

 1 −2 3 1
0 1 −4 1
0 0 0 4



Listing 7.15 provides a goal function that will call the above gaussian elimination
algorithm on the example matrix represented as a standard Maple table.

Listing 7.15: Matrix represented as a table

1 goa l := proc ( x ) local A;
2 A := tab l e ( [
3 ( 1 , 1 ) = 1 , (1 , 2)=−2, (1 ,3)=3 , (1 ,4)=1 ,
4 ( 2 , 1 ) = 2 , (2 , 2)=x , (2 ,3)=6 , (2 ,4)=6 ,
5 ( 3 , 1 ) =−1, (3 , 2)=3 , (3 ,3)=x−3, ( 3 , 4 )=0 ] ) ;
6 GE(A, 3 , 4 ) ;
7 end proc :

In the residual program, shown in listing 7.16, the cases to consider naturally drop out
of the computations. By tracing the statements of the residual program it becomes
clear the the first if statement is testing for the case where x = −4 (which is handled
in the else branch). The inner if is testing for x (x + 4) = 0, however since the first
guard ensures that x <> −4 this is really a test for x = 0.



7. Results 87

Listing 7.16: Gaussian Elimination Result

1 g e r e s := proc ( x ) local B1 ;
2 B1 [ 2 , 2 ] := x ;
3 B1 [ 3 , 3 ] := x − 3 ;
4 B1 [ 2 , 2 ] := B1 [ 2 , 2 ] + 4 ;
5 B1 [ 3 , 3 ] := B1 [ 3 , 3 ] + 3 ;
6 i f B1 [ 2 , 2 ] <> 0 then
7 B1 [ 3 , 3 ] := B1 [ 3 , 3 ] ∗ B1 [ 2 , 2 ] ;
8 B1 [ 3 , 4 ] := B1 [ 2 , 2 ] − 4 ;
9 i f B1 [ 3 , 3 ] <> 0 then

10 B1 [ 1 , 1 ] := 1 ; B1 [ 1 , 2 ] := −2; B1 [ 1 , 3 ] := 3 ; B1 [ 1 , 4 ] := 1 ;
11 B1 [ 2 , 1 ] := 0 ; B1 [ 2 , 3 ] := 0 ; B1 [ 2 , 4 ] := 4 ;
12 B1 [ 3 , 1 ] := 0 ; B1 [ 3 , 2 ] := 0 ;
13 eva l (B1)
14 else
15 B1 [ 1 , 1 ] := 1 ; B1 [ 1 , 2 ] := −2; B1 [ 1 , 3 ] := 3 ; B1 [ 1 , 4 ] := 1 ;
16 B1 [ 2 , 1 ] := 0 ; B1 [ 2 , 3 ] := 0 ; B1 [ 2 , 4 ] := 4 ;
17 B1 [ 3 , 1 ] := 0 ; B1 [ 3 , 2 ] := 0 ; B1 [ 3 , 3 ] := 0 ;
18 eva l (B1)
19 end i f
20 else
21 B1 [ 2 , 3 ] := B1 [ 3 , 3 ] ;
22 B1 [ 1 , 1 ] := 1 ; B1 [ 1 , 2 ] := −2; B1 [ 1 , 3 ] := 3 ; B1 [ 1 , 4 ] := 1 ;
23 B1 [ 2 , 1 ] := 0 ; B1 [ 2 , 2 ] := 1 ; B1 [ 2 , 4 ] := 1 ;
24 B1 [ 3 , 1 ] := 0 ; B1 [ 3 , 2 ] := 0 ; B1 [ 3 , 3 ] := 0 ; B1 [ 3 , 4 ] := 4 ;
25 eva l (B1)
26 end i f
27 end proc

7.3.3 Symbolic Integrator

Listing 7.17 shows a bit of code that we may expect to find somewhere in a symbolic
integrator. While actual integration code tends to be more complex, we hope that
the code below is representative enough to illustrate our point. This code takes in
a polynomial represented as a list of monomials, each of which are represented as a
coefficients and a pure power. We then use a sub-function to integrate pure powers
of a variable. Note that this sub-function contains calls to two large pieces of Maple
code: ln and int itself. In the first case, we have to tell the partial evaluator to
always residualize code for ln (and thus the partial evaluator does not look at the
code, but in other situations this could result in calls to ln(1) being embedded in
the residual program). In the second case, there is nothing to do as this branch is
never taken, and thus never examined.
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Listing 7.17: Symbolic Integrator

1 int pow := proc ( i , var )
2 i f op (1 , i )=var then
3 i f op (2 , i )=−1 then ln ( var )
4 else var ˆ( op (2 , i )+1)/( op (2 , i )+1)
5 end i f
6 else
7 i n t ( i , var )
8 end i f ;
9 end proc :

10

11 int sum := proc ( l , var )
12 local res , x , i ;
13 r e s := 0 ;
14 for i from 1 to nops ( l ) do
15 x := op ( i , l ) ;
16 r e s := r e s + x [ 1 ] ∗ int pow (x [ 2 ] , var ) ;
17 end do ;
18 r e s ;
19 end proc :

Listing 7.18 provides a goal function that will call the integrator. Here a polynomial
is represented as a list of lists. Again the ability to handle partially static data is
required to derive highly specialized results.

Listing 7.18: Calling Symbolic Integrator

1 goa l := proc (n) local x ;
2 intsum ( [ [ 5 , x ˆ2 ] , [−7 , xˆn ] , [ 2 , x ˆ( −1) ] ] , x )
3 end proc

The result shows the cases we expect, with the guard case depending on whether
n = −1 or not. The call to ln has been residualized without the PE attempting to
specialize the body of ln.

Listing 7.19: Symbolic Integrator Result

1 proc (n) local m1, r e s1 ;
2 i f n = −1 then
3 m1 := ln (x )
4 else
5 m1 := xˆ(n + 1)/(n + 1)
6 end i f ;
7 r e s1 := 5 ∗ xˆ3/3 − 7 ∗ m1;
8 r e s1 + 2 ∗ ln ( x ) ;
9 end proc
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7.4 First Futamura Projection

The first Futamura projection states that compilation can be achieved given a par-
tial evaluator, an interpreter and a source program written for the interpreter. This
projection states nothing about the quality of the resulting “compiled program”, intu-
itively it is essentially the interpreter specialized to run just one program. Therefore
the compiled program will contain pieces of the interpreter, however its structure
will resemble that of the source program. Since most interpreters tend to contain a
great deal of computational overhead the compiled program is likely to be clunky and
inefficient compared to a functionally equivalent program written directly in the lan-
guage that the interpreter is written in. Running the compiled program directly will
however be more efficient than running the original source program on the interpreter.

Here we present an example of the first Futamura projection in action. The purpose
of this example is twofold, first to demonstrate an interesting property of partial eval-
uation using a concrete example, and secondly to assert the correctness of MapleMIX
using a well established acceptance criteria for partial evaluators. Listing 7.20 shows a
simple interpreter written in Maple for a minimal language consisting of if-expressions,
binary operators, function definitions, function calls and simple bindings.

Listing 7.20: Interpreter written in Maple

1 MiniMaple Interpreter := module ( ) option package ;
2 export ModuleApply ; local eva lStat , evalExpr , evalBin ;
3

4 ModuleApply := proc ( prog , input ) local defs , d ;
5 de f s := tab l e ( ) ;
6 for d in prog do de f s [ op (1 , d ) ] := d end do ;
7 eva lS ta t ( op (3 , op (1 , prog ) ) , input , d e f s ) ;
8 end proc ;
9

10 eva lS ta t := proc ( s , env , d e f s ) local h , t , c , var , e1 ;
11 h := op (0 , s ) ;
12 i f h = mmIfElse then
13 c := evalExpr ( op (1 , s ) , env , d e f s ) ;
14 i f c then eva lS ta t ( op (2 , s ) , env , d e f s ) ;
15 else eva lS ta t ( op (3 , s ) , env , d e f s ) ;
16 end i f ;
17 e l i f h = mmExpr then
18 evalExpr ( op (1 , s ) , env , d e f s ) ;
19 else error ”unknown statement form : %1”, h ;
20 end i f ;
21 end proc ;
22
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23 evalExpr := proc ( e , env , d e f s )
24 local h , e1 , e2 , o , def , ags , newEnv , param , i ;
25 h := op (0 , e ) ;
26 i f h = mmInt or h = mmString or h = mmName then
27 op (1 , e ) ;
28 e l i f h = mmVar then
29 env [ op (1 , e ) ]
30 e l i f h = mmBin then
31 o := op (1 , e ) ;
32 e1 := evalExpr ( op (2 , e ) , env , d e f s ) ;
33 e2 := evalExpr ( op (3 , e ) , env , d e f s ) ;
34 evalBin (o , e1 , e2 ) ;
35 e l i f h = mmUn then
36 o := op (1 , e ) ;
37 e1 := evalExpr ( op (2 , e ) , env , d e f s ) ;
38 evalUn (o , e1 ) ;
39 e l i f h = mmCall then
40 de f := de f s [ op (1 , e ) ] ;
41 ags := op (2 , e ) ; i := 1 ; newEnv := tab l e ( ) ;
42 for param in op (2 , de f ) do
43 newEnv [ param ] := evalExpr ( op ( i , ags ) , env , d e f s ) ;
44 i := i + 1 ;
45 end do ;
46 eva lS ta t ( op (3 , de f ) , newEnv , d e f s ) ;
47 else error ”unknown expr e s s i on form : %1”, h ;
48 end i f ;
49 end proc ;
50

51 evalBin := proc (mm, e1 , e2 )
52 i f mm = mmEq then evalb ( e1 = e2 )
53 e l i f mm = mmPlus then e1 + e2
54 e l i f mm = mmTimes then e1 ∗ e2
55 e l i f mm = mmAnd then e1 and e2
56 e l i f mm = mmOr then e1 or e2
57 else error ”unknown binary operator : %1”, mm;
58 end i f ;
59 end proc ;
60 end module :

Listing 7.21 shows the classic powering function example coded in the language of
our simple interpreter. This may seem like a simple example however the termination
properties of MapleMIX will be tested as this is a recursive program and all of the
program’s variables will be dynamic. Even this simple example uses almost all the
functionality of the interpreter (which would involve a great deal of overhead when
executed on the interpreter).
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Listing 7.21: Powering function

1 power := mmProgram(
2 mmDef(”pow” , mmParams(”x” , ”n”) ,
3 mmIfElse (mmBin(mmEq, mmVar(”n”) , mmInt ( 0 ) ) ,
4 mmExpr(mmInt ( 1 ) ) ,
5 mmExpr(
6 mmBin(mmTimes ,
7 mmVar(”x ”) ,
8 mmCall (”pow” ,
9 mmArgs(mmVar(”x ”) , mmBin(mmPlus , mmVar(”n”) , mmInt(−1)))

10 ) ) ) ) ) )

Listing 7.22 shows a goal function that calls the interpreter on the example program.
Note that the interpreter requires the program’s input to be passed as a table.

Listing 7.22: Calling interpreter on powering function

1 goa l := proc (x , n) local t ;
2 t := tab l e ( [ ” x” = x , ”n” = n ] ) ;
3 MiniMaple Interpreter ( power , t ) ;
4 end proc ;

Listing 7.23: Compiled code using interpreter and partial evaluator

1 compiled pow := module ( )
2 ModuleApply := proc (x , n) local t ;
3 t [ ” x ” ] := x ;
4 t [ ” n ” ] := n ;
5 eva lS t a t 1 ( t )
6 end proc ;
7

8 eva lS t a t 1 := proc ( env ) local e12 , c , e16 , newEnv1 , e14 , e22 ;
9 e12 := env [ ” n ” ] ;

10 c := evalb ( e12 = 0 ) ;
11 i f c then
12 1
13 else
14 e16 := env [ ” x ” ] ;
15 newEnv1 [ ” x ” ] := env [ ” x ” ] ;
16 e14 := env [ ” n ” ] ;
17 newEnv1 [ ” n ” ] := e14 − 1 ;
18 e22 := eva lS t a t 1 (newEnv1 ) ;
19 e16∗ e22
20 end i f
21 end proc
22 end module ;
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Listing 7.23 shows the compiled program that is the result of running the partial
evaluator on the interpreter and the example program. As expected pieces of the
interpreter are left over, in particular there are several residual statements that are
concerned with passing around the environment.

As a further example we provide a goal function, Listing 7.24, which provides a static
value 5 for n. The purpose is to show that compilation and specialization of the
source program can be achieved at the same time. The resulting program, shown in
Listing 7.25, computes x 5. Again the environment passing behavior of the interpreter
has been residualized.

Listing 7.24: Calling interpreter on powering function

1 goa l := proc ( x ) local t ;
2 t := tab l e ( [ ” x” = x , ”n” = 5 ] ) ;
3 MiniMaple Interpreter ( power , t ) ;
4 end proc ;

Listing 7.25: Compiled code and specialized code

1 proc ( x )
2 local t , e110 , newEnv5 , e18 , newEnv4 , e16 , newEnv3 ,
3 e14 , newEnv2 , e12 , e22 , e24 , e26 , e28 , e210 ;
4 t [ ” x ” ] := x ;
5 e110 := t [ ” x ” ] ;
6 newEnv5 [ ” x ” ] := t [ ” x ” ] ;
7 e18 := newEnv5 [ ” x ” ] ;
8 newEnv4 [ ” x ” ] := newEnv5 [ ” x ” ] ;
9 e16 := newEnv4 [ ” x ” ] ;

10 newEnv3 [ ” x ” ] := newEnv4 [ ” x ” ] ;
11 e14 := newEnv3 [ ” x ” ] ;
12 newEnv2 [ ” x ” ] := newEnv3 [ ” x ” ] ;
13 e12 := newEnv2 [ ” x ” ] ;
14 e22 := 1 ;
15 e24 := e12∗ e22 ;
16 e26 := e14∗ e24 ;
17 e28 := e16∗ e26 ;
18 e210 := e18∗ e28 ;
19 e110∗ e210
20 end proc ;
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7.5 Summary

In this chapter we have shown the effectiveness of MapleMIX on a variety of Maple
programs. We have shown how MapleMIX can be used to optimize a program that was
written in a generic way, as demonstrated by the quicksort example. Effective use of
function unfolding and constant propagation removed a great deal of the runtime cost
of the generic algorithm. The termination properties of MapleMIX were also tested
by this example, and it was shown that the simple function sharing mechanism was
enough to ensure termination in the face of a recursive quicksort procedure.

Use of partial evaluation as a means of solving the so called specialization problem
in Computer Algebra Systems has been demonstrated. We believe that PE has a
great potential to provide results in this field. Use of residual programs as answers to
parametric problems is an effective way to derive the needed results. We have shown
three examples; degree, Gaussian Elimination and an integrator that demonstrate
the effectiveness of PE as a solution. Our special treatment of partially static data
structures such as lists and polynomials was crucial to derive these results.

We have also demonstrated the power of partial evaluation to generate “compiled
programs” from interpreters. This asserts the correctness of MapleMIX. In the next
chapter we will discuss future direction for further development of MapleMIX.



Chapter 8

Future Work and Conclusions

8.1 Supported Constructs

Currently MapleMIX does not provide support for modules, while it does provide
limited support for function closures. These two constructs are very similar in their
internal representations. It should be a straightforward extension to provide limited
support for modules in a similar way as function closures. However it would be even
better to discover a new approach that is not so conservative. Currently dynamic
lexical locals are not supported. The main problem is in propagating the dynamic
context from one part of the program to another. This problem has been solved in an
offline setting using BTA to provide the specializer with prior knowledge that certain
lexical locals will be dynamic [28]. In an online setting there is no prior knowledge
of this, and so the specializer has no easy way to know that a dynamic variable will
have to be passed around the residual program. It would be a great advancement in
the area of partial evaluation to discover an elegant solution to this problem in an
online setting.

MapleMIX provides very little support for expression sequences. They hinder the
specializer in many ways. Firstly, matching up arguments expressions to parameters
in a function application becomes highly unreliable when expression sequences are
considered. Furthermore our online approach to partially static data structures would
also be hindered because we would have to consider the case where dynamic variables
within dynamic representations could be expression sequences at runtime. Expression
sequence flattening is a highly non-robust aspect of Maple in general, it is rather

94
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disappointing that the language supports this “feature” at all.

Last name evaluation (LNE) is also a problem. Special care must be taken so that raw
values that are subject to LNE rules do not pick up a name from within the partial
evaluator. This has provided a great source of difficulty while writing MapleMIX.
This is also considered to be a rather dubious feature of the Maple language, and like
expression sequences, only gets in the way of partial evaluation.

Maple is a very large language. Adding support for additional language features to
MapleMIX would naturally extend its scope of application. Currently MapleMIX
does not work reliably on certain sections of the Maple core library, mostly due to
the use of modules and problems with LNE. If these problems were to be solved the
scope of MapleMIX would be dramatically improved.

The try/catch construct currently has very limited support. This is a very difficult
to handle construct because it involves interprocedural control flow. It is possible to
add better static support for exceptions. Currently MapleMIX maintains a call stack
of functions in the process of specialization. If a static exception were to occur under
the right circumstances then it may be possible to search the stack for an appropriate
handler. Currently MapleMIX treats a static exception by aborting specialization.
While we have not found this limiting in our experiments better support for try/catch
would be required to tackle larger programs.

8.2 Feature Conflict

As explained in Chapter 5, two of the main features of MapleMIX do not currently
work at the same time. Function sharing requires the computation of call signatures
and currently there is no support for considering dynamic representations in call
signatures. It would be straightforward to add this support, however that would harm
the termination properties of the partial evaluator. A more sophisticated approach
to computing call signatures is recommended for future work. The idea would be
to record what properties of the initial environment are actually used during the
specialization of a function. If, for example, the value 5 were passed to a function,
but the function only ever tested that the value was odd, then the resulting specialized
code would work with any value that was an odd integer. This would also need to
be extended to record what aspects of dynamic representations are used. The result
would be better termination properties and more specialized code reuse.
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8.3 Additional Features

Several additional features are recommended for consideration for future work. While
adding support for additional language features is a natural extension it must also be
noted that quality of specialization is directly related to the ability to maintain and
infer static data.

8.3.1 Post-processing

Post-processing of residual code is performed as a clean-up phase. Dead code is
removed and a very small amount of additional inlining is performed. Currently
MapleMIX uses very simple algorithms in its post-processing of residual code. Ex-
tending these to more sophisticated algorithms would improve the results. For exam-
ple, data-flow techniques could be used to remove dead code.

8.3.2 Iterative Specialization

In some of our experiments we have found that it is possible to take code that was out-
put from MapleMIX and specialize it again. This has shown to produce small amounts
of additional specialization in some cases. We believe that running the specialization
core as an iterative fixed point will produce better specialization. Translation to
and from M-form need only be performed once while the specialization phase repeats
iteratively on the intermediate representation.

If this approach were to be taken it would be possible for the specializer to gather
additional information during specialization. For example to track the number of uses
of each variable name. On subsequent iterations this information would be available
and would be quite useful. For example the specializer could inline assignments in
the case that it knows a variable name is used exactly once. An online PE like
MapleMIX is very reactionary in its nature. The lack of a pre-process means the
specializer proceeds completely unaware of statements it has yet to encounter. An
iterative approach would provide useful static information to each pass after the first
one. This approach has the potential to eliminate the need for a post-processing
phase.
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8.3.3 Dynamic Loops

MapleMIX has excellent support for static loops in the sense that an incredibly large
amount of specialization is possible. However support for dynamic loops is currently
very limited. Development of a sophisticated approach to dynamic loops is recom-
mended for future work.

8.3.4 Types and Shapes

While MapleMIX is prided for being a completely online partial evaluator we are
not opposed to adding pre-phase analyses that would benefit specialization. Hybrid
approaches to partial evaluation have used shape or representation analyses to gather
some static information before specialization. MapleMIX is capable of determining
some type and shape information in an online way through its unique support for
partially static data structures. However a proper pre-phase shape analysis would
still benefit the specialization phase by providing more information. Furthermore
it has become apparent that type information would also be a huge benefit to the
specializer. A type inference phase would greatly improve results, especially on Maple
code that does a great deal of dynamic type checking.

8.3.5 Output Language

Allowing a certain flexibility in the output language is often a good way to solve
challenging problems in partial evaluation. The Java partial evaluator JSpec pro-
duces aspect-oriented programs in the AspectJ language as output [30]. AOP is an
extension to the Object Oriented paradigm that improves separation of concerns by
allowing code that implements crosscutting concerns to be grouped into a separate
programming unit called an aspect [17].

JSpec is concerned with specializing program slices, then reinserting the specialized
slices back into the original program. Part of the specialization process is concerned
with safely bypassing encapsulation mechanisms for the purpose of improved effi-
ciency. Specialized methods are not inserted into the class for which the original
unspecialized method was defined because the new method would now be available
to the rest of the program breaking encapsulation. Instead specialized methods are
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grouped into aspects. Access modifiers on the aspect ensure that specialized methods
are only called by other specialized methods in the same aspect. The aspect is then
weaved into the executable program by the AspectJ compiler. In this case allowing
the output language of the partial evaluator to be an extended version of the input
language provides a simple solution to an otherwise difficult problem.

The online partial evaluator FUSE generates a residual program by returning a trace
of suspended computations [11]. This trace is represented as a graph rather than
program text. A separate process can then be used to translate the graph into a
particular programming language. This strategy allows a choice of output language
as well as facilitating the removal of duplicate computations.

Maple also allows flexibility in how the output program is represented. Any Maple
value may be embedded directly into the residual program via Inert VERBATIM.
MapleMIX exploits this to avoid the problem of lifting when it can. It is possible
for MapleMIX to generate code that the Maple parser would not generate. This has
lead us to believe that taking full advantage of the flexibility of Inert VERBATIM
should be pursued.

8.4 Conclusions

Chapter 7 showed some very promising results. We believe that partial evaluation is
a viable approach toward the optimization and specialization of Maple programs. It
is necessary to extend our approach to make it applicable to sections of the Maple
core library. Unfortunately the core library was not written with partial evaluation
in mind and as a result there are a huge amount of language features that would have
to be supported in order to use partial evaluation in this setting. Because of the high-
level nature of the Maple language, partial evaluation is a very viable optimization
technique with the potential to produce impressive results.

8.4.1 Contributions

Our contributions have been:

• An online partial evaluator for a non-trivial subset of the Maple programming
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language.

• An approach to modularizing the partial evaluator using a high level intermedi-
ate representation called M-form. We have demonstrated that using appropriate
syntax transformations can make the specializer easier to implement.

• An online environment that is implemented as a stack of settings. This approach
eliminates the need to copy environments and makes the restoration of the
environment to an earlier state an extremely simple operation. Our approach
to specialization of dynamic if-statements works hand in hand with our online
environment.

• Support for partially static data structures such as lists and polynomials imple-
mented in a completely online way.

• A novel on-the-fly syntax transformation approach to static for loops that leads
to a high level of specialization and removes the need to merge environments.

• Demonstration that PE can be used to provide precise solutions to parametric
problems encountered in Computer Algebra Systems.
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M-form Abstract Syntax

name ::= local | global

local ::= MLocal string

| MParam string

| MSingleUse string

| MGeneratedName string

| MLexicalLocal string

| MLexicalParam string

| MLocalName string

| MAssignedLocalName string

mname ::= MName string

global ::= mname

| MAssignedName string

expseq ::= MExpSeq { expr }

unaryop ::= MNot expr – logical not (not)

100
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binaryop ::= MEquation expr expr – equation and equals (=)
| MInequat expr expr – inequation and notequal (<>)
| MPower expr expr – power (xn)
| MCatenate expr expr – name concatenation (||)
| MLesseq expr expr – less than or equal (<=)
| MLessThan expr expr – less than (<)
| MImplies expr expr – logical implies (implies)
| MAnd expr expr – logical and (and)
| MOr expr expr – logical or (or)
| MXor expr expr – logical xor (xor)
| MRational expr expr – rational number (1/2)
| MComplex expr expr – complex number (5 + 4 * I)
| MRange expr expr – range (x..y)

naryop ::= MSum { expr} – sum (x + y + z)
| MProd { expr} – product (x * y * z)

functioncall ::= MFunction name expseq

tableref ::= MTableref name expseq

stringlit ::= MString string
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expr ::= name

| expseq

| unaryop

| binaryop

| naryop

| functioncall

| tableref

| proc

| stringlit

| MInt int

| MFloat int int

| MList expseq

| MSet expseq

| MArgs
| MNargs
| MUneval expr – unevaluation quotes (’x’)
| MMember expr name – module member access (module:-member)

stmt ::= loop

| driver

| MStatSeq { stmt }
| MStandaloneExpr expr

| MAssign name expr

| MAssignToTable name tableref

| MAssignTableIndex tableref expr

| MAssignToFunction name functioncall

| MStandaloneFunction functioncall

| MIfThenElse expr stmt stmt

| MReturn expr

| MError expseq – throws an exception
| MTry stmt { MCatch stmt } stmt – try/catch/finally
| MCommand string – special command to MapleMIX
| MRef pointer – DAG pointer

loop ::= MWhile expr expr expr expr stmt

| MWhileForFrom expr expr expr expr expr stmt

| MWhileForIn expr expr expr stmt
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driver ::= MForFromDriver pointer pointer local expr expr expr

| MForInDriver pointer pointer local local expr expr

type ::= MType mapletype

default ::= MDefault expr

paramspec ::= MParamSpec string type default

paramseq ::= MParamSeq { paramspec }

keywordparamseq ::= MParamSeq { paramspec }

localseq ::= MLocalSeq { mname }

optionseq ::= MOptionSeq { mname }

descriptionseq ::= MDescriptionSeq { stringlit }

globalseq ::= MGlobalSeq { mname }

lexicalpair ::= MLexicalPair mname mname

lexicalseq ::= MLexicalSeq { lexicalpair }

null ::= MExpSeq

flag ::= true | false | UNKNOWN

argsflag ::= MArgsFlag flag
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nargsflag ::= MNargsFlag flag

argsflags ::= MFlags argsflag nargsflag

proc ::= MProc
paramseq – sequence of parameter names
localseq – sequence of names of local variables
optionseq – sequence of options
null – the remember table
stmt – the procedure body
descriptionseq – documentation
globalseq – global variables declared by the procedure
lexicalseq – lexical locals
eop – execution order permutation
argsflags – flags that indicate if the procedure uses args or nargs
keywordparamseq – list of keyword parameters



Bibliography

[1] L. O. Andersen, “C program specialization,” tech. rep., DIKU, University of
Copenhagen, May 1992.

[2] K. R. Anderson, “Freeing the essence of a computation,” ACM SIGPLAN Lisp
Pointers, vol. Volume VIII, no. Issue 2, May 1995.

[3] A. W. Appel, Modern Compiler Implementation: In ML. New York, NY, USA:
Cambridge University Press, 1998.

[4] C. Ballarin and M. Kauers, “Solving parametric linear systems: an experiment
with constraint algebraic programming,” SIGSAM Bull., vol. 38, no. 2, pp. 33–
46, 2004.

[5] L. Birkedal and M. Welinder, “Partial evaluation of standard ml,” Master’s the-
sis, DIKU, University of Copenhagen, October 1993.

[6] J. Carette, “Understanding expression simplification,” in ISSAC ’04: Proceedings
of the 2004 international symposium on Symbolic and algebraic computation,
(New York, NY, USA), pp. 72–79, ACM Press, 2004.

[7] J. Carette, “Gaussian elimination: a case study in efficient genericity with metao-
caml,” Science of Computer Programming, 2006. accepted.

[8] J. Carette and O. Kiselyov, “Multi-stage programming with functors and mon-
ads: Eliminating abstraction overhead from generic code,” in GPCE, pp. 256–
274, 2005.

[9] N. H. Christensen and R. Gluck, “Offline partial evaluation can be as accurate
as online partial evaluation,” ACM Trans. Program. Lang. Syst., vol. 26, no. 1,
pp. 191–220, 2004.

105



BIBLIOGRAPHY 106

[10] C. Consel, J. L. Lawall, and A.-F. L. Meur, “A tour of tempo: a program
specializer for the c language,” Science of Computer Programming, vol. volume
52, 2004.

[11] E. R. Daniel Weise, Roland Conybeare and S. Seligman, “Automatic online par-
tial evaluation,” in Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, 1991, June 1991.

[12] O. Danvy, “Type-directed partial evaluation,” in Partial Evaluation - Practice
and Theory, DIKU 1998 International Summer School, June 1998.

[13] D. Elphick, M. Leuschel, and S. Cox, “Partial evaluation of MATLAB,” in Pro-
ceedings of the second international conference on Generative Programming and
Component Engineering, pp. 344–363, Springer-Verlag New York, Inc., 2003.

[14] Y. Futamura, “Partial evaluation of computation process- an approach to a
compiler-compiler,” Higher Order Symbol. Comput., vol. 12, no. 4, pp. 381–391,
1999.

[15] F. Henglein, “Efficient type inference for higher-order binding-time analysis,”
in Functional Programming Languages and Computer Architecture (FPCA’91),
August 1991.

[16] N. D. Jones, C. K. Gomard, and P. Sestoft, Partial Evaluation and Automatic
Program Generation. Prentice Hall International(UK) Limited, 1993.

[17] R. Laddad, AspectJ in Action. Greenwich, Conn, USA: Manning Publications,
2003.

[18] T. Mogensen, “Self-applicable partial evaluation for pure lambda calculus,” in
Partial Evaluation and Semantics-based Program Manipulation, 1992.

[19] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. Mc-
Carron, and P. DeMarco, Maple 10 Advanced Programming Guide. Waterloo
Maple Inc., 2005.

[20] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. Mc-
Carron, and P. DeMarco, Maple 10 Introductory Programming Guide. Waterloo
Maple Inc., 2005.

[21] E. Ruf and D. Weise, “Preserving information during online partial evaluation,”
Tech. Rep. CSL-TR-92-517, Stanford University, April 1992.

[22] E. Sumii, “Bridging the gap between tdpe and sdpe.” Presentation slides.



BIBLIOGRAPHY 107

[23] E. Sumii and N. Kobayashi, “Online type-directed partial evaluation for
dynamically-typed languages,” Computer Software, Iwanami Shoten, Japan,
vol. 17, no. 3, pp. 38–62, May 2000.

[24] E. Sumii and N. Kobayashi, “A hybrid approach to online and offline partial eval-
uation,” Higher-Order and Symbolic Computation, Kluwer Academic Publishers,
the Netherlands, vol. 14, no. 2/3, pp. 101–142, 2001.

[25] W. Taha, “A gentle introduction to multi-stage programming.,” in Domain-
Specific Program Generation, pp. 30–50, 2003.

[26] P. Thiemann, “Cogen in six lines,” in Proc. ACM SIGPLAN International Con-
ference on Functional Programming 1996, pp. 180–189, May 1996.

[27] P. Thiemann, The PGG System - User Manual, March 2000.

[28] P. Thiemann and D. Dussart, “Partial evaluation for higher-order languages with
state.” July 1999.

[29] P. Thiemann and R. Gluck, “The generation of a higher-order online partial
evaluator,” in Fuji Workshop on Functional and Logic Programming, pp. 239–
253, July 1995.

[30] J. L. L. Ulrik Pagh Schultz and C. Consel, “Automatic program specialization
for java,” Transactions on Programming Languages and Systems (TOPLAS),
no. 25(4), 2003.


	Table of Contents
	List of Figures
	Introduction
	Maple
	Thesis Aims and Outline

	Overview of Maple
	The Maple System
	Statement Forms
	Assignment
	Conditional statements
	Return
	Loops
	Try/Catch and Error

	Expressions and Data Types
	Names
	Tables
	Expression Sequences
	Functions
	Special Functions
	Closures
	Modules

	Additional Features
	Automatic Simplification
	Last Name Evaluation
	Type Assertions
	Reification and Reflection


	Partial Evaluation
	Mix Equation
	Partial Evaluation Strategies
	Parameterization
	Multi-Stage Programming
	The Futamura Projections
	The cogen Approach
	Type-directed PE
	PE Functionality
	Partial Evaluation of Maple

	Syntax Transformations and Internal Architecture
	Input and Output
	M-form
	Expressions
	Assignment
	If Statements
	Loops
	Parameter Passing
	Tables

	Architecture
	Summary

	Expression Reduction
	Online Approach to Partially Static Data
	Input and Output
	Dead Code Removal
	Summary

	Statement Specialization and the Online Environment
	Side Effects and Termination
	Function Sharing and Termination Issues
	Global State

	Function Specialization
	Unfolding
	Higher-Order Functions and Closures

	If Statements and the Online Environment
	DAG Form
	Dynamic Conditional Specialization Algorithm
	Comparison with Merging Environments Approach
	Comparison with Offline Methods
	Dynamic Masking
	Tables

	Other Statements
	Assignments
	Statement Sequences
	Return Statements
	Try/Catch

	Loops
	Static For Loops
	Dynamic Loops

	Static Data and Lifting
	Summary

	Results
	Quicksort
	Complexity of Algorithms
	Residual Theorems in Computer Algebra
	Degree
	Gaussian Elimination
	Symbolic Integrator

	First Futamura Projection
	Summary

	Future Work and Conclusions
	Supported Constructs
	Feature Conflict
	Additional Features
	Post-processing
	Iterative Specialization
	Dynamic Loops
	Types and Shapes
	Output Language

	Conclusions
	Contributions


	M-form Abstract Syntax
	Bibliography

