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1 Short Questions

1.1 Question by Imre Bdrdny, Endre Makai, Jr., Horst Martini,
and Valeriu Soltan

The problem posed below can also be found in the article [27] (p. 469) written by
the second and third of its posers.

Let X C R?. Following Klee, one calls x’, x” € X (where x’ # x”) antipodal
if there are different parallel supporting hyperplanes H’, H” of convX such that
x' € H' and x” € H” (cf. [26], p. 420). Moreover, X C R is antipodal if for
all x’,x” € X with x’ # x” we have that x” and x” are antipodal. Answering a
problem of Erdés and Klee, Danzer and Griinbaum [25] proved that for X C RY, if
X is antipodal, then | X | < 2¢. This is sharp for the vertices of a parallelotope.

We pose a generalization of this theorem:

Question 1. Suppose S is a set of segments in R? such that for every s',s" € S
with s' # s” there are different parallel supporting hyperplanes H', H" of the
convex hull conv( J{s : s € S}), such that s’ C H' and s”" C H". Then is it true
that |S| < 29717

Comments. If true, this would be sharp: an example would be the set of all edges
of a parallelotope, parallel to a given edge.

Of course, more generally, we may consider a set Sy of k-simplices in R, which
satisfy the word-for-word analogue of the above property. Is it true, that then |Sy| <
297k 9 If true, this would be sharp: an example would be simplices on all k-faces of
a parallelotope, parallel to a given k-face. Here 1 < k < d — 2. (Observe that for
k = d — 1 the statement is evidently true.)

I. Talata, (Oral Communication, unpublished), proved the case d = 3and k = 1.

1.2 Question by Kdroly Bezdek

A plank is a closed region of the d-dimensional Euclidean space E¢ bounded by
a pair of parallel hyperplanes. The width of a plank is the distance between its
boundary hyperplanes.

Question 2. Given a family of planks whose sum of widths is smaller than 2, what
is the maximum volume of the part of the unit ball in B¢ that can be covered by the
planks?

Comments. One might expect that the maximum volume in question is reached
when the planks do not overlap and their union forms one plank concentric with the
unit ball. Indeed, this is so in E*. For a somewhat stronger statement in E3 and its
proof see Theorem 4.5.2 in [28]. The above question and the expected answer in two
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dimensions are motivated by the well-known solution (attributed to A. Tarski, 1932)
of a problem on covering the unit circle by a family of planks. (For more details we
refer the interested reader to Chap. 4 of [28].)

Recall that S¢ stands for the d -dimensional unit sphere in (d + 1)-dimensional
Euclidean space E?*!', d > 2. A spherically convex body is a closed, spherically
convex subset K of S? with interior points and lying in some closed hemisphere,
thus, the intersection of S? with a (d + 1)-dimensional closed convex cone of E¢*!
different from E¢*!. The inradius r(K) of K is the spherical radius of the largest
spherical ball contained in K.

Question 3. Let the spherically convex bodies Ky, ..., K, cover the spherical ball
B of radius r(B) < % inS?, d > 2. Then prove or disprove that ) i, r (K;)>r(B).

Comments. R. Schneider and the author [29] have proved the following related
result: If the spherically convex bodies Ki, ..., K, cover the spherical ball B of
radius r(B) > Z in $,d > 2, then }_;_, r(K;) > r(B). Furthermore, we note
that the Euclidean analogue of the latter result has been proved by V. Kadets in [30]

using an approach completely different from the one of [29].

1.3 Question by Peter Brass

Question 4. s it true that for each set of points in general position that results
from an J/n x /n grid in three-dimensional space by a small perturbation, every
triangulation of the set consists of at most O (n3/ 2) simplices?

Comments. Any set of n points in three-dimensional space that is in general
position allows many different triangulations, and unlike in the two-dimensional
situation, different numbers of simplices are possible. Any set of n points has a
triangulation with O(n) simplices, but it can have much larger triangulations, up to
) (nz) But some point sets do not allow that large triangulations. I believe that for
the perturbed-grid-square O (n*/?) is the maximum. For the perturbed-grid-cube I
have a bound of O (nS/ 3), which is not sharp; the bound of O (n3/ 2) would be sharp
for the perturbed-grid-squares.

1.4 Question by Antoine Deza

An arrangement 74, of n hyperplanes in dimension d is simple if any d
hyperplanes intersect at a distinct point. The d-dimensional polyhedra defined by
the hyperplanes of an arrangement <7, are called the cells of 27, ,. The bounded
facets of an unbounded cell are called external. Let @,/ (d,n) be the minimum
number of external facets for any simple arrangement defined by n hyperplanes
in dimension d.
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Question 5. We hypothesize that @/ (d,n + 1) > @ (d,n) + @ (d — 1,n) for
n > d > 3, and that the inequality is satisfied with equality for d = 3 and n > 6,
ie, ®y(3,n) =n*—3n+4forn > 6.

Comments. The hypothesized inequality holds for n=d +1 since @ (d,d+1) =
d+1land @,(d,d +2) = d(d + 1). Ford = 2, we have @,(2,n) = 2(n — 1)
for n > 4 and, thus, ®,2,n + 1) = ®,(2,n) + @(1,n) for n > 4 since
®,/(1,n) = 2. The hypothesized inequality holds for all know values of @ (d, n)
and is satisfied with equality for (d,n) = (3, 6) and (3, 7), see [31]. A strengthening
of the lower bound of @, (3,n) > n(n —2)/3 + 2 would improve the upper bound
for the average diameter of a bounded cell of a simple arrangement of n hyperplanes
in dimension 3. We refer to [32] for more details about the relation of the average
diameter of a bounded cell of a simple arrangement of n hyperplanes in dimension
d to @4 (d, n), and to the Hirsch conjecture recently disproved by Santos [33].

1.5 Question by Gdbor Fejes Toth

The maximum volume of the intersection of a fixed ball in B? and a variable simplex
of given volume V is attained when the simplex is regular and concentric with the
ball. This statement easily follows by Steiner symmetrization.

Question 6. Show that the above statement holds true in spherical and hyperbolic
space as well.

Comments. Apart of the two-dimensional case the problem is open. If true,
the statement has some important consequences. It implies that the simplex of
maximum volume inscribed in a ball in ¢ or H? is regular, results proved by
Boroczky [34] and Peyerimhoff [35], respectively. It also implies the conjecture
that the simplex of minimum volume circumscribed a ball in S¢ or H? is regular.
For the spherical case the statement implies the following: The volume of the part
of S covered by d + 2 congruent balls attains its maximum if the centers of the
balls lie in the vertices of a regular simplex.

1.6 Question by Wiodzimierz Kuperberg

Question 7. What is the minimum number q(n) of cubes in R" of edge length
smaller than 1 whose union contains a unit cube?

Comments. The smaller cubes in question are not assumed to be parallel (homoth-
etic) to the covered unit cube, for in that case the corresponding minimum number
would be exactly 2", since on one hand, a smaller homothetic cube contains at most
one vertex of the unit cube, and on the other hand, 2" smaller homothetic cubes
suffice to cover the unit cube.
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It is not difficult to prove that g(2) = 3 and that g(n) < n + 1 for every n, but
the exact value of g(n) has not yet been established for any n > 3.

1.7 Question by Jon Lee

Question 8. For n > 2, the Boolean Quadric Polytope &2, is the convex hull in
dimension d = n(n + 1)/2 of the 0/1 solutions to x;x; = y;; foralli < j in
N = {1,2,...,n}. Give a formula or good bounds for the d-dimensional volume

of Z,.

Comments. The polytope &7, is contained in 2, the solution set of the linear
inequalities: y;; < x;, yi; < X;,x; +x; <14 y;;, foralli < jin N.In[36], we
demonstrated that the d-dimensional volume of .2, is 22"~%n!/(2n)!. So this is an
upper bound on the d -dimensional volume of &7,. We would like to see a significant
improvement in this upper bound and/or a non-trivial lower bound. There is quite a
lot known about further linear inequalities satisfied by &7,, so there are avenues to
explore for trying to get a significant improvement in the upper bound.

1.8 Question by Horst Martini

Question 9. Characterize geometrically those n-simplices in E*, n > 3, for which
the incenter lies on the Euler line.

Comments. It is well known that for any triangle T in E? the circumcenter C, the
centroid S, the orthocenter O, and the center F of the nine-point circle lie on one
line—the Euler line e of T. It is also known that the incenter I of T lies on e if and
only if T is isosceles, with e as axis of symmetry. No analogous characterization is
known for n-simplices in E” (n > 3) whose incenter [ lies on their Euler line, which
still is the affine hull of C and §; see the problem posed above. Only the following is
known (see [37]): Let T be an n-dimensional orthocentric simplex (n > 3), i.e., the
n + 1 altitudes of T still have a common point. Then C, S, and I of T are collinear
if and only if T is biregular, which means: The vertex set of T can be partitioned
into two disjoint subsets V, V5, such that convV, convV, form regular simplices and
all segments [x, y], x € V], y € V5, are of equal length. This directly generalizes the
planar result and supports somewhat the “philosophy” that orthocentric n-simplices
(n > 3) are the “true” higher dimensional analogues of triangles.
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1.9 Question by Benjamin Matschke

Conjecture 1. (A Multicolored Carathéodory Conjecture). Letr > 2and N > 1
be integers. N can be assumed to be very large, that is, N > Ny(r) for some Ny(r).
Suppose we are given r(N + 1) points P;; in RY that are indexed by 1 <i < r
and1 < j < N + 1. Assume that 0 € conv{Py;,..., P,j}foralll < j < N + 1.
Assume further that the index set {1,2,..., N + 1} is partitioned as C; & ... & C,,
such that all color classes are small: |Cx| < r — 1 forall 1 < k < m. Then there
existky,....ky+1 € {1,..., 7} such that O € conv{ Py, 1,..., Pxy , ~+1} and for
any two distinct a, b in the same color class Cy we have k, # k.

Comments. This is an—admittedly technical—multicolored version of Bérany’s
colored Carathéodory theorem (1982). If true this conjecture implies the new
colored Tverberg theorem by Blagojevi¢, Ziegler and me (2009), also for non-
primes r. Hence, the conjecture is particularly interesting when r is not a prime
and r — 1 divides N. The first interesting case is ¥ = 4 and N = 9, which, if true,
would imply the new colored Tverberg theorem in the smallest open non-prime case
r=4andd = 2.

1.10 Question by Valeriu Soltan

Conjecture 2. If K C R”" is a compact convex set and ni,...,n; are positive
integers with ny + .-+ + ny; = n + 1, then, for every point z € K, non-empty
faces Fi, ..., F; of K exist such that

z€econv(FyU---U Fy)

and
dimF; <n; —1 forall i =1,...,s.

Comments. For convex polytopes K the conjecture holds true.

2 Comprehensive Research Problems

2.1 The Contact Number Problem of Unit Sphere Packings
by Kdroly Bezdek

Let B be a ball in the d-dimensional Euclidean space E¢. Then the contact graph of
an arbitrary finite packing by non-overlapping translates of B in E¢ is the (simple)
graph whose vertices correspond to the packing elements and whose two vertices are
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connected by an edge if and only if the corresponding two packing elements touch
each other. One of the most basic questions on contact graphs is to find the maximum
number of edges that a contact graph of n non-overlapping translates of the given
Euclidean ball B can have in E¢. Harborth [44] proved the following remarkable
result on the contact graphs of congruent circular disk packings in [E?. The maximum
number of touching pairs in a packing of n congruent circular disks in [E? is precisely
|3n — +/12n — 3]. The analogue question in the hyperbolic plane has been studied
by Bowen in [42]. We prefer to quote his result in the following geometric way:
Consider circle packings in the hyperbolic plane, by finitely many congruent circles,
which maximize the number of touching pairs for the given number of congruent
circles. Then such a packing must have all of its centers located on the vertices of
a triangulation of the hyperbolic plane by congruent equilateral triangles, provided
the diameter D of the circles is such that an equilateral triangle in the hyperbolic
plane of side length D has each of its angles equal to 27” for some N > 6.

Now, we are ready to phrase the Contact Number Problem of finite congruent
sphere packings in [E3. For a given positive integer n > 2 find the largest number
C(n) of touching pairs in a packing of n congruent balls in E>. One can regard this
problem as a combinatorial relative of the long-standing Kepler conjecture on the
densest unit sphere packings in E3, which has been recently proved by Hales [43].
It is natural to continue with the following question.

Problem 1. Find those positive integers n for which C(n) can be achieved in a
packing of 7 unit balls in [E? consisting of parallel layers of unit balls each being a
subset of the densest infinite hexagonal layer of unit balls.

Harborth’s result [44] implies in a straightforward way that if the maximum
number of touching pairs in packings of n congruent circular disks in E? is denoted
by c(n), then

3n —

lim =W 15— 3464
n—+00 \/ﬁ

The author [39] has proved the following estimates in higher dimensions. The
number of touching pairs in an arbitrary packing of # > 1 unit balls in E¢, d > 3 is
less than

1 1 —d=1 4

Erd n— 2—d§ g, on
where t; stands for the kissing number of a unit ball in E4 (i.e., it denotes the
maximum number of non-overlapping unit balls of E that can touch a given unit
ball in E¢) and §, denotes the largest possible density for (infinite) packings of unit
balls in E¢. Now, recall that on the one hand, according to the well-known theorem
of Kabatiansky and Levenshtein [47] 7, < 204014(1+o(1) apd §, < 270-599d(1+o(l)
as d — +o0 on the other hand, 73 = 12 (for the first complete proof see [48])
moreover, according to the recent breakthrough result of Hales [43] §; = JLE

Thus, by combining the above results together we get that the number of touching
pairs in an arbitrary packing of # > 1 unit balls in E is less than
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120.401d(l+0(1)) n— 12—0.401([1—1)(1—0(1)) n i
2

as d — 400 and in particular, it is less than

Wi

1( il )g 6n—0152...n3
n—— —— n3s = on — V. ...Nn
8 \ /138

for d = 3. Next we report on a recent improvement on the latter estimate. In
order, to state that theorem in a proper form we need to introduce a bit of additional
terminology. If & is a packing of n unit balls in E3, then let C(?) stand for the
number of touching pairs in &, that is, let C(4?) denote the number of edges of
the contact graph of & and call it the contact number of &2. Moreover, let C(n) be
the largest C(£2) for packings & of n unit balls in [E*. Finally, let us imagine that
we generate packings of n unit balls in [E? in such a special way that each and every
center of the n unit balls chosen, is a lattice point of the face-centered cubic lattice
A fc. with shortest non-zero lattice vector of length 2. Then let Cs..(n) denote the
largest possible contact number of all packings of # unit balls obtained in this way.
Before stating our main theorem we make the following comments. First, recall that
according to [43] the lattice unit sphere packing generated by A .. gives the largest
possible density for unit ball packings in E?, namely JLE with each ball touched by
12 others such that their centers form the vertices of a cuboctahedron. Second, it is
easy to see that Cr..(2) = C(2) = 1,Cy.c(3) = C(3) =3,Cy.c(4) = C(4) = 6.
Third, it is natural to conjecture that Cy..(9) = C(9) = 21. Based on the trivial
inequalities C(n+1) > C(n) +3,Cec(n+1) > Cpee(n) +3 valid foralln > 2, it
would follow that Cr..(5) = C(5) = 9, Cyec(6) = C(6) = 12,Cree(7) = C(7) =
15, and Cyr..(8) = C(8) = 18. In general, clearly C(n) > Cjyc.(n) > 3n — 6.
Furthermore, we note that C(10) > 25,C(11) > 29, and C(12) > 33. In order,
to see that one should take the union U of two regular octahedra of edge length 2
in [E3 such that they share a regular triangle face 7 in common and lie on opposite
sides of it. If we take the unit balls centered at the nine vertices of U, then there
are exactly 21 touching pairs among them. Also, we note that along each side of
T the dihedral angle of U is concave and in fact, it can be completed to 27 by
adding twice the dihedral angle of a regular tetrahedron in [E3. This means that
along each side of T two triangular faces of U meet such that for their four vertices
there exists precisely one point in E* lying outside U and at distance 2 from each
of the four vertices. Finally, if we take the 12 vertices of a cuboctahedron of edge
length 2 in E? along with its center of symmetry, then the 13 unit balls centered
about them have 36 contacts implying that C(13) > 36. Whether in any of the
inequalities C(10) > 25,C(11) > 29,C(12) > 33, and C(13) > 36 we have
equality seems to be an open question. In connection with this problem we call
the reader’s attention to the very recent and highly elegant article of Hayes [45]. It
gives an overview of the computational methods presented in the papers [38] and
[46] that are based on exhaustive enumeration and elementary geometry. The main
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results are: C(9) = 21,C(10) = 25 [38] and C(11) = 29 [46]. However, the
status of the mathematical rigour of the approaches of [38] as well as [46] remains
to be seen. For C(n) in general, when # is an arbitrary positive integer, we have the
following estimates proved in [40] and [41].

Theorem 1.
(i) C(n) < 6n—0.926n% foralln > 2.
37
(ii) Cyec(n) < 6n — %n% =6n— 3.665...n%f0ralln > 2.
(iii) 6n — /4863 < Cec(n) < C(n) forall n = *EED yigh e > 2,
As an immediate result we get

Corollary 1.
6n —C(n)
—

n3

foralln = XEEXD iy e > 2,

0.926 < < /486 =7.862...

The latter claim leads us to the following rather basic question.

on=C) exist?

n3

Problem 2. Does the limit lim,— 4 oo

The following was noted in [39]. Due to the Minkowski difference body method
the family Pk := {t; + K, + K, ..., t, + K} of n translates of the convex body K
in B is a packing if and only if the family Pk, := {t; + Ko, th + Ko, ..., t, + Ko}
of n translates of the symmetric difference body K, := %(K 4+ (-K)) of K'is a
packing in E4. Moreover, the number of touching pairs in the packing Pk is equal
to the number of touching pairs in the packing Zx,. Thus, for this reason and for
the reason that if K is a convex body of constant width in E¢, then K, is a ball of
4, Theorem 1 extends in a straightforward way to translative packings of convex
bodies of constant width in E3.

2.2 On Gram and Euclidean Graph Realizations by Monique
Laurent and Antonios Varvitsiotis

We present two open problems about the graph parameters ed(G), gd(G) and
v~ (G), which deal with some geometric realizations of graphs.

Problem 3.  Determine the validity of the inequality:
ed(VG) <ed(G) + 1, (1

relating the Euclidean dimension of a graph G and of its suspension VG.

Comments: Given a graph G = ([n], E), its Euclidean dimension is the graph
parameter ed(G) which is defined as the smallest integer k > 1 such that, for every
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family of vectors py, ..., p,, there exists another family of vectors ¢, ..., g, € R¥
satisfying

Ipi = pill2=llgi —q;jll2. Vii.j} € E.

The suspension graph VG is obtained from G by adding to it a new node and making
it adjacent to all the nodes of G.

The parameter ed(G) was studied in [49] where it is shown that for any fixed
k > 1, the class of graphs satisfying ed(G) < k is closed under the operation of
taking minors. That is, the Euclidean dimension does not increase if one deletes or
contracts an edge ¢ in G: ed(G \ ¢),ed(G/e) < ed(G). Then, the Graph Minor
Theorem of Robertson and Seymour implies that, for any fixed k > 1, there exists
a finite family of graphs G, ... G, having the property that ed(G) < k if and only
if G does not have any minor isomorphic to any of Gy, ..., Gy, . In other words, the
graph property ed(G) < k can be characterized by finitely many minimal forbidden
minors. In [49, 50] the full list of minimal forbidden minors is identified for k €
{1, 2, 3}. Specifically, Ky+, is the only minimal forbidden minor when k € {1, 2}
and, for ed(G) < 3, there are two minimal forbidden minors: K5 and the octahedral
graph K> 5.

The following inequality is shown in [54], relating the Euclidean dimension of a
graph and of its suspension:

ed(VG) = ed(G) + 1. )

Thus our first problem asks whether the converse inequality holds or, equivalently,
whether it is true that

ed(VG) = ed(G) + 1. 3)

By combining results from [49] and [54] it follows that the answer is positive when
ed(G) < 3,i.e., when G is K5 and K3 » »-minor free.

In a similar manner, the Gram dimension gd(G) is defined as the smallest integer
k > 1 such that, for every family of vectors py, ..., p,, there exists another family
of vectors g1, . .., q, € R¥ satisfying

Ipill2 = llgill2. Vi €[n], and pp; =q/q;. ¥{i.j} € E.

This parameter was introduced in [53, 54] and its study is motivated by its
connection with the low rank positive semidefinite matrix completion problem.

In [53,54] it is shown that, for any fixed k > 1, the class of graphs satisfying
2d(G) < k is closed under taking minors. Moreover, it is shown that Ky is the
only minimal forbidden minor for k € {1, 2,3} and that K5 and K3, are the only
minimal forbidden minors for the graph property gd(G) < 4. We also show the
following equality, which relates the Gram dimension of a graph to the Euclidean
dimension of its suspension:

2d(G) = ed(VG). 4)
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Combining with (2), we obtain that gd(G) > ed(G) + 1 for any graph G. Therefore,
Problem 1 is equivalent to the validity of the following equality:

gd(G) =ed(G) + 1. )
Problem 4. Determine the validity of the inequality
gd(G) =v7(G), (6)

relating the Gram dimension gd(G) and the van der Holst parameter v= (G).

Comments: Let .~} denote the cone of n X n positive semidefinite matrices. Given
a graph G = ([n], E) consider the cone

C(G)={MeS] :M;=0for{i,j}  Eandi # j}.

The parameter v=(G) is defined as the maximum corank of a matrix M € % (G)
satisfying the following nondegeneracy property:

VX e MX =0 X;=0VieV,X;,=0V{,jleE = X =0,

known as the Strong Arnold Property. This graph parameter was introduced in [52]
and its study is motivated by its relation to the celebrated graph invariant @ (G) of
Colin de Verdiere [51].

In [52] is shown that, for any fixed k > 1, the class of graphs with v=(G) < k is
closed under taking minors. Additionally, the full list of minimal forbidden minors
was determined for k € {1, 2,3, 4}. Surprisingly, it turns out that the forbidden
minors for the property v=(G) < k coincide with the forbidden minors for the
property gd(G) < k, foreach k € {1,2,3,4}.

This observation prompted the investigation of possible links between these two
parameters. A first result in this direction was established in [53, 54] where it was
shown that, for any graph G,

gd(G) = v=(G). ™

Our second problem asks for the validity of the converse inequality. In other words,
is it true that the two graph parameters gd(-) and v=(-) coincide? We know that
the answer is positive, e.g., for the graphs with Gram dimension at most 4, and for
chordal graphs.
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2.3 Non-convex Optimization Approaches to Network
Localization by Anthony Man-Cho So and Yinyu Ye

Determining the positions of a set of n points in Euclidean space based on
knowledge of a subset of the (g) pairwise distances is a fundamental geometric prob-
lem with numerous applications. For instance, in location-aware networks—which
support a host of services such as emergency response [14], mobile advertising [18],
and target tracking [23]—wireless nodes that are deployed in an area of interest
must be able to localize themselves using distance measurements obtained from
direct communications with their neighbors. Another example can be found in
biochemistry, where the positions of atoms in a molecule—which provide important
information about the properties and functions of the molecule—are typically
determined from a set of geometric constraints that include a subset of the inter-
atomic distances [6]. As the above examples suggest, in many applications of the
localization problem, it is only meaningful to localize the points in an Euclidean
space of given dimension, say in R? or R*. Unfortunately, such a fixed-dimensional
localization problem is intractable in general [17]. In fact, as shown in Biswas
and Ye [5], the d-dimensional localization problem can be formulated as a rank-
constrained semidefinite program (SDP), namely,

find Z € R
such that &(Z) = u, )
Z >0, rank(Z) < d.

Here, the linear operator Z +— &(Z) = (tr(E | Z), ..., tr(E,,Z)) € R™ and vector
u € R™ are determined by the available distance measurements, d > 1 is the target
dimension in which the input instance should be localized, and Z > 0 means that Z
is a symmetric positive semidefinite matrix. On the other hand, by dropping the non-
convex constraint rank(Z) < d, one immediately obtains an SDP relaxation of the
fixed-dimensional localization problem. Such a relaxation and its variants have been
extensively studied in recent years (see, e.g., [3,4,7,9,10,12,16,19,21,22,24]) and
are very natural as far as polynomial-time solvability is concerned. Moreover, they
have the added advantage that in many cases, localization accuracy guarantees can
be established; see, e.g., [10,20-22,24]. However, standard interior-point algorithms
for solving SDPs will always return the solution with the highest rank [21], which
means that they are unlikely to deliver a feasible solution to the rank-constrained
problem (8) in general. Thus, it is interesting to ask whether there are other efficient
approaches for finding low-rank solutions to the SDP relaxation of (8).

In a recent work, Ji et al. [11] depart from the convex relaxation paradigm and
develop a non-convex optimization approach for tackling Problem (8). Such an
approach is motivated by ideas from low-rank matrix recovery—a topic that has
received significant interest recently; see, e.g., the website [15] and the references
therein. Specifically, for a given p € (0, 1], consider the following regularized
version of Problem (8):
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n
I'* = minimize f,(Z) = Zai(z)p
i=1 )
subjectto  &(Z) = u,
Z > 0.

Here, 0;(Z) is the i-th singular value of Z. The value (fp(Z))‘/” is known as
the Schatten p-quasi-norm of Z, and it is easy to verify that f;(Z) = tr(Z) and
fp(Z) — rank(Z) as p N\ 0 for all Z > 0. This suggests that the Schatten quasi-
norms can be effective in finding a low-rank solution to Problem (9), especially
when p is small. However, a fundamental challenge associated with Problem (9) is
that the function Z +— f,(Z) is non-convex when p € (0, 1). Indeed, the problem
of minimizing the Schatten p-quasi-norm over a system of linear matrix inequalities
is NP-hard for any fixed p € (0,1); cf. [8]. To circumvent this difficulty, Ji et
al. [11] design a potential reduction algorithm and show that it can approximate a
first-order critical point of Problem (9) to any given accuracy in polynomial time. In
other words, given an accuracy level ¢ > 0, the algorithm will return a solution
Z in polynomial time that is feasible for (9) and satisfies one of the following
conditions:

(a) Z is an e-optimal solution, i.e., fp(Z) <e.
(b) Z isan e-first-order critical point, i.e., there exists a multiplier y € R™ such that

m
pAPT =3 "5 (UTEU) = 0

i=1
and
tr(pZI’ - Z;_nzl )_/,EIZ) <
Io(Z)
where Z = UAUT is the spectral decomposition of Z with U € R"™,

A = Diag(A;,...,A,) € R and r = rank(Z), and Z? = UAPUT =
UDiag()kp,...,/\f)UT.

0<

’

Moreover, it is shown in [11] that if the input instance is universally rigid,' then the
potential reduction algorithm can localize it in the required dimension, even though
the algorithm may only return a first-order critical point. This indicates that the
localizability guarantee of the potential reduction algorithm is at least as strong as
that of the SDP relaxations in [4,5]. Computationally, it is observed that the potential
reduction algorithm can localize some of the globally rigid® but not universally rigid

A localization instance is said to be universally rigid if it has a unique (up to congruences)
localization in any Euclidean space.

2A localization instance is said to be globally rigid in R¢ if it has a unique (up to congruences)
localization in R?.
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input instances in the required dimension [11]. It is worth noting that by an earlier
result of So and Ye [21], the SDP relaxation of Biswas and Ye [5] will necessarily
fail to localize such instances in the required dimension. This phenomenon strongly
motivates a deeper investigation of the approach proposed in [11].

Problem 5. In view of the above developments, it is clear that there are many
directions for further investigation. One of the most immediate questions is to
understand the power of the non-convex Schatten quasi-norm regularization in the
context of localization. Specifically, can we characterize the class of input instances
that can be localized in the required dimension by the potential reduction algorithm
of Ji et al.? From the results in [11], it is clear that this class will be larger than
that of universally rigid instances. However, it will certainly be smaller than that of
globally rigid instances, since the problem of localizing an arbitrary globally rigid
instance in the required dimension is intractable [2]. This also suggests that some
new rigidity-theoretic notions may be waiting to be discovered.

Along the same direction, it will be interesting to study the rigidity-theoretic
implications of Schatten quasi-norm regularization. A starting point could be to
understand the rigidity-theoretic interpretations of the dual vector y in the definition
of the first-order critical point. This is motivated by an earlier result of So and
Ye [20], which states that each dual variable in the SDP relaxation of Biswas and
Ye [5] corresponds to a stress on an edge of the input graph, and the optimality
conditions of the SDP correspond to a certain equilibrium condition on the input
graph. The work [20] has since motivated or been used to develop other rigidity-
theoretic results (see, e.g., [1, 13]), and a natural question would be whether these
results have counterparts in the Schatten quasi-norm regularization setting.
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