A normal form algorithm for
piecewise functions

Jacques Carette

caretteldmcmaster.ca

McMaster University

| Overview

* Observations

* Definitions

* Arithmetic and normal form
* Complexity

* Niceties

* Extensions

| Observations

* R is linearly ordered
= induces an order on domain decompositions

| Observations

* R is linearly ordered
= induces an order on domain decompositions

* IS used twice In

f(a:){_x x <0

T otherwise.

| Observations

* Algebraic properties of functions come (mostly) from
those of the codomain.

+:Y XY —=Y
iInduces a function
+: (X —=2Y)x(X—=Y)—= (X —=Y)

by
(f+9)(x) = f(z)+g(x)

| Observations

* Algebraic properties of functions come (mostly) from
those of the codomain.

+:Y XY =Y
induces a function
+: (X —=2Y)x(X—=Y)—= (X —=Y)

by
(f+9)(x) = f(z)+g(x)

* Composition ruins everything!

| Observations

Eager evaluation can be a problem:

(1/z 2<0
flx)=<¢23 =0
| 2/x otherwise.

| Definitions

Definition. A range partition 'R of a linearly ordered set A is a finite
set B of points A\ < Ao < ... < A\, along with the natural
decomposition of A into disjoint subsets A1, ..., A, 1 where

AM={rxeA|z<)}

A; ::{$€A‘)\i_1<23<)\7;},7::2,...,7”L
At :={x e A\ <z}

| Definitions

Definition. A piecewise expression is a function from a range
partition to a set S.

Example. Taking A = R, the range partition R generated by {0},
and S = {x*, 23} then f : R — S defined by

/

T’ 2= M
f(z)=Xa2% 2z=0
\x3 z = No,

LS a plecewise expression.

| Definitions

Definition. Ler S be a set of functions. Then a piecewise expression
f : R — S will be called a piecewise operator.

Using S = {y — —y,y — 0,y — y}, we can write abs as the
following piecewise operator:

)
y— —y <0
abs(z) =<y—0 x=0
Y=y x > 0.

Of course we really want f(z)(x).

| On notation

\ hn‘|‘1 ('CC)

usual

r < M\
ZE:)\l
T < Ay
ZE:)\Q

T = A\,
Ap, < X

’

g1
g2
g3
g4

g2n

r € M\
ZE:)\l
r € Ao
513:)\2

T = A\,

L 92nt1 T € Apia

precise

| Definitions

Definition. An effective domain D is a pair (F,~), where

1. F: 0" — V isa set of functions (of varied arity n)

2. ~is a function on F' that decides extensional equivalence.
Two functions f,qg € F' are said to be extensionally equivalent if
Vo € O", either f and g are both defined and f(x) = g(x), or
neither f nor g are defined. Denoted f ~ q.

1. the functions in F' can be partial,

2. ~ decides equivalence, not equality, and

3. ~ is defined for F', not O nor V. |

| Arithmetic

See picture...

| Simplification

((

y——y <0 Y=y x <0
Jy—0 x=0 +y—0 x=0 —
\y+—y otherwise. |y~ —y otherwise.

(y—0 z<0
Ty—0 =0
Ly — 0 otherwise.

But also...

(y — 0 x<0
y—y? =0
\y— 0 otherwise.

_/\

|

| Algorithm 1

* Prototype algorithm quickly in Maple
* Code it again with static types for correctness

¢ type ("a,’b) endpiece = {fn : ("a —> "b)} ;;
type ("a,’b) middlepiece =
{left_fn: ("a->"b); pt_fn : ("a -> "b); right_pt : "a}
and ("a,’b) piecewise = (('a,’b) middlepiece) array *

("a,’"b) endpiece ;;

|

Algorithm 1

let normalform (normal: ("a->"b) —-—> ("a->"b))

((a,e):("a,’b) plecewise) : ('a,’b) plecewise =

let pnormal y =

{y with left_fn = normal y.left_fn; pt_fn = normal y.pt_fn}

and canmerge a b = a.left_fn == a.pt_fn && a.pt_fn == b.left_fn

and merge a b =

in

{left_fn = a.left_fn; pt_fn = b.pt_fn; right_pt = b.right_pt}

let b = Array.map pnormal a
and newe = {fn = normal (e.fn)}
and 7 = ref O

and n = Array.length a

in

Algorithm 1

if n=0 then
(b, newe)
else begin
for 1=1 to n-1 do
if canmerge b.(!3j) b. (1) then
b.(!3J) <— merge b.(!73) b. (1)
else
J =17+ 1;
done;
if b.(!'73).left_fn==b. (!]j) .pt_fn &&
b.(!3).pt_fn==newe.fn then
(Array.sub b 0 !3, newe)
else
(Array.sub b 0 (!3+1), newe)

end; ;

| Normal form

* Theorem: preserves extensional equivalence

| Normal form

* Theorem: preserves extensional equivalence
* |s not a normal form

| Normal form

* Theorem: preserves extensional equivalence
* |s not a normal form

* |s a normal form when functions at the isolated points are
related to one neighbour.

| Normal form

* Theorem: preserves extensional equivalence
* |s not a normal form

* |s a normal form when functions at the isolated points are
related to one neighbour.

* |n general: need to denest for a canonical form

| Normal form

e For a normal form: must evaluate

® Jet canmerge a b =
((a.left _fn = b.left fn) &&
(a.left_fn a.right_pt == a.pt_fn a.right_pt))

® Need ~ on the codomain

| Complexity

* Previous work: based on step function

* Exponential complexity in number of breakpoints
* Qurs: linear in number breakpoints

* But cost can still be dominated by base arithmetic

| Niceties

* Normalization of user input
* Left-to-right semantics

| Extensions

* General linearly ordered spaces

* Piecewise functions with mixed open, closed, clopen
intervals

* Spaces given by finite decidable symbolic predicates
* Efficient denesting

	Overview
	Observations
	Observations
	Observations
	Definitions
	Definitions
	Definitions
	On notation
	Definitions
	Arithmetic
	Simplification
	Algorithm 1
	Algorithm 1
	Algorithm 1
	Normal form
	Normal form
	Complexity
	Niceties
	Extensions

