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We describe a theory of labelled structures, which intuitively consist of a labelled shape together
with a mapping from labels to data. Labelled structures thus subsume algebraic data types as well
as “labelled” types such as arrays and finite maps. This idea of decomposing container structures
into shapes and data is an old one; our novel contribution is to explicitly mediate the decomposition
with arbitrary labels. We demonstrate the benefits of this approach, showing how it can be used,
for example, to explicitly model composition of container shapes, to model value-level sharing via
superimposing multiple structures on the same data, and to model issues of memory allocation and
layout.

The theory of labelled structures is built directly on the foundation of combinatorial species,
which serve to describe labelled shapes. The theory of species bears striking similarities to the theory
of algebraic data types, and it has long been suspected that a more precise and fruitful connection
could be made between the two. In a larger sense, the aim of this paper is to serve as a first step
in connecting combinatorial species to the theory and practice of programming. In particular, we
describe a “port” of the theory of species into constructive type theory, justifying its use as a basis
for computation.

1 Introduction

The theory of combinatorial species [Joyal, 1981, Bergeron et al., 1998], as it relates to the theory and
practice of programming languages, has long seemed to the authors “an answer looking for a question”:
the theory is too beautiful, and too “obviously” related to algebraic data types, to have no applications
whatsoever. Teasing out the precise relationship between species and data types, however, has proved
challenging, for two reasons. First, combinatorialists are mainly concerned with enumerating and gen-
erating abstract structures, not with storing and computing with data. Thus, in order to apply species in
a computational setting, there are many hidden assumptions and glossed distinctions that must first be
made explicit. Second, being situated in traditional mathematical practice rooted in set theory, species
are usually described in ways that are untyped and nonconstructive, both of which hinder adoption and
understanding in a computational context.

From a computational point of view, the right way to think about species is as labelled shapes which
do not contain any data. To recover data structures, one must add a notion of mapping from labels to
data. This leads to the familiar idea of decomposing data structures as shapes plus data [Banger and
Skillicorn, 1993, Jay and Cockett, 1994, Hoogendijk and De Moor, 2000, Abbott et al., 2003a], with the
new twist that arbitrary labels are used to mediate between the two. Informally, this pairing of a labelled
shape (corresponding to a species) and a mapping from labels to data values is what we call a labelled
structure1. For example, Figure 1 illustrates a labelled tree shape paired with a mapping from labels to
data. A family of labelled structures refers to a class of structures parameterized over the label type L
and (typically) the data type A.

1Following Flajolet et al.’s lead [1991, 1994].
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Figure 1: A labelled structure with six labels

Note that the mapping from labels to data values need not be injective, so the same value of type A
may be associated to multiple labels. However, the mapping must of course be functional, that is, each
label is assigned to exactly one value.

For now, we leave the notion of “labelled shape” abstract; we will return to define it more precisely
in §3. Instead, we turn to a collection of examples showing the possibilities afforded by this framework.

Algebraic data types All the usual algebraic data types have corresponding families of labelled struc-
tures, where values of the algebraic data type are used as labelled shapes (§5.1). Given such a labelled
structure we can “collapse” it back to an algebraic data structure by substituting data for labels. For
example, the labelled tree structure in Figure 1 represents the tree containing A at its root, N as the left
child, and so on. Note that the family of labelled tree structures is quite a bit larger than the usual type of
trees: every possible labelling of a given tree shape results in a different labelled structure, whereas there
are many labelled tree structures that will “collapse” to the same algebraic data structure, which differ
only in the way they are labelled.

Composition The indirection afforded by labels makes it easy to explicitly model and reason about the
composition of container shapes,e.g. lists of trees (§5.2).

Finite maps and bags Since the definition of a labelled structure already includes the notion of a map-
ping from labels to data, we may encode finite maps simply by using sets of labels as shapes (§5.3), i.e.
shapes with no structure other than containing some labels. If we ignore the labels, the same implemen-
tation gives us bags, also known as multisets. Furthermore, we can directly model multiple finite map
implementations.

Value-level sharing Structures with shared labels can be used to model (value-level) sharing (§5.4).
For example, we can superimpose both a binary tree and a list structure on some data, as shown in
Figure 2. This leads to modular and generic implementations of familiar classes of operations such as
filtering and folding (§6).

Memory allocation and layout Labels function as pointers, allowing us to model issues of memory
allocation and layout (§7). Moreover, we can easily “swap out” one model for another, allowing us to
model the particular features we care about.
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Figure 2: Superimposing a tree and a list on shared data

1.1 Contributions

Though our work bears similarities to previous approaches that separate shapes and data [Banger and
Skillicorn, 1993, Jay and Cockett, 1994, Hoogendijk and De Moor, 2000, Abbott et al., 2003a], there is
a key difference, directly inspired by the theory of species. Whereas previous approaches use a fixed,
canonical set of labels (or left the labels entirely implicit), species naturally lead us to work directly with
the labels, giving them a much more prominent role. Bringing the mediating labels to the fore in this
way is, to our knowledge, novel, and leads to some interesting benefits.

Furthermore, species are defined over finite sets of labels. In a classical setting, while finiteness is a
crucial part of the definition, it is an otherwise fairly implicit feature of the actual theory. Combinatori-
alists do not need to remind themselves of this finiteness condition, as it is a pervasive axiom that you
can only “count” finite collections of objects. When ported to a constructive setting, however, the notion
of finiteness takes on nontrivial computational content and significance. In particular, we are naturally
led to work up to computationally relevant equivalences on labels. Working up to equivalence in this
way confers additional expressive power, allowing us to model efficient label operations (e.g. partition)
without copying. This is also one of the key ingredients in modeling memory layout and allocation (§7).

In more detail, our contributions are as follows:

• We describe a “port” of combinatorial species from set theory to constructive type theory (§3.2),
making the theory more directly applicable in a programming context, more accessible to func-
tional programmers, and incidentally illuminating some new features of the theory.

• We define a generic framework for labelled types on top of this basis (§4).

• We show how to unify “implicitly labelled” structures (such as algebraic data types) and “explicitly
labelled” structures (such as vectors and finite maps) under the same framework.

• We show how to explicitly model and program with compositions of container shapes.

• We model value-level sharing via shared labels (§5.4)—in contrast, this is not possible if every
structure has a fixed set of canonical labels.

• We give examples of programming with labelled types, focusing particularly on the ways that
explicit sharing enables more modular, generic implementations.

• Labels share some of the properties of memory addresses, i.e. pointers, and taking this analogy
seriously lets us reason about memory allocation and layout for stored data structures (§7).
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We have an implementation of these ideas in Haskell, available at http://github.com/byorgey/
labelled-structures.

It is worth mentioning that in previous work [Carette and Uszkay, 2008, Yorgey, 2010] we conjec-
tured that the benefits of the theory of species would lie primarily in its ability to describe data types with
symmetry (i.e. quotient types [Hofmann, 1995, Abbott et al., 2004]). That promise has not gone away;
but we now believe that a solid understanding of labelled structures is a prerequisite for tackling sym-
metry. In retrospect, this is unsurprising, since introducing species as explicitly labelled objects was one
of Joyal’s great insights, allowing the encoding of symmetric and unlabelled structures via equivalence
classes of labelled ones.

2 Theoretical setting

We have found it convenient to work within homotopy type theory (HoTT). However, we do not need
much complex machinery from the theory, and simply summarize the most important ideas and notation
here; interested readers should consult the HoTT book [Univalent Foundations Program, 2013] for more
details. Everything in this paper could be formalized in most any standard constructive type theory; we
choose to work in HoTT because of its emphasis on equality and isomorphism, which meshes well with
the theory of species. In fact, it seems likely that there are deeper connections between the two theories,
but exploring these connections is left to future work.

The concept of finiteness plays a central (but implicit) role in the theory of combinatorial species,
primarily through the pervasive use of generating functions. As it remains important in our setting, we
give the precise definition we use, seeing as there are multiple constructive interpretations of finiteness.

2.1 A fragment of homotopy type theory

The type theory we work with is equipped with an empty type ⊥, a unit type >(with inhabitant ?),
coproducts (with constructors inl and inr), dependent pairs (with projections outl and outr), dependent
functions, a hierarchy of type universes U0, U1, U2. . . (we usually omit the subscripts), and a notion of
propositional equality. The theory also allows inductive definitions. We use N : U0 to denote the type
of natural numbers, Fin : N→U0 the usual indexed type of canonical finite sets, and [−] : U →U the
inductive type of polymorphic lists, with constructors [ ] : ∏A:U [A] and − ::− : ∏A:U A→ [A]→ [A].

Instead of writing the traditional ∑x:A B(x) for the type of dependent pairs and ∏x:A B(x) for dependent
functions, we will often use the Agda-like [Norell, 2007] notations (x : A)×B(x) and (x : A)→ B(x),
respectively (though we still occasionally use Σ and Π for emphasis). We continue to use the standard
abbreviations A×B and A→ B for non-dependent pair and function types, that is, when x does not appear
free in B. Also, to reduce clutter, we sometimes make use of implicit quantification: free type variables
in a type—like A and B in A×(B→N)—are implicitly universally quantified, like (A : U )→ (B : U )→
A× (B→ N).

A ' B is the type of equivalences between A and B; intuitively, an equivalence is a pair of inverse
functions f : A→ B and g : B→ A.2 We overload the notations id and ◦ to denote the identity equivalence
and equivalence composition respectively; we also allow equivalences of type A ' B to be implicitly
used as functions A→ B where it does not cause confusion. We use the notation 
 for constructing
equivalences from a pair of functions. That is, if f : A→ B and g : B→ A are inverse, then f 
 g : A' B;
the proof that f and g are inverse is left implicit.

2The precise details are more subtle [Univalent Foundations Program, 2013, chap. 4], but unimportant for our purposes.

http://github.com/byorgey/labelled-structures
http://github.com/byorgey/labelled-structures
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A few remarks about propositional equality are also in order. First, the structure of the type theory
guarantees that functions are always functorial with respect to equality, that is, if e : x = y and f is a
function of an appropriate type, then f (x) = f (y). Given e we also have P(x)→ P(y) for any type fam-
ily P, called the transport of P(x) along e. Finally, a consequence of the univalence axiom is that an
equivalence A ' B can be converted to the propositional equality A = B (and vice versa). The intuitive
idea is to formally encode the common mathematical practice of treating isomorphic things as identi-
cal. It is important to keep in mind that an equality e : A = B can thus have nontrivial computational
content. In other words, A = B means not that A and B are identical, but merely that they can be used
interchangeably—and moreover, interchanging them may require some work, computationally speaking.

2.2 Finiteness

There are many possible constructive interpretations of finiteness [nLab, 2013]; we adopt the simplest: a
finite set is one which is in bijection to a canonical set of a known size. That is,

FiniteA :≡ (n : N)× (Finn' A).

Other constructive characterizations of finiteness may have roles to play as well, but we leave exploring
them to future work.

It is tempting to use mechanisms for implicit evidence, such as Haskell’s type class mechanism, to
record the finiteness of types. That is, we could imagine defining a type class

class IsFinite a where
isFinite ::Finite a

The idea is that the statement “the type A is finite” translates to “A is an instance of the IsFinite class”.
However, this is not what we want. An instance IsFinite A corresponds to a canonical choice of an
inhabitant of FiniteA, but inhabitants of FiniteA have nontrivial computational content; it really matters
which inhabitant we have. Thus, instead of simply passing around types and requiring them to have an
implicit, canonical finiteness proof, we will in general pass around types together with some specific
finiteness proof. We can encapsulate this by defining

UFin :≡ (A : U )×FiniteA

as the universe of finite types. We use b−c : UFin→ U to project out the underlying type from a finite
type, forgetting the finiteness evidence. We also use dFinne : UFin to denote the type Finn : U paired
with the identity equivalence.

It is not hard to see that the size of a finite type is determined uniquely. That is, if (n1,e1) and (n2,e2) :
FiniteA are any two witnesses that A is finite, then n1 = n2. As proof, note that e−1

2 ◦ e1 : Finn1 ' Finn2,
from which we can derive n1 = n2 by double induction. In a slight abuse of notation, we write |A| to
denote this size. Computationally, this corresponds to applying outl to some finiteness proof; but since
it does not matter which proof we use, we simply leave it implicit, being careful to only use | − | in a
context where a suitable finiteness proof can be obtained. We also write |L| when L : UFin, to denote the
projection of the natural number size stored in L.

As a final remark, we note that an inhabitant of FiniteA contains quite a lot of information, much
more than one usually means by saying “A is finite”. For example, it encodes a total order and decidable
equality on A, by transferring these properties along the equivalence from Finn. This is often useful, but
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occasionally it gets us into trouble (§5.3). It may be that the right evidence for the finiteness of A is not
(n : N)× (Finn' A) but the propositional truncation

(n : N)×‖Finn' A‖,

or something like it [Univalent Foundations Program, 2013, sect. 3.7]. In any case, we are reason-
ably certain that a complete story of labelled structures with symmetries will require a more nuanced
conception of evidence for finiteness; we leave this to future work.

3 Combinatorial Species

Our theory of labelled structures is inspired by, and directly based upon, the theory of combinatorial
species [Joyal, 1981]. We give a brief introduction to it here; the reader interested in a fuller treatment
should consult Bergeron et al. [1998]. Functional programmers may wish to start with Yorgey [2010].

3.1 Species, set-theoretically

We begin with a standard set-theoretic definition of species (essentially what one finds in Bergeron et al.
[1998], but with slightly different terminology). We will upgrade to a type-theoretic definition in §3.2,
but it is worth seeing both definitions and the relationship between them.

Definition 1. A species is a pair of mappings, both called F , that

• sends any finite set L (of labels) to a set F(L) (of shapes), and

• sends any bijection on finite sets σ : L↔ L′ (a relabelling) to a function F(σ) : F(L)→ F(L′),

additionally satisfying the following functoriality conditions:

• F(idL) = idF(L), and

• F(σ ◦ τ) = F(σ)◦F(τ).

Using the language of category theory, this definition can be pithily summed up by saying that a
species is a functor F : B→ Set, where B is the category of finite sets whose morphisms are bijections,
and Set is the usual category of sets whose morphisms are arbitrary (total) functions. Note that we could
have chosen FinSet as codomain with very few changes, but Set is now customary.

We call F(L) the set of “F-shapes with labels drawn from L”, or simply “F-shapes on L”, or even
(when L is clear from context) just “F-shapes”. F(σ) is called the “transport of σ along F”, or sometimes
the “relabelling of F-shapes by σ”.

In the existing literature, elements of F(L) are usually called “F-structures” rather than “F-shapes”.
To a combinatorialist, labelled shapes are themselves the primary objects of interest; however, in a com-
putational context, we must be careful to distinguish between labelled structures (which, in our termi-
nology, have data associated to the labels) and bare labelled shapes (which do not).

Here we see that the formal notion of “shape” is actually quite broad, so broad as to make one
squirm: a shape is just an element of some arbitrary set! In practice, however, we are interested not in
arbitrary species but in ones built up algebraically from a set of primitives and operations. In that case
the corresponding shapes will have more structure as well; we explore this in §5. For the moment, we
turn to a constructive, type-theoretic definition of species.
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Figure 3: An equivalence between constructively finite types contains only triangles

3.2 Species, constructively

The foregoing set-theoretic definition of species is perfectly serviceable in the context of classical com-
binatorics, but in order to use it as a foundation for data structures, it is necessary to first “port” the
definition from set theory to constructive type theory. In fact, doing so results in a greatly simplified
definition: we merely define

Species :≡UFin→U .

The rest of the definition comes “for free” from the structure of our type theory! In particular, we have

relabel : (F : Species)→ (L1 = L2)→ (F L1→ F L2)

via transport, where relabel automatically respects identity and composition. This is one of the great
strengths of type theory as a foundation for mathematics: everything is functorial, natural, continuous,
etc., and we do not have to waste time ruling out bizarre constructions which violate these obvious and
desirable properties, or proving that our constructions do satisfy them.

It is important to note that an equality L1 = L2 between constructively finite types L1,L2 : UFin, as
required by relabel, contains more than first meets the eye. Since

UFin :≡ (L : U )× (n : N)× (Finn' L),

such equalities contain not just an equality bL1c = bL2c between the underlying types (typically con-
structed from an equivalence bL1c ' bL2c via univalence), but also an equality between their sizes, and
a second-order equality-between-equivalences requiring the types to be isomorphic to Finn “in the same
way”, that is, to yield the same equivalence with Finn after mapping from one to the other. The situation
can be pictured as shown in Figure 3, where the diagram necessarily contains only triangles: corre-
sponding elements of L1 and L2 on the sides correspond to the same element of Finn on the bottom row.
Intuitively, this means that if L1,L2 : UFin, an equality L1 = L2 cannot contain “too much” information:
it only tells us how the underlying types of L1 and L2 relate, preserving the fact that they can both be put
in correspondence with Finn for some n. In particular, it cannot also encode a nontrivial permutation on
Finn.
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4 Labelled structures and mappings

To recover a notion of data structure, we must pair species, i.e. labelled shapes, with mappings from
labels to data. Formally, we define families of labelled structures by

〈−〉−(−) : Species→U →U →U

〈F〉L(A) = F L× (L Z⇒ A)

where − Z⇒− : UFin → U → U constructs the type of mappings. We need not pin down a particular
implementation for − Z⇒−; we require only that it come equipped with the following operations:

allocate : (bLc → A)→ (L Z⇒ A)

index : (L Z⇒ A)→ bLc → A

map : (A→ B)→ (L Z⇒ A)→ (L Z⇒ B)

reindex : (L′ = L)→ (L Z⇒ A)→ (L′ Z⇒ A)

zipWith : (A→ B→C)→ (L Z⇒ A)→ (L Z⇒ B)→ (L Z⇒C)

append : (bL1c+ bL2c ' bLc)→ (L1 Z⇒ A)→ (L2 Z⇒ A)→ (L Z⇒ A)

concat : (bL1c×bL2c ' bLc)→ (L1 Z⇒ (L2 Z⇒ A))→ (L Z⇒ A)

One could also imagine requiring other operations like replace : L→ A→ (L Z⇒ A)→ A× (L Z⇒ A),
but these are the operations we need in the context of this paper. The semantics of these operations can
be specified by various laws (for example, allocate and index are inverse; index and reindex commute
appropriately with the other operations; and so on). For now, we will content ourselves with some
informal descriptions of the semantics.

• First, allocate is the sole means of constructing (L Z⇒ A) values, taking a function bLc → A as a
specification of the mapping. Note that since L : UFin, implementations of allocate also have access
to an equivalence bLc ' Fin |L|. Intuitively, this is important because allocation may require some
intensional knowledge about the type L. For example, as explained in §7, we may implement
(L Z⇒ A) using a vector of A values; allocating such a vector requires knowing the size of L.

• index allows looking up data by label.

• map ensures that (L Z⇒−) is functorial.

• reindex : (L′ = L)→ (L Z⇒ A)→ (L′ Z⇒ A) expresses the functoriality of (− Z⇒ A): we can change
from one type of labels to another by specifying an equivalence between them. map and reindex
together thus give (− Z⇒−) the structure of a profunctor.

• zipWith gives us a way to combine the contents of two mappings labelwise.

• append and concat are “structural” operations, allowing us to combine two mappings into one,
or collapse nested mappings, respectively. One might naı̈vely expect them to have types like
append : (L1 Z⇒ A)→ (L2 Z⇒ A)→ ((L1 +L2) Z⇒ A), but this is not even well-typed: L1 and L2 are
elements of UFin, not U , and there is no obvious way to lift + to operate over UFin. In particular,
there are many possible ways to combine equivalences bL1c ' Fin |L1| and bL2c ' Fin |L2| into
an equivalence bL1c+ bL2c ' Fin(|L1|+ |L2|), and no canonical way to pick one. (Should the
elements of L1 come first? L2? Should they be interleaved somehow?) Intuitively, the extra
argument to append provides precisely this missing information (and similarly for concat).
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Figure 4: Schematic of a typical (F L)-structure

We can give a particularly simple implementation with (L Z⇒ A) :≡ bLc → A, presented here using
Haskell-like notation:

allocate = id
index = id
map = (◦)
reindex i f = f ◦ i
zipWith z f g = λ l→ z (f l) (g l)
append e f g = either f g◦ e−1

concat e f = curry f ◦ e−1

Note that this implementation of allocate does not take into account the finiteness of L at all. In §7
we explore a more interesting implementation which does make use of the finiteness of L.

5 The algebra of species and labelled structures

We now return to the observation from §3.1 that we do not really want to work directly with the definition
of species, but rather with an algebraic theory. In this section we explain such a theory. At its core, this
theory is not new; what is new is porting it to a constructive setting, and the introduction and elimination
forms for labelled structures built on top of these species.

5.1 Algebraic data types

We begin by exhibiting species, i.e. labelled shapes, which correspond to familiar algebraic data types.
As a visual aid, throughout the following section we will use schematic illustrations as typified in Fig-
ure 4. The edges of the tree visually represent different labels; the leaves of the tree represent data
associated with those labels. The root of the tree shows the species shape applied to the labels (in this
case, F).

Zero The zero or empty species, denoted 0, is the unique species with no shapes whatsoever, defined
by

0 L :≡⊥.

One The one or unit species, denoted 1, is the species with a single shape of size 0 (that is, containing
no labels), defined by

1 L :≡ (⊥' bLc).
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That is, a 1-shape with labels drawn from L consists solely of a proof that L is empty.3 (Note that there
is at most one such proof.)

There is a trivial introduction form for 1, also denoted 1, which creates a 1-shape using the canonical
label set dFin 0e : UFin, that is,

1 : 1 dFin 0e .

We also have an introduction form for labelled 1-structures,

〈1〉 : 〈1〉dFin0e(A).

Note that the usual set-theoretic definition is

1 L =

{
{•} |L|= 0
∅ otherwise

However, this is confusing to the typical type theorist. First, it seems strange that the definition of 1
gets to “look at” L, since species are supposed to be functorial. In fact, the definition does not violate
functoriality—because it only “looks at” the size of L, not its contents, and bijections preserve size—but
this is not manifestly obvious. It’s also strange that we have to pull some arbitrary one-element set out
of thin air.

Singleton The singleton species, denoted X, is defined by

X L :≡ (>' bLc),

that is, an X-shape is just a proof that L has size 1. Again, there is at most one such proof. Unlike 1, we
may also think of an X-shape as “containing” a single label of type L, which we may recover by applying
the equivalence to ?.

X-shapes, as with 1, have a trivial introduction form,

x : X dFin 1e .

To introduce an X-structure, one must provide the single value of type A which is to be stored in the
single location:

〈x〉 : A→ 〈X〉dFin1e(A).

Combinatorialists often regard the species X as a “variable”. Roughly speaking, this can be justified
by thinking of the inhabitant of L as the actual variable, and the species X then represents the action of
subtituting an arbitrary value for that label in the structure. In that sense X does act operationally as a
variable. However, X does not act like a binder.

Sum Given two species F and G, we may form their sum. We use � to denote the sum of two species
to distinguish it from +, which denotes a sum of types. The definition is straightforward:

(F�G) L :≡ F L+G L.

That is, a labelled (F�G)-shape is either a labelled F-shape or a labelled G-shape (Figure 5).

3Yeh [1986] mentions something equivalent, namely, that the unit species can be defined as the hom-functor B(∅,−),
though he certainly does not have constructive type theory in mind.
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Figure 5: Species sum

As the reader is invited to check, (�,0) forms a commutative monoid structure on species, up to
species isomorphism. That is, one can define equivalences

plusAssoc : (F�G)�H ' F� (G�H)

zeroPlusL : 0�F ' F

plusComm : F�G' G�F

We remark that unfolding definitions, an equivalence F ' G between two Species is seen to be a natural
isomorphism between F and G as functors; this is precisely the usual definition of isomorphism between
species.

As expected, there are two introduction forms for (F�G)-shapes and -structures:

inl : F L→ (F�G) L

inr : G L→ (F�G) L

〈inl〉 : 〈F〉L(A)→ 〈F�G〉L(A)
〈inr〉 : 〈G〉L(A)→ 〈F�G〉L(A)

As a simple example, the species 1�X corresponds to the familiar Maybe type from Haskell, with
〈inl〉〈1〉 playing the role of Nothing and 〈inr〉 ◦ 〈x〉 playing the role of Just. Note that 〈1�X〉L(A) is
only inhabited for certain L (those of size 0 or 1), and moreover that this size restriction determines the
possible structure of an inhabitant.

Product The product of two species F and G consists of paired F- and G-shapes, but with a twist: the
label types L1 and L2 used for F and G are not necessarily the same as the label type L used for (F�G).
In fact, they must constitute a partition of L, in the sense that their sum is isomorphic to L (Figure 6).

(F �G) L :≡ ∑
L1,L2:UFin

(bL1c+ bL2c ' bLc)×F L1×G L2

For comparison, in set theory the definition is usually presented as

(F �G) L = ∑
L1]L2=L

F L1×G L2
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Figure 6: Species product

which is obviously similar, but lacks any computational evidence for the relationship of L1 and L2 to L.
The intuition behind partitioning the labels in this way is that each label represents a unique “loca-

tion” which can hold a data value, so the locations in the two paired shapes should be disjoint. Another
good way to gain intuition is to imagine indexing species not by label types, but by natural number sizes.
Then it is easy to see that we would have

(F �G)n :≡ ∑
n1,n2:N

(n1 +n2 = n)×Fn1×Gn2 ,

that is, an (F �G)-shape of size n consists of an F-shape of size n1 and a G-shape of size n2, where
n1 + n2 = n. Indexing by labels is a generalization (a categorification, in fact) of this size-indexing
scheme, where we replace natural numbers with finite types, addition with coproduct, and multiplication
with product.

Finally, this definition highlights a fundamental difference between container types and labelled
shapes. Given two functors representing container types, their product is defined as (F×G) A = F A×
G A—that is, an (F ×G)-structure containing values of type A is a pair of an F-structure and a G-
structure, both containing values of type A. On the other hand, when dealing with labels instead of data
values, we have to carefully account for the way the labels are distributed between the two shapes.

One introduces a labelled (F�G)-shape by pairing a labelled F-shape and a labelled G-shape, using
a label set isomorphic to the coproduct of the two label types:

−�−− : (bL1c+ bL2c ' bLc)→ F L1→ G L2→ (F �G) L

−〈�〉−− : (bL1c+ bL2c ' bLc)→ 〈F〉L1(A)→ 〈G〉L2(A)→ 〈F �G〉L(A)

We use here (and for the rest of the paper) the notational convention that the isomorphism arguments are
given first, but are written as subscripts in mathematical notation.

As an example, we may now encode the standard algebraic data type of lists, represented by the
inductively-defined species satisfying List ' 1� (X�List) (for convenience, in what follows we leave
implicit the constructor witnessing this equivalence). We can then define the usual constructors nil and
cons as follows:

nil : 〈List〉Fin0(A)

nil :≡ 〈inl〉〈1〉
cons : A→ 〈List〉L(A)→ (Fin1+ bLc '

⌊
L′
⌋
)→ 〈List〉L′(A)

cons a (shape,elts) e :≡ (inr (x�e shape),append e (allocate (λx.a)) elts)
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The interesting thing to note here is the extra equivalence passed as an argument to cons, specifying the
precise way in which the old label type augmented with an extra distinguished label is isomorphic to the
new label type. Again, one might intuitively expect something like

cons : A→ 〈List〉L(A)→ 〈List〉dFin1e+L(A),

but this is nonsensical: we cannot take the coproduct of two elements of UFin, as it is underspecified. For
implementations of − Z⇒− which make use of the equivalence to Finn stored in UFin values (we give an
example of one such implementation in §7), the extra equivalence given as an argument to cons allows
us to influence the particular way in which the list elements are stored in memory. For lists, this is not
very interesting, and we would typically use a variant cons′ : A→ 〈List〉L(A)→ 〈List〉inc(L)(A) making
use of a canonical construction inc(−) : UFin→UFin with Fin1+ bLc ' binc(L)c.

5.2 Composition

We may also define the composition of two species. Intuitively, (F �G)-shapes consist of a single
top-level F-shape, which itself contains labelled G-shapes in place of the usual labels, as illustrated
in Figure 7. Set-theoretically, we have

(F �G) L = ∑
π∈Par(L)

F π×∏
L′∈π

G L′,

where Par(L) denotes the set of all partitions of L into nonempty subsets. Note how this uses the elements
of the partition π itself as labels on the F-structure. A more natural type-theoretic encoding is to use an
arbitrary type of F-labels, and then store a mapping from these labels to the label types used for the G-
shapes. Additionally, we store an equivalence witnessing the fact that the G-labels constitute a partition
of the overall label type. Formally,

(F �G) L :≡ ∑
LF :U

F LF × (LsG : LF Z⇒UFin)× (bLc ' sum (map b−c LsG))×prod (map G LsG).

We assume functions sum,prod : (J Z⇒ U )→ U which compute the sum and product, respectively, of
all the types in the range of a mapping. Note how the presence of explicit labels and mappings work
together to make this possible.

Composition (�), unlike sum (�) and product (�), is not commutative4: an F-shape of G-shapes is
quite different from a G-shape of F-shapes. It is, however, still associative, and in fact (�,X) forms a
monoid.

The space of introduction forms for composition structures is nontrivial. We will not separately con-
sider introduction forms for composition shapes, but study introduction forms for composition structures
directly. At the simplest end of the spectrum, we can define an operator 〈⊗〉 (“cross”) as a sort of carte-
sian product of structures, copying the provided G structure into every location of the F structure and
pairing up both their labels and data (Figure 8):

−〈⊗〉−− : (bL1c×bL2c ' bLc)→ 〈F〉L1(A)→ 〈G〉L2(B)→ 〈F �G〉L(A×B)

The isomorphism argument is notated as a subscript to 〈⊗〉. Of course, this is far from being a general

4Interestingly, a relatively recent paper of Maia and Méndez [2008] introduces a new monoidal structure on species, the
arithmetic product, which according to one intuition represents a sort of “commutative composition”. Incorporating this into
our framework will, we conjecture, have important applications to multidimensional arrays.
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Figure 7: Species composition

Figure 8: Constructing a composition with 〈⊗〉
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Figure 9: Constructing a composition with 〈5〉

introduction form for �, since it only allows us to construct composition structures of a special form, but
is convenient when it suffices.

We also have 〈~〉 (“ap”), with type

−〈~〉−− : (bL1c×bL2c ' bLc)→ 〈F〉L1(A→ B)→ 〈G〉L2(A)→ 〈F �G〉L(B).

〈~〉 is equivalent in power to 〈⊗〉: in particular, x 〈⊗〉 y = (map (,) x) 〈~〉 y, where (,) : A→ B→ A×B
denotes the constructor for pair types, and x 〈~〉 y = map eval (x 〈⊗〉 y), where eval : (A→ B)×A→ B.

There is another introduction form for composition (〈6〉, “join”) which is a generalization of the join
(µ) function of a monad:

−〈6〉− : (bL1c×bL2c ' bLc)→ 〈F〉L1(〈G〉L2(A))→ 〈F �G〉L(A)

〈6〉 takes a labelled F-structure filled with labelled G-structures, and turns it into a labelled (F �G)-
structure.
〈6〉, unlike 〈⊗〉 and 〈~〉, allows constructing an (F �G)-structure where the G-shapes are not all

the same. Note, however, that all the G-structures are restricted to use the same label set, L1, so they still
must all be equal in size.

Most generally, of course, it should be possible to compose G-structures of different shapes and sizes
inside an F-structure, which is made possible by 〈5〉 (“bind”), the last and most general introduction
form for composition, which can be seen as a generalization of a monadic bind operation (>>=).

−〈5〉−− :

(
∑

l:bL1c
bL2 lc

)
' bLc → 〈F〉L1(A)→

(
∏
l:L1

A→ 〈G〉L2 l(B)

)
→ 〈F �G〉L(B)

Here, L2 is actually a family of types, indexed over L1, so each G subshape can have a different type of
labels, and hence a different size (Figure 9).

As an example using composition, we can directly encode the type of ordered, rooted n-ary trees,
sometimes known as rose trees, as R'X�(List�R). This corresponds to the Haskell type Rose defined
as data Rose a =Node a [Rose a], but the composition is more explicit. The explicit use of composition
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is useful when doing generation of such structures, as it allows switching of generation strategies at those
points [Uszkay, 2014].

The most general type for the node constructor is complex, since it must deal with a list of subtrees all
having different label types. As a compromise, we can make use of a variant type representing labelled
structures with an existentially quantified label type:

〈F〉•(A) :≡ ∑
L:UFin

〈F〉L(A)

Using 〈R〉•(A), we can write a constructor for R with the type

nodeE : A→ [〈R〉•(A)]→ 〈R〉•(A)

which converts the list into a labelled List-structure of R-structures, uses the join operator 〈6〉 to collapse
it into a single (List�R)-structure, and finally prepends the A value.

5.3 Sets, bags, and maps

The species of sets, denoted E, is defined by

E L :≡>.

That is, there is a single E-shape for every label type. Intuitively, E-shapes impose no structure whatso-
ever; that is, a labelled E-shape can be thought of simply as a set of labels. This is the first example of
a species with nontrivial symmetry, i.e. which is invariant under some nontrivial permutations of the la-
bels. In fact, E is invariant under all label permutations. It is thus the “quintessential” symmetric species.
Anecdotally, introducing E alone seems to go a very long way towards enabling the sorts of symmetric
structures that actually arise in programming; we give some examples below. (Adding the species C of
cycles covers almost all the rest, but we do not consider cycles in this paper.)

Note that if E-shapes are sets, then labelled E-structures (E-shapes plus mappings from labels to data)
are bags, or multisets: any particular data element may occur multiple times (each time associated with
a different, unique label), and the collection of data elements has no structure imposed on it.

E-shapes have a trivial introduction form, e : E L, along with a corresponding introduction form for
E-structures which simply requires the mapping from labels to values:

〈e〉 : (bLc → A)→ 〈E〉L(A)
〈e〉 f = (?,allocate f )

Eliminating E-structures, on the other hand, is somewhat problematic. At the end of the day, the data
need to be stored in some particular order in memory, but we do not want to allow any such ordering
to be observed. We can require E-structures to be eliminated using a commutative monoid, but if an
eliminator has access to the finiteness proof for the label type, it can still observe a linear ordering on the
labels and hence on the data elements as well. As a “solution”, we could forbid eliminators from being
able to observe labels, but this largely defeats the purpose of having explicitly labelled structures in the
first place. In the end, this is a problem needing more study, likely requiring a rethinking of the way we
represent evidence of finiteness.

Leaving the problems with the mechanics of elimination aside for the moment, we highlight here a
few particular examples of the use of E:
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Rooted, unordered trees If we replace the List in the definition of rose trees with E, we obtain a
species of rooted, arbitrary-arity trees where the children of each node are unordered:

T' X� (E�T).

Hierarchies without an ordering on sibling nodes arise quite often in practice: for example, filesystem
directory hierarchies and typical company organizational charts are both of this type.

Finite maps Formally, there is no difference between bags (multisets) and finite maps: both may be
represented by 〈E〉L(A). The difference is the role played by the labels. With bags, the labels are implicit;
indeed, we might wish to define Bag A :≡∑L:UFin

〈E〉L(A). With finite maps, on the other hand, the labels
play a more explicit role.

There are many possible implementations of finite maps, with attendant performance tradeoffs. We
can explicitly model different implementations with suitable implementations of − Z⇒−. §7 gives one
implementation, and hints at another, corresponding to finite maps stored as arrays or tries. Another
common class of finite map implementations involve a balanced tree, making use of a required total
ordering on the labels. It should be easy to model such implementations as well, by extending the
framework in this paper to allow arbitrary extra structure on label types.

Partition We may define the species Part of partitions by

Part :≡ E�E.

(Part L)-shapes consist of a (disjoint) pair of sets of labels. Thus (Part L)-shapes represent predicates
on labels, i.e. they are isomorphic to bLc → 2. In conjunction with Cartesian product (§5.4), this allows
us to generalize operations like filter and partition to arbitrary labelled structures, as described in §6.

5.4 Cartesian product

As we saw earlier, the definition of the standard product operation on species partitioned the set of labels
between the two subshapes. However, there is nothing to stop us from defining a different product-like
operation, known as Cartesian product, which does not partition the labels:

(F�G) L = F L×G L

This is the “naı̈ve” version of product that one might initially expect. However, Cartesian product works
very differently with labelled shapes. It is important to remember that a mapping (L Z⇒ A) still only
assigns a single A value to each label; but labels can occur twice (or more) in an (F ×G)-shape. This
lets us explicitly model value-level sharing, that is, multiple parts of the same shape can all “point to”
the same data. In pure functional languages such as Haskell or Agda, sharing is a (mostly) unobservable
operational detail; with a labelled structure we can directly model and observe it. Figure 10 illustrates
the Cartesian product of a binary tree and a list.

To introduce a Cartesian product shape, one simply pairs two shapes on the same set of labels.
Introducing a Cartesian product structure is more interesting. One way to do it is to overlay an additional
shape on top of an existing structure:

cprodL : F L→ 〈G〉L(A)→ 〈F�G〉L(A).

There is also a corresponding cprodR which combines an F-structure and a G-shape.
(�,E) forms a commutative monoid up to species isomorphism; superimposing an E-shape has no

effect, since the E-shape imposes no additional structure.
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Figure 10: Superimposing a tree and a list on shared data

Figure 11: Species differentiation

5.5 Other operations

There are many other operations on species. We mention a few here which we have not yet explored in
detail, but seem promising in a computational context.

Cardinality restriction Another important operation on species is cardinality restriction, which sim-
ply restricts a given species to only have shapes of certain sizes. For example, if L is the species of lists,
L3 is the species of lists with length exactly three, and L>1 is the species of non-empty lists. We can
formalize a simple version of this, for restricting only to particular sizes, as follows:

OfSize : Species→ N→ Species

OfSize F n L :≡ (|L|= n)×F L

The introduction form for OfSize is simple enough, allowing one to observe that an existing label type
has the size that it has:

sized : 〈F〉L(A)→ 〈OfSize F |L|〉L(A).

Derivative and pointing The derivative is a well-known operation on shapes in the functional pro-
gramming community [Huet, 1997, McBride, 2001, Abbott et al., 2003b, Morris et al., 2006, McBride,
2008], and it works in exactly the way one expects on species. That is, F ′-shapes consist of F-shapes
with one distinguished location (a “hole”) that contains no data (Figure 11). Formally, we may define

F ′ L :≡ (L′ : U )× (
⌊
L′
⌋
'>+ bLc)×F L′
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Note that a mapping (L Z⇒ A) associates data to every label in the underlying F L′ structure but one, since
bL′c ' >+ bLc.

To introduce a derivative structure, we require an input structure whose label type is already in the
form >+L:

d : (
⌊
L′
⌋
'>+ bLc)→ F L′→ F ′ L

〈d〉 : (
⌊
L′
⌋
'>+ bLc)→ 〈F〉L′(A)→ A×〈F ′〉L(A)

The idea behind 〈d〉 is that we get back the A that used to be labelled by >, paired with a derivative
structure with that value missing.

A related operation is that of pointing. A pointed F-shape is an F-shape with a particular label
distinguished. Formally,

F• L :≡ L×F L.

Introducing a pointed structure simply requires specifying which label should be pointed:

p : L→ F L→ F• L

〈p〉 : L→ 〈F〉L(A)→ 〈F•〉L(A)

The relationship bewteen pointing and derivative is given by the equivalence

F• ' X�F ′.

The right-to-left direction is straightforward to implement, requiring only some relabelling. The left-to-
right direction, on the other hand, requires modelling an analogue of “subtraction” on types: the given
label type L must be decomposed as “(L− l)+ l” for some l : L, that is,

L'

(
∑
l′:L

l′ 6= l

)
+

(
∑
l′:L

l′ = l

)
.

Functorial composition It is worth mentioning the operation of functorial composition, which set-
theoretically is defined as the “naı̈ve” composition

(F �G) L :≡ F (G L).

Just as with Cartesian product, functorial composition allows encoding structures with sharing—for
example, the species of simple, undirected graphs can be specified as

G :≡ (E�E)� (X2�E),

describing a graph as a subset (E�E) of all (�) ordered pairs chosen from the complete set of vertex
labels (X2�E).

However, functorial composition mixes up labels and shapes in the most peculiar way—and while
this is perfectly workable in an untyped, set-theoretic setting, we do not yet know how to interpret it in a
typed, constructive way.
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6 Programming with Labelled Structures

This section gives some examples of programming with labelled structures. In particular, there are a
number of standard functions on vectors, lists, sets and bags, finite maps, and similar structures, which
we can generalize to work over all labelled structures. We present a small sampling here, using type-
theoretic notation; these and additional examples, concretely implemented in Haskell, are available from
http://github.com/byorgey/labelled-structures.

6.1 Partition

We begin with a partition function, implemented using the species Part of partitions (§5.3) and Cartesian
product (§5.4). This turns out to be a key component of some of the later examples as well. The idea is to
use a predicate on data to divide the labels into two disjoint sets, and to then superimpose (via Cartesian
product) a second structure on the old, recording this new information about the labels. The original
structure is not modified in any way.

partition : 〈F〉L(A)→ (A→ 2)→ 〈F�Part〉L(A)
partition ( f ,elts) p :≡ (( f ,?�e ?),elts)

where

e :

(
∑

l:bLc
p (elts ! l) = True

)
+

(
∑

l:bLc
p (elts ! l) = False

)
' bLc

e = ...

We omit the implementation of the equivalence e in the interest of clarity; the details are fiddly but there
is nothing particularly interesting about it. The new superimposed Part structure contains nothing but
this equivalence e (the two E-shapes are just ?).

At this point, we might want to actually take this information and “extract” the result (in the usual
meaning of splitting the structure into two distinct pieces). To do that we will first have to explore the
idea of eliminators for labelled structures.

6.2 Eliminators

We use a framework of eliminators of type (〈F〉L(A) R), which can be “run” with

runElim : (〈F〉L(A) R)→ 〈F〉L(A)→ R,

and built with combinators like

elim1 : R→ (〈1〉L(A) R)

elimX : (A→ R)→ (〈X〉L(A) R)

elim� : (〈F〉L(A) R)→ (〈G〉L(A) R)→ (〈F�G〉L(A) R)

elim� :

(
∏

L1,L2:UFin

bL1c+ bL2c ' bLc → (〈F〉L1(A) ((〈G〉L2(A) R)))

)
→ (〈F �G〉L(A) R)

elimE : (HL×AI→ R)→ (〈E〉L(A) R)

elimList : (L×A→ R→ R)→ R→ (〈List〉L(A) R)

http://github.com/byorgey/labelled-structures
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For elimE we assume a type H−I : U →U of bags with an appropriate elimination principle. We omit
the implementations of these combinators in the interest of space, and refer the interested reader to our
Haskell implementation, available at http://github.com/byorgey/labelled-structures.

Using this eliminator framework, we can now use the information added by partition to split the data
elements of a list into two sublists. We use the List structure for its ordering, but use the information from
the superimposed partition to make our choices of where to put each element. Note how the elements
themselves take no part in this choice, but the isomorphism which is stored in the partition plays a key
role.

splitPartition : 〈List�Part〉L(A)→ [A]× [A]

splitPartition((lst,?�e ?),elts) = runElim (elimList cons ([ ], [ ])) (lst,elts)

where
cons (l,a) (ll,rl) =

case e−1 l of
inl−→ (a :: ll,rl)

inr−→ (ll,a :: rl)

Using similar techniques we can easily implement other standard list functions like filter, member-
ship testing, and linear search.

6.3 Traversing and folding

We can also implement more general functions which work over all labelled structures. For example,
any functions which traditionally rely on Haskell’s Traversable type class can be implemented straight-
forwardly. We give all as an example, which computes whether all the data in a structure satisfies a
predicate, assuming a suitable function HI-isEmpty : HAI→ 2:

all : 〈F〉L(A)→ (A→ 2)→ 2

all s p = runElim el (part,elts)

where
((−,part),elts) = partition s p

el : 〈Part〉L(A) 2

el = elim� (λ .elimE (λ .elimE HI-isEmpty))

This relies on the fact that all is equivalent to having the second set of a partition be empty.
We can also implement product, which finds the product of all the numbers contained in a labelled

structure:

product : 〈F〉L(N)→ N
product (−,elts) = runElim k (?,elts)

where
k : 〈E〉L(N) N
k = elimE (HI-fold (∗) 0◦ HI-map outr)

http://github.com/byorgey/labelled-structures
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The idea is that we simply “forget” the F-shape, replacing it by an E-shape. Since N forms a commutative
monoid under multiplication we are allowed to eliminate a bag of natural numbers in this way.

We cannot use the same technique to implement more general folds, where we do want to observe
some order, because we are not allowed to observe any order on the elements of a bag. However, it
suffices to have a superimposed List-shape; we just forget the other shape and eliminate the list:

foldr : (L×A→ A→ R)→ R→ 〈F�List〉L(A)→ R

foldr f z ((−, lst),elts) = runElim (elimList f z) (lst,elts)

Furthermore, we can always canonically superimpose a List-shape on species with no symmetries, e.g.
traverseR : 〈R〉L(A)→ 〈R�List〉L(A). In combination with foldr, this gives us the ability to do ordered
folds over the data stored using such species, and corresponds to Haskell’s Foldable type class.

7 Vector mappings

Section 4 introduced the requirements that a mapping− Z⇒− from labels to data must satisfy, and showed
that functions can be used as mappings. Such an implementation is somewhat degenerate, however, in
that it does not make use of the evidence that label sets are finite. The isomorphisms provided to reindex,
append and concat are used, but only in a superficial manner.

Our goal here is to show that we can model low-level concerns such as memory layout, allocation and
manipulation, in a uniform manner for all labelled structures. To model a consecutive block of memory,
we will implement a mapping using finite vectors to store A values. More precisely, we use length-
indexed vectors; this gives a very detailed view of the memory layout, allocation and manipulation
required for storing the data associated with labelled structures. As we will see, for such mappings,
finiteness is crucial, and the finiteness proofs are all computationally relevant.

Concretely, we assume a type Vec : N→U →U of length-indexed vectors, supporting operations

allocateV : (n : N)→ (Finn→ A)→ Vec n A

(!) : Vec n A→ Finn→ A

mapV : (A→ B)→ (Vec n A→ Vec n B)

foldV : R→ (R→ A→ R)→ Vec n A→ R

appendV : Vec m A→ Vec n A→ Vec (m+n) A× (Finm+Finn' Fin(m+n))

concatV : Vec m (Vec n A)→ Vec (m ·n) A× (Finm×Finn' Fin(m ·n))

Note that in addition to computing new vectors, appendV and concatV also yield equivalences which
encode the precise relationship bewteen the indices of the input and output vectors. For example, if
appendV v1 v2 = (v,e), then it must be the case that v1 ! m = v ! (e (inl m)). Similarly, v ! m ! n = v′ !
(e (m,n)) when concatV v = (v′,e).

Given such a type Vec, we may define

(L Z⇒ A) :≡∑
n:N

(bLc ' Finn)×Vec n A.

The idea is that we store not only a vector of the appropriate length, but also an equivalence recording
how the labels correspond to vector indices. We can then implement the required operations as follows:



B. Yorgey, J. Carette, S. Weirich 23

• The implementation of allocate uses the (implicitly provided) proof (n, iso) : FinitebLc to deter-
mine the size of the vector to be allocated, as well as the initial layout of the values.

allocate : (bLc → A)→ (L Z⇒ A)

allocate {n, iso} f = (n, iso−1,allocateV n ( f ◦ iso))

• To reindex, there is no need to allocate a new vector; reindex simply composes the given equality
with the stored equivalence (we elide a technically necessary application of univalence):

reindex i′ (n, i,v) = (n, i◦ i′,v)

This illustrates why we did not simply define (L Z⇒ A) :≡Vec |L| A, using L’s associated finiteness
proof for the indexing. Decoupling the finiteness evidence of the labels from the indexing scheme
for the vector in this way allows us to reindex without any shuffling of data values.

• index is implemented in terms of (!), using the stored equivalence to convert an external label L
into an internal index of type Finn.

• map is implemented straightforwardly in terms of mapV ; since the type L and the length of the
underlying vector are not affected, the proof (bLc ' Finn) can be carried through unchanged.

• At first blush it may seem that zipWith would be equally straightforward to implement in terms of
a function zipWithV : (A→ B→C)→ Vec n A→ Vec n B→ Vec n C (if we had such a function).
The problem, however, is that the (bLc ' Finn) proofs have real computational content: zipping
on labels may not coincide with zipping on indices. Since we want to zip on indices, zipWith must
compose the given equivalences to obtain the correspondence between the label mappings used by
the two input vectors:

zipWith f (n, i1,v1) ( , i2,v2) = (n, i2,v)
where v = allocateV n (λk→ f (v1 ! (i1 ◦ i−1

2 ) k) (v2 ! k))

Note that the output of zipWith f s1 s2 reuses the label equivalence i2 from s2. Of course we could
instead have chosen to reuse i1 instead, but these are the only possible choices. Given the choice
of i2, an optimizing compiler can compile zipWith into in-place update on s2 when it can prove that
the old value is no longer needed.

• append is straightforward to implement via appendV :

append : (bL1c+ bL2c ' bLc)→ (L1 Z⇒ A)→ (L2 Z⇒ A)→ (L Z⇒ A)

append e (n1, i1,v1) (n2, i2,v2) = (n1 +n2,e−1 ◦ (i1 + i2)◦ f ,v)

where (v, f ) = appendV v1 v2

Note that we construct the required label equivalence as the composite

bLc e−1

' bL1c+ bL2c
i1+i2' Finn1 +Finn2

f
' Fin(n1 +n2),

using the provided equivalence e and the index equivalence f returned by appendV .
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• concat is implemented similarly to append: we multiply the sizes and use concatV on the input
vector-of-vectors.

concat : (bL1c×bL2c ' bLc)→ (L1 Z⇒ (L2 Z⇒ A))→ (L Z⇒ A)

concat e (n1, i1,v1) = (n1 ·n2,eqv,v′)

where
n2 = |L2|
(v′, f ) = concatV (mapV (λ (−,−,v2).v2) v)

is2 : Vec n1 (bL2c ' Finn2)

is2 = mapV (λ (−, i2,−).i2) v

We construct the required index equivalence eqv as

bLc e−1

' bL1c×bL2c
i1×id' Finn1×bL2c

∑ is2' Finn1×Finn2
f
' Fin(n1 ·n2),

with the only nontrivial part indicated by the notation ∑ is2: each inner (L2 Z⇒ A) might contain a
different equivalence bL2c ' Finn2. Given a vector of n1-many such equivalences, we “sum” them
to produce an equivalence Finn1×bL2c ' Finn1×Finn2 which uses the Finn1 value as an index
into the vector.

In this instance, the labels are acting like (generalized) “pointers”, and the label equivalences yield
some built-in “pointer indirection”, allowing us to manipulate the labels without incurring a lot of (po-
tentially expensive) allocation and copying. Data structures ultimately have to be stored in memory
somehow, and this gives us a nice “end-to-end” theory that is able to model both high-level concerns as
well as low-level operational details.

Note that when appendV and concatV cannot be optimized to in-place updates, they must allocate an
entire new vector in memory. To avoid this, in exchange for some bookkeeping overhead, we could make
a deep embedding out of the vector operations, turning appendV and concatV (and possibly allocateV and
mapV as well) into constructors in a new data type. This results in something that looks very much like
generalized tries [Hinze, 2000].

8 Labelled Structures in Haskell

Although a language like Agda might have been more appropriate in some ways, we used Haskell be-
cause of its greater emphasis on computation, and the possibility of demonstrating our framework with
“real-world” examples. Another definite benefit of the choice of Haskell is the availability of the lens
library [Kmett], which we use extensively to model equivalences.

On the other hand, doing dependently typed programming in Haskell certainly has its quirks [Lindley
and McBride, 2013]. We make heavy use of GHC’s DataKinds extension [Yorgey et al., 2012] and
existential wrappers in order to simulate dependent types. Often, we are forced to use approximations to
the types we really want, which occasionally gets us into trouble! Porting our code to Agda would likely
be enlightening.
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9 Related work

The work on containers [Abbott et al., 2003a,b, 2004, 2005, Morris and Altenkirch, 2009] also aims to
find a more general theory of data structures which captures a large set of “containers”. The resulting the-
ory is quite elegant. It involves shapes and a family of position types indexed by shapes. More formally,
it is a dependent pair of types A : U and B : A→ U (which they write A�B) which yields a functor
TA�BX defined as Σa : A.XB(a). Roughly, their positions correspond to our labels, their shapes correspond
to our labelled shapes, and the associated functor maps positions to data values, much as our mappings
associate data values to labels. They have developed the theory quite far; as of yet, however, there is
no implementation of containers, nor is there a fully developed dictionary linking concrete structures to
the corresponding abstract container. It is thus difficult to do a deeper comparison of the approaches.
We can nevertheless make a few simple observations. One significant difference is that in the containers
work, each shape is associated with a fixed, inherent set of positions, whereas in our approach a shape
can be used with any type of labels. Furthermore, for them shape is an input, while for us it is part of
what is generated. As a result, with containers, it does not seem that the positions can easily be given
extra structure (the work on quotient containers [Abbott et al., 2004] is quite involved). There are fewer
combinators for containers than for labelled structures: for example, neither the Cartesian product nor
functorial composition seem to be present. Thus there is as of yet no theory of sharing for containers, nor
is there a fine grained theory of storage. Having said all of that, however, containers are not restricted
to finite sets of labels, which makes them more general than labelled structures: there are useful types
(such as streams) which are containers but not labelled structures. And therein seems to be the main
difference: the extra generality allows containers to encapsulate fancier types, while our concreteness
lets us uniformly and easily model low-level concerns.

Shapely types [Jay and Cockett, 1994] are closely related to containers— see Abbott et al. [2003a,
section 8] for a careful explanation of the details. Their results show that shapely types are those contain-
ers which are closest to labelled structures: in many settings of importance, shapely types are discretely
finite containers, which essentially amounts to saying that all shapes give rise to a finite number of po-
sitions (i.e. labels). Shapely types do not explicitly make use of labels at all, but since they involve lists
of data values, one may say that they implicitly make use of labels from Finn. There is thus a close
relationship to our constructive finiteness proofs for label types. Furthermore, there are claims [Jay and
Cockett, 1994] that this also corresponds to information about memory allocation and layout, however
this is not detailed anywhere in the literature.

Another approach is that of Container Types Categorically [Hoogendijk and De Moor, 2000]. They
define containers as monotone endofunctors F on Rel (i.e. relators) which have a membership relation;
this latter concept turns out to be a special kind of lax natural transformation from F to the identity
functor. This approach is again rather difficult to adequately compare to ours. There is again overlap, but
no inclusion in either direction.

From the categorical perspective, stuff types [Baez and Dolan, 2001, Morton, 2006], brilliantly ex-
plained in Byrne’s master’s thesis [2006], are directly related to species. Stuff types are functors from
some arbitrary groupoid X to the groupoid of finite sets and bijections. Faithful stuff types are equivalent
to species. But these work much like containers: stuff types map a structure to its underlying set (which
can be thought of as positions), instead of mapping labels to structures. In a different direction, poly-
nomial functors also generalize species [Kock, 2012], and seem a categorically solid foundation for an
even more general approach to data type constructors. Unfortunately, no one has yet to unravel these def-
initions into something suitable for implementation. Similarly, generalised species of structures [Fiore
et al., 2008] may also be another interesting direction. But in all these cases, there remains much work
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to be done to bridge theory and practice.
Species have been the basis for many implementations in the area of enumerative combinatorics,

such as Darwin [Bergeron and Pichet, 1985], ΛϒΩ [Flajolet et al., 1989], combstruct [Flajolet and
Salvy, 1995], Aldor-Combinat [Hemmecke and Rubey, 2006] and MuPAD-Combinat [Hivert and Thiéry,
2004]. Most do not model the full spectrum of species combinators, but make up for it by implementing
very sophisticated algorithms for enumeration and generation, both exhaustive and random. The Haskell
species package [Yorgey, 2010, 2012] is a fairly direct implementation of the theory of species, without
attempting to use this theory as a foundation for data structures.

Lastly, we should note that we have used but a small fraction of the theory of species. Bergeron et al.
[1998] alone still contains a vast trove of further examples (sometimes buried deep in the exercises!) of
relevance to programming. We have also not yet really touched the calculus aspects of the theory; while
the derivative is by now well-known, integration [Rajan, 1993] has not really been explored. There are
also new variants on species [Schmitt, 1993, Menni, 2008, Maia and Méndez, 2008, Aguiar and Mahajan,
2010] with nontrivial applications to combinatorics, and possible applications to programming as well.
Species have even been applied to the study of attribute grammars [Mishna, 2003].

10 Future work

We have only started our translation of the theory of species to constructive type theory, but already many
different threads of work are clear to us.

Capture more extant theory. Several of the species operations (such as pointing, functorial composi-
tion and arithmetic product) seem quite powerful, but we have yet to leverage them properly. Similarly,
we have made very little use of symmetry beyond the extreme cases (ADTs have none, and E has all
symmetries). For example, a cycle is like a list, except that it is invariant under cyclic rotation of its
labels. One area where cycles are especially useful is in computational geometry: we can represent an
(oriented) polygon, for example, as a labelled cycle shape, with each label mapping to a point in space.

We have also not yet pursued weighted species, multisorted species, nor virtual species, all of which
look quite promising for applications. We can also investigate other categories of labels: for example, L-
species [Joyal, 1986], [Bergeron et al., 1998, chap. 5] use linearly ordered labels; the link with Girard’s
normal functors [Girard, 1988] is also worth pursuing in more detail. We firmly believe that alternate
categories of labels will have significant benefits in a computational setting.

It is worth noting that much of the power of the theory of species in the context of combinatorics
can be traced to fruitful homomorphisms between algebraic descriptions of species and rings of formal
power series. It is worth exploring the computational content of these homomorphisms when ported to a
constructive setting.

Another route of investigation are tensorial species [Joyal, 1986, chap. 4], which are functors to Vect
rather than Set. These seem to be directly related to our vector mappings (section 7).

Lastly, there are several powerful theorems (like the molecular decomposition and the implicit species
theorem) that we have yet to leverage. In the case of (small) finitary species, the molecular decompo-
sition theorem could be used as a powerful means to specialize complex species code down to much
simpler operations on a few well understood cases.

Memory allocation One of the most intriguing aspects of this elaboration of labelled structures are the
close links with memory allocation and layout. This could lead to a uniform mechanism for unboxing of
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algebraic data types, at least when their size is statically known (or even statically known to be bounded
and small). We feel like we have just scratched the surface of this link. Combined with an appropriate
theory of structured labels (to handle multi-dimensional arrays in a principled manner), we hope to be
able to give a more uniform explanation for various memory layout strategies commonly used in high-
performance linear algebra computations.

Along with this, there is a particular labelled structure, subset, which is particularly interesting.
Combinatorially, it is equivalent to a partition, i.e. E�E. However, semantically a subset corresponds to
only the left component of that product, and the right component should be ignored. In other words, we
can use subset to indicate that only a subset of labels need be stored.

Categorical requirements As is clear from the species literature, there are quite a number of useful
variations in the exact categories used for species. We have not been able to find a systematic treatment
giving minimal assumptions required for the validity of the various constructions (sum, product, cartesian
product, etc). We plan to pursue this quite formally, by first porting our implementation to Agda, as a
means to prove the various properties.

In particular, outside of combinatorial uses, it is unclear exactly where finiteness is crucial.

HoTT and reversible programming The links with homotopy type theory run deeper than what we
have used here, and deserved to be explored. For example, lists as ADTs are unique (for each size),
whereas here there are many lists as labelled structures (for each size), although all of them are equiv-
alent. This joins up nicely with HoTT, which teaches us to use equivalences rather than quotients. The
groupoid of equivalences of labels is related to the identity type of the label set – though details obviously
need to be worked out.

Another link is with reversible programming, and more particularly with the language Π of [James
and Sabry, 2012]. While we use arbitrary isomorphisms between finite sets, Π is a convenient language
in which to write (and reason about) those isomorphisms.
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