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Abstract— Energy demands of modern datacentres are an
immense concern. An intuitive solution is to turn servers off to
incur less costs. However, the control problem of when to turn
a specific server off, and when to then turn that server back
on, is far from trivial. As such, many different authors have
modeled this problem as an M/M/C queue where each server
can be turned on, with an exponentially distributed setup time,
or turned off instantaneously. We analyse this well-established
model under the asymptotic regime where the number of
servers approaches infinity while the load per server remains
fixed and show that not only are many of the control policies
in the literature equivalent under this regime, but they are also
optimal under any cost function which is non-decreasing in the
expected energy cost and response time.

I. INTRODUCTION

Over the past several years, energy concerns in datacentres
have driven an interest in queueing systems where individual
servers can be turned on to improve performance, and turned
off to save on costs. This interest has led to different authors
studying the same, or similar, queueing models. However,
due to the complexity of the problem, i.e. the choice of cost
function, control policy implemented, model details, etc.,
different conclusions can be drawn from similar underlying
problems. One consequence of this variety is that it is
difficult to confidently draw conclusions which are overar-
ching across the problem domain. To address this issue, we
consider an asymptotic regime, such that when the system
parameters are appropriately scaled up, a general class of
policies is optimal, under all reasonable cost functions. This
asymptotic regime is useful for practical applications, in our
case datacentres with a large number of servers.

To the best of our knowledge, Chen et al. [1] and Sledger
et al. [2] were the first to apply queueing models in the
context of energy-aware datacentres. This work introduced
a queueing model which extends the traditional M/M/C
queue where each of the C servers can be switched on after a
setup delay (to improve performance) and instantly switched
off (to decrease cost). This introduced a control problem:
when should servers be turned on, and when should they
be turned off (if at all)? This question was and currently
remains a topic of interest. Gandhi et al. [3]–[6] produced
a body of work examining this model under the staggered
setup policy, where the number of jobs in the system is equal
to the number of servers both on and in setup when possible,
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and servers turn off when idle. Furthermore, they also studied
the delayed off policy, which extends the staggered setup
policy, by allowing an idle server to wait an exponentially
distributed period of time before it turns off. Mitrani [7]
studied this model where a reserved set of servers are brought
into setup when the number of jobs in the system exceeds a
threshold, and then shuts those servers off once the number of
jobs drops below another threshold. This policy was further
studied in [8]. Xu and Tian [9] examined the model where
e servers turn off when d servers idle. Variations on this
theme of employing threshold policies have been studied by
a number of additional authors, including [10]–[13].

The body of work discussed in the previous paragraph
takes a common approach: propose a policy, choose a cost
function which one wishes to minimize, then evaluate the
performance of the resulting stochastic model. An immediate
observation that can be made about all of the policies consid-
ered is that they all have similar form, in this case a threshold
policy, where thresholds are used to determine when servers
should be turned on or off. In our experience, we observed
that several policies of this form exhibited similar mean
response time performance and similar energy consumption,
when the systems increased in size. Moreover, it appeared
that both the mean response time and energy consumption
were approaching their minimum possible values. Our goal in
this paper is to make this observation precise. In particular,
we identify structural properties of the optimal policy that
lead to a wide range of policies (including all of those
in the previous paragraph) being optimal in an asymptotic
sense. The asymptotic regime studied in this work is a fixed-
utilization, many-server regime, i.e. one where the utilization
(load per server) remains fixed (ρ < 1), while the number of
servers approaches infinity (C →∞).

This work makes the following contributions:
1) We provide an overview of the control problem and

summarize structural properties of the optimal policy
(the latter is a summary of previous work).

2) It is shown that in the fixed-utilization, many-server
regime, any policy satisfying the derived structural
properties minimizes both the expected response time
and expected energy cost, and therefore is optimal
under all cost functions which are non-decreasing in
those metrics.

3) Numerical experiments are conducted to determine
how quickly the asymptotic behaviour is reached, and
it is shown that particular choices of policy parameters
may be used to induce faster convergence to the
minimum values.



Finally, we note that a similar asymptotic approach has
been employed concurrently to our work in Mukherjee et
al. [14]. They consider a model that consists of C queues in
parallel, where a routing decision must be made upon a job’s
arrival to the system. They identify a combined routing and
server control policy that is optimal in the fixed-utilization,
many-server regime. Here, we consider a system with a
central queue, so that the server control decisions can be
coordinated. The combination of the work presented here and
the work in [14] provides a complete picture of the control
problem (at least asymptotically) for both central and parallel
queue architectures.

II. MODEL

The model under study is an M/M/C queue where each
server can be switched on and off, and where turn-offs are
instantaneous, but turn-ons take an exponentially distributed
setup time. Jobs arrive to a central queue following a Poisson
process with rate λ, are processed on a first come first served
basis, and have processing times (job sizes) that are expo-
nentially distributed with rate µ. There are C homogeneous
servers present, each of which can be in one of four energy
states: off, setup, idle, or busy. A server is idle if it is on and
not processing a job. The server becomes busy when it is
processing a job. At any time, a server can be switched off.
Regarding the process of turning a server on, an off server
can transition to setup. Once in setup, the server will remain
there for a time exponentially distributed with rate γ, after
which it will become busy if there is a waiting job; otherwise
it becomes idle. A system which meets the criteria of the
above model is said to be an energy-aware system.

The system is defined by the four-tuple (C, λ, µ, γ), where
C is the number of servers, and λ, µ, and γ are the arrival,
processing, and setup rates, respectively. The utilization
(load per server) ρ is defined as ρ = λ/(Cµ). Moreover,
the well-known M/M/C queue is referred to by a three-
tuple (C, λ, µ), with the traditional interpretation of those
parameters. In this work a specific control policy for turning
on and off servers is denoted by π and our control problem is
to determine a control policy that minimizes an appropriate
cost function.

The cost function that we consider captures the tradeoff
between efficacy (response time performance) and efficiency
(energy costs). The expected response time, denoted by E[R],
is employed to evaluate efficacy, while the expected energy
cost, denoted by E[E], is employed to evaluate efficiency.
The expected response time is the expected amount of time
a job spends in the system, from arrival to departure. The
expected energy cost takes a little more care to define.
Each of the energy states (off, idle, busy, and setup) has
a corresponding energy consumption rate. Let these rates
be denoted by EOff, EIdle, EBusy, and ESetup, respectively.
Furthermore, let the random variables COff, CIdle, CBusy, and
CSetup denote the number of servers which are off, idle, busy,
or in setup, respectively (in steady-state). Then

E[E] = EOffE[COff] + EIdleE[CIdle]

+ EBusyE[CBusy] + ESetupE[CSetup]. (1)

Without loss of generality, it is assumed that EBusy = 1 and
the remaining rates are appropriately normalized. Further-
more, it is also assumed that EIdle < ESetup, EIdle < EBusy,
and EOff = 0, although the latter could be relaxed to account
for lower energy consumption states where the server cannot
process jobs, e.g. sleep states.

Common cost functions considered are E[R]E[E] and
E[R] + βE[E] for some parameter β > 0. The former takes
the viewpoint that a decrease by a proportion p in either term
is of equal value, while the second allows one to weight the
terms as desired in a linear cost function. We would like to
make more general observations, so consider the following
family of cost functions.

Definition 1: Well-Formed Cost Function: A cost func-
tion is well-formed if it is non-decreasing in, dependent on,
and only dependent on, the expected response time, E[R],
and the expected energy costs, E[E].

In Section III, we first provide several key structural
properties that optimal server control policies satisfy - these
are taken from [15], [16], but are repeated here, to provide
the reader with a self-contained overview of our approach
to the control problem. We then proceed in Section IV to
show that control policies satisfying these structural results
(plus some extra conditions), are asymptotically optimal for
all well-formed cost functions, in a fixed-utilization, many-
server asymptotic regime.

III. STRUCTURAL RESULTS

Three key structural results are given in this section.
Further details are provided in [15], [16], where these results
(and several others) are proved within a Markov Decision
Process (MDP) framework under the assumption that the cost
function is linear, i.e. is of the form E[R] + βE[E].

We define the state of the system to be (n1, n2, n3), where
n1 denotes the number of jobs in the system, n2 denotes the
number of servers either idle or busy (the number of servers
on), and n3 denotes the number of servers in setup. The first
result shows that the decision to turn on a server follows a
threshold policy, i.e. if in state (n1, n2, n3) it is optimal to
begin turning on an additional i servers, then in state (n1 +
1, n2, n3) it is optimal to turn on at least i additional servers.

Theorem 1: [16, Theorem 1] The decision to turn on
a specific server follows a threshold policy based on the
number of jobs in the system.
Note that Theorem 1 of [16] actually shows more than this -
the decision to turn a server off also follows a threshold
policy. However, this is not required for our asymptotic
results.

The next result states that it is suboptimal to turn off
servers in an anticipatory manner. While one could not
classify this result as entirely counterintuitive, one may have
thought that if the load on a system were sufficiently small
and the current number of jobs in the system were also



sufficiently small, then it may be advantageous to begin
turning off servers, even if these servers could process jobs.

Theorem 2: [16, Theorem 2] Suppose that βλEIdle < 1.
If the number of jobs in the system is greater than or equal
to the number of servers currently turned on, it is suboptimal
to turn a server off.

The final result of this section demonstrates that the
decision to turn a server on should also not be made in
an anticipatory manner. Again, this result is not completely
intuitive. If the server setups are instantaneous, then this
result is obvious. However, one could think that if setup
times were sufficiently long, that it might be optimal to begin
turning servers on in anticipation of the expected state of
the system once the server finishes its setup. The following
theorem shows that this is not the case.

Theorem 3: [15, Theorem 3] If in state (n1, n2, n3 − 1)
it is optimal to begin turning on the (n3 +n2)th server, then
in state (n1, n2 + 1, n3 − 1) it is suboptimal to turn off the
(n2 + 1)th server.

We now turn to leveraging these structural results to study
how server control policies perform in a fixed-utilization,
many-server asymptotic regime.

IV. FIXED-UTILIZATION, MANY-SERVER ASYMPTOTICS

The previous section gave structural results that partially
describe the optimal policy for well-formed cost functions.
One possibility at this point would be to explore if this
gives sufficient reduction in the possible control actions
to explicitly derive the optimal policy. Unfortunately, to
this point such a derivation has not been possible. One
avenue that we have explored is whether the determined
structure is sufficient to calculate efficiently the performance
of policies. One of our previous works [16] does exactly this
- it provides an efficient algorithmic approach to computing
the performance of systems following the structure described
here, providing insight into several design questions. Upon
performing the work in [16], we became cognizant of the
fact that larger systems appeared to have very similar per-
formance under different control policies that all conformed
to the structure described in Section III. What follows is a
formalization of that observation.

We first formally define the policies which we analyze.
Definition 2: Class A Policy: A policy is said to be a

Class A policy if the following conditions are met:

1) Server setups are invoked following a threshold scheme
with finite thresholds for all servers.

2) A server will never turn off if there is a job which it
could be processing.

Note that these two properties correspond to Theorems 1 and
2, respectively.

Before the second class of policies is given, another defi-
nition must first be introduced. Let XE(s, t) be an indicator
function such that

XE(s, t) =

{
1, if server s is in energy state E at time t,
0, otherwise,

where E ∈ {off, setup, idle, busy}. Then it is said that s is an
always E server if and only if as t→∞, P (XE(s, t) = 1)→
1. As an example, if a server s has a criterion which turns
it on and it is known that the server will always eventually
turn off, but the probability that the turn on criterion is met
approaches 0 as t → ∞, s would be called an always off
server, since as t → ∞, P (Xoff (s, t) = 1) → 1. With these
notions in mind the second class of policies is defined as
follows.

Definition 3: Class B Policy: A policy is said to be a
Class B policy if the following conditions are met:

1) It is a Class A policy.
2) There exists an α < 1 such that the number of always

idle servers is less than (1− ρ)Cα.
3) For all n1 and n2, if a server s turns off when there are

n1 jobs in the system and n2 servers on, then while
there are at least n2 servers on, s will not begin its
setup until there are at least n1 + 1 jobs in the system.

The second condition for Class B policies states that the
number of servers that are always idle cannot be of the same
order as the total number of servers. The third condition
corresponds to Theorem 3. It is worth noting that most
policies studied in the literature are Class B policies, e.g.,
the policies in [3]–[6], [9]–[13], [16] are all Class B policies.
The sets of Class A and Class B policies are denoted by ΠA

and ΠB respectively, and furthermore, for a specific policy
π, E[Rπ] and E[Eπ] denote the expected response time and
expected energy costs under policy π, respectively.

We consider a fixed-utilization, many-server asymptotic
regime. That is, for an energy-aware system S = (C, λ, µ, γ),
the metrics E[R] and E[E] are evaluated as C → ∞ while
ρ = λ/(Cµ) is held constant.

Theorem 4: All policies in ΠA are asymptotically optimal
with regards to expected response time. In other words, given
an energy-aware system, for any πa ∈ ΠA, as λ,C → ∞
and λ/(µC) is fixed to be 0 < ρ < 1, E[Rπa ]→ 1/µ.

While perhaps surprising at first, such a result does have
an intuitive explanation. Informally, there is a significant
proportion of jobs which are served immediately on arrival,
and therefore a significant proportion of jobs have a response
time equal to their processing time. And while it is true that
some jobs will have to wait to be served, whether it be for a
server to complete a job or finish a setup, the number of these
jobs turns out to be negligible under the asymptotic regime.
It is worth noting that Theorem 4 would not necessarily hold
for policies which turned servers off while there are waiting
jobs that they could process. On the other hand, belonging to
ΠA is only a sufficient condition for minimizing the expected
response time. With optimal policies now known for E[R],
our focus shifts to the second cost metric, E[E]. Note that
the appropriate quantity to examine in this case is the energy
cost per job, E[E]/λ, as E[E] diverges as C →∞.

Theorem 5: All policies in ΠB are asymptotically optimal
with regards to expected energy cost. In other words, given
an energy-aware system, for any πb ∈ ΠB , as λ,C → ∞
and λ/(µC) is fixed to 0 < ρ < 1, E[Eπb ]/λ→ EBusy/µ.

Complete details of the proof of Theorem 5 are in [17],



but it is instructive to include an outline at this point. The
key to the proof is to assign all of the system energy costs to
individual jobs (rather than servers) in an intelligent manner.
The energy cost assigned to a job consists of the following
four components.

1) The energy required to process it.
2) The entire cost of the setup process for the server on

which it is served, if it is the first job served following
the setup process.

3) The cost of cancelled server setups, if the setups are
cancelled due to the job entering service.

4) The idling cost of servers that never turn off is evenly
divided across jobs which are served by always busy
servers.

One can then argue that the expected cost for a job served by
an always busy server is asymptotically determined by the
first component only, which is the minimum possible energy
consumption (Lemma 2 of [17]). If a job is not served by
an always busy server, the expected cost can be shown to be
finite (Lemma 3 of [17]). From there, similar to the procedure
in the proof of Theorem 4, it becomes clear that the total
expected energy cost is dominated by jobs which are served
by always busy servers, and therefore is minimized.

Combining Theorem 4 and 5 immediately yields asymp-
totic optimality.

Corollary 1: All Class B policies are asymptotically op-
timal under all well-formed cost functions.

The most significant implication of Corollary 1 is that
under the asymptotic regime there is no significant trade-
off between E[R] and E[E]. That is, not only are both cost
metrics minimized across a large set of policies, but over all
well-formed cost functions. This is a powerful result, since if
a system is close to this asymptotic regime, then a manager
can confidently employ a Class B policy knowing that it
will be reasonably close to optimal. Of course this begs the
question, what does it mean for a system to be close to the
asymptotic regime? We address this question by performing
several numerical experiments.

V. NUMERICAL EXPERIMENTS

All numerical experiments presented here are done for
an energy-aware system employing a staggered threshold
policy, with a specific instantiation of its decision variables
k, and C∗. A brief description of this policy is as follows.
Regardless of the system state, C∗ of the servers always
remain on, the remaining (C − C∗) servers will turn off
the moment they idle, and the number of servers in setup is
{b{j −C∗}+/kc − i}+, where k is the threshold parameter
of the policy, C∗ + i is the number of servers currently
on, and j is the number of jobs in the system. Informally,
the greater the value of k, the more jobs are required to
accumulate before a server will begin its setup. A more in
depth examination and analysis of this policy can be found
in [18]. It is worth noting that by appropriately choosing the
decision variables, other studied policies can be instantiated.
As an example, letting k = 1 and C∗ = 0 results in the

staggered setup policy of [3]. All experiments have energy
costs EBusy = ESetup = 1.0 and EIdle = 0.7.

This policy leads to a CTMC model of the system, which
has the form of a quasi birth-death process. This can be
analysed using any of a number of well-understood methods.
We chose to analyse the CTMCs using the RRR technique
described in [3]. Therefore, all numerical results are exact
and were evaluated using standard Matlab libraries. The
source code for the numerical analysis can be found at [19].
The purpose of these numerical experiments is firstly to
ensure that exact analysis agrees with our results pertaining
to the system under the asymptotic regime, and secondly to
examine the rate of convergence to the asymptotic regime.

Figures 1 (a) and (b) show the behaviour of E[R] as
the system is scaled up. (Note that the largest values of
C displayed are significantly fewer than the number of
servers in large datacentres, which can be in the tens of
thousands.) One observation is that for the curves where
C∗ = 0, the corresponding values of E[R] have extremely
slow convergence rates. On the other hand, one may also note
that when C∗ = ρC, E[R] becomes reasonably close to its
optimal value relatively quickly. This effect is accentuated
further in Figure 1-(b), where the setup times are large.
Here, all curves which share the same choice of C∗ are
visually grouped together, and moreover, when C∗ = 0 the
expected response time can be far from optimal even for
larger values of C. The curves that have a number of servers
which are forced to be on, i.e. C∗ = ρC, get much closer to
the minimum value. In other words, the convergence rate is
sensitive to the choice of C∗, while relatively insensitive to
the threshold value k, especially when setup times are large.

The appealing choice of forcing λ/µ = ρC servers to
always remain on is interesting, since as will be seen in
Section VI, the number of servers which are always busy
approaches λ/µ = ρC under the asymptotic regime. In
other words, when the system parameters are finite, setting
C∗ = ρC forces the system to behave in a manner in
which it is known to behave under the asymptotic regime.
As such, it is intuitive that when the system is constrained
to invoke certain asymptotic behaviour, i.e. C∗ = ρC, the
corresponding values of E[R] are closer to values which
would be seen under the asymptotic regime.

Shifting focus to the expected energy cost per job and
Figures 1 (c) and (d), a similar trend regarding the choice of
C∗ is seen. That is, when C∗ is forced to take on the value
of the number of always busy servers under the asymptotic
regime, E[E]/λ approaches its optimal value.

Another aspect of these systems which warrants attention
is how sensitive the convergence rate is to the utilization.
This is seen in Figure 2. Examining the effect of utilization
on the expected response time, one can observe that when
the setup times are relatively short, the convergence rate is
relatively insensitive to choice of utilization. Furthermore,
the most sensitive parts of the curves are when the utilization
is low or high, especially in Figure 2 (b) where the setup
times are longer. This makes some intuitive sense, since
when the utilizations are at either extreme, the system is



(a) E[R] vs C, γ = 0.1 (b) E[R] vs C, γ = 0.001

(c) E[E]/λ vs C, γ = 0.1 (d) E[E]/λ vs C, γ = 0.001

Fig. 1: Expected response time and Expected energy cost per job vs C for λ = C/2, µ = 1

more likely to exhibit behaviour that is not as well described
by the asymptotic regime. When the utilization is low, the
system has a significant chance to be empty, and in turn has
a significant chance to have the minimum number of servers
on. When jobs arrive it begins to overcompensate with more
setups than are needed and the servers begin to thrash. On the
other hand, when the utilization is high there is a significant
chance that there will be more than C jobs in the system.
So even if all servers were on, jobs would still have to wait.
Having many servers regularly thrashing, or having more
jobs in the system than servers are two characteristics which
are not properties of the asymptotic regime. Therefore, it is
intuitive that a system under high or low utilizations would be
slower to exhibit asymptotic behaviour than under medium
utilization.

With this sensitivity in mind, one can still clearly note that
the previous observation regarding having ρC servers always
on induces the asymptotic behaviour to occur sooner. The
only curve not to agree with this notion is the case where
k = 2 and C∗ = 0 in Figure 2 (c). In this case the system
is approaching the minimum value slightly quicker than the

curves where C∗ = ρC. This is a product of the servers
thrashing, causing most jobs to see the system when many
other jobs are present and therefore little energy is wasted,
but is only achieved at the price of a large value of E[R],
and therefore this configuration would not be suggested.

VI. PROOF OF KEY LEMMA

The proofs of Theorems 4 and 5 are presented in detail in
[17]. Here, we present the key lemma that underlies the main
results. This shows that the number of servers that are always
busy is no less than the proportion required by the utilization
(obviously it can be no more). Once one has this result in
hand, one can show that the mean response time is minimized
by noting that the system is asymptotically equivalent to an
M/M/C system with load per server less than one and C
approaching infinity and hence the expected time waiting to
be processed is asymptotically equal to zero. In terms of the
expected energy costs, the fact that the proportion of always
busy servers is precisely equal to the load per server means
that almost every job is served by an always busy server and
hence almost every job uses an amount of energy equal to



(a) E[R] vs ρ, γ = 0.1 (b) E[R] vs ρ, γ = 0.001

(c) E[E]/λ vs ρ, γ = 0.1 (d) E[E]/λ vs ρ, γ = 0.001

Fig. 2: Expected response time and Expected energy cost per job vs ρ for C = 500, µ = 1

the minimum required (EBusy/µ).
Before presenting this lemma, some preliminary mate-

rial must first be presented. Consider the following two
sequences of systems with 0 < ρ < 1, where for each we
assume that as n → ∞, λn/n → ρ. S1 is the sequence of
interest (a sequence of energy-aware systems), while S2 is
an auxiliary sequence of regular M/M/C systems (all of the
servers are on all of the time).

1) Let S1 be a sequence of energy-aware queueing sys-
tems, where the nth energy-aware queueing system is
given by S1,n = (n, λn, 1, γ1,n), which employ some
policy πn ∈ ΠA.

2) Let S2 be a sequence of M/M/C queues, where the
nth M/M/C queue is denoted by S2,n = (n, λn, 1).

Note that the choice of µn = 1 is without loss of general-
ity, as time can be rescaled in a corresponding manner. Let
B1,i and B2,i denote the number of always busy servers in
the ith system of sequence S1 and S2, respectively.

Lemma 1: For the sequence of energy-aware systems S1

lim
n→∞

B1,n

λn
= 1.

Proof: The proof is via a sample path argument
comparing the sequences S1 and S2. Consider the systems
S1,n and S2,n as n→∞. At any point in time the number of

servers currently available in S1,n is less than or equal to the
number of servers available in S2,n. This follows from the
fact that S1,n may have some of its servers off or in setup,
while S2,n has all of its servers on at all times. Therefore,
taking the same arrival stream and job sizes for both systems,
the number of jobs in S2,n is less than or equal to the number
of jobs in S1,n. Therefore, if server s is busy in S2,n, then
s has enough workload to also be busy in S1,n, but may
not be busy due to it being switched off or being in setup.
Therefore, if s is an always busy server in S2,n, then s has
enough workload to be always busy in S1,n. However, as
S1,n is employing a policy from ΠA, a server will never turn
off if there is work to do and a server will eventually turn
on from the threshold scheme. It then follows that almost
surely the servers which can be always busy, will be always
busy. That is to say, if s is an always busy server in S2,n,
then s is an always busy server in S1,n. Therefore,

lim
n→∞

B1,n ≥ lim
n→∞

B2,n. (2)

Furthermore, it is known that

lim
n→∞

B2,n

λn
= 1.

This is shown via the following argument. Let N2,n(t) denote
the number of jobs in the system S2,n at time t, and let



a corresponding diffusion scaling be denoted by N̂2,n(t),
where

N̂2,n(t) =
N2,n(t)− nρ
√
nρ

.

From Theorem 4.1 in [20], N̂2,n(t) weakly converges to an
Ornstein-Uhlenbeck process. After some elementary algebra,

N2,n(t) = N̂2,n(t)
√
λn+λn ⇒ N2,n(t)

λn
=
N̂2,n(t)√

λn
+1.

As n→∞, N̂2,n(t) is normally distributed with finite mean
and variance, so limn→∞ N̂2,n(t)/

√
λn = 0. Thus,

lim
n→∞

N2,n(t)

λn
= 1.

Moreover, one can say that as n → ∞ if there are almost
surely at least x jobs in the system at all time points t, then
as n → ∞ there are at least x always busy servers at all
time points t. Therefore,

lim
n→∞

Nn(t)

λn
= 1 ⇒ lim

n→∞

B2,n

λn
≥ 1.

We can now examine S1. Specifically, from (2),

lim
n→∞

B2,n

λn
≥ 1 ⇒ lim

n→∞

B1,n

λn
≥ 1.

Lemma 1 follows as the reverse inequality is obvious.

VII. FUTURE WORK

An important issue to address is how well these policies
perform under a time varying arrival rate. It is our intuition
that if the arrival rate varied on a relatively long time scale,
with regards to other system parameters such as the expected
setup time, then the results given here may be reasonable to
apply. However, questions remain which require a formal
treatment. Can some of the asymptotic results be extended
for a subset of Class B policies? If so, what new criteria
must these policies adhere to? If not, what complication is
the limiting factor in the analysis? While these questions
are certainly deserving of attention, the theorems presented
here regarding the optimality of all Class B policies under
all well-formed cost functions allow one to confidently make
powerful statements and conclusions which are overarching
across the problem domain.
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