
On Optimal Policies for Energy-Aware Servers
Vincent J. Maccio

Department of Computing and Software
McMaster University

Hamilton, Ontario
Email: macciov@mcmaster.ca

Douglas G. Down
Department of Computing and Software

McMaster University
Hamilton, Ontario

Email downd@mcmaster.ca

Abstract—As energy costs and energy used by server farms
increase, so does the desire to implement energy-aware policies.
Although under some metrics, optimal policies for single as well
as multiple server systems are known, a number of metrics
remain without sufficient knowledge of corresponding optimal
policies. We describe and analyse a model to determine an
optimal policy for on/off single server systems under a broad
range of metrics that are based on expected response time,
energy usage, and switching costs. We leverage this model in the
determination of routing probabilities to show a range of non-
trivial optimal routing probabilities and server configurations
when energy concerns are a factor.

I. INTRODUCTION

The relative as well as absolute energy consumed by servers
have been steadily increasing in North America over the past
several years. As systems grow and expand, energy concerns
become a major factor for server farm managers from both
environmental and economic viewpoints. However, the task of
creating feasible optimal or near optimal policies is a daunting
problem due to the sheer complexity these systems exhibit.
Even for single server systems, when energy is a factor,
optimal policies remain unknown for a number of metrics
considered in the literature. We focus on developing a model
that allows one to determine an optimal policy for a single
server system under a broad range of metrics that consider
the expected response time of a job in the system (E[R]),
the expected energy consumed by the system (E[E]), and the
expected rate that the server switches between two energy
states, i.e. turning off and on (E[Sw]).

The typical approach to developing energy-aware policies
focuses on a particular metric. In [1]–[3] for example, simple
optimal policies were determined with respect to the energy
response product (ERP) metric, E[R]E[E]. However, many
simple metrics still have unknown optimal policies. For ex-
ample, the optimal policy for the simple weighted sum used
in [4], [5], [8], [14] of E[R]+β1E[E]+β2E[Sw] is unknown.
Other work has been done in the analysis of vacation models
[11]–[13], which in many cases can be leveraged to fit energy-
aware server systems. However, to the best of our knowledge,
no known vacation model can describe all optimal policies
under these different metrics. Here, we are able to determine
optimal policies in great generality, both in terms of the cost
function and the assumptions on underlying distributions.

II. MODEL

We wish to capture the behaviour of a single server system,
where the server can be dynamically set to a low or high
energy state. Furthermore, we wish to add the restriction that
jobs may only be processed when the server is in its higher
energy state. Such a system is modelled as being in one of
four system states: LOW, SETUP, BUSY, or IDLE. Each of
these states has a corresponding energy value ELow, ESetup,
EBusy, and EIdle, respectively. For simplicity of analysis and
understanding, if ELow = 0, we rename LOW to OFF. We
will see that optimal policies typically depend on the ratio of
the energy values rather than the values themselves. We take
these ratios with respect to EBusy, and denote them as rLow,
rSetup, and rIdle (in practice, rIdle is typically between 0.6
and 0.8 [6], [7]). For the remainder of this paper we will often
refer to moving to a higher or lower energy state as turning
the server on or off, respectively.

Jobs arrive to the system according to a Poisson process
of rate λ and are put in a FIFO queue. If the system is
in state LOW/OFF when a job arrives, it checks how many
jobs are currently waiting in the queue. If the number in the
queue plus the arriving job is equal to a given threshold k, the
system moves into state SETUP. This corresponds to the server
moving from its lower to higher energy state. The time it takes
to make this transition is exponentially distributed with rate γ.
Once the server has completed making its transition from its
low to high energy state, it leaves state SETUP and enters state
BUSY. Once in state BUSY, the server begins to process the
accumulated jobs. The job processing times are exponentially
distributed with rate µ. When a job is completed and no jobs
remain in the queue, the system moves to state IDLE. Upon
reaching state IDLE, the system begins to wait. If no job
arrives to the system once the server has waited a given amount
of time, the system moves to state LOW/OFF. If a job arrives
while the system is in IDLE, it moves to state BUSY and
the waiting time is remembered for the next time the system
becomes IDLE. The amount of time in which the system waits
is referred to as the idling time and is exponentially distributed
with rate α. It is important to note that the time between
moving from IDLE to OFF, is not the time which it takes
for a server to turn off. For the purpose of our model, we
assume that the time taken for the system to move from its
high to low energy state is negligible, i.e. the transition occurs



Fig. 1: M/M/1 ◦ {M,M, k} queue Markov Chain

instantaneously.
Due to the exponential assumptions, this system can be

modelled as a continuous time Markov chain and is depicted
in Figure 1, where the state (n1, n2) means that the server is
off when n1 = 0, on when n1 = 1, and there are n2 jobs in the
system. To denote these systems we use a composition of two
sets of parameters i.e. {} ◦ {}. The first set of parameters is
given in classical Kendall notation to describe the non-energy-
aware portions of the system. The set of parameters listed after
the composition symbol are all parameters which are incorpo-
rated due to energy concerns. The first of these parameters
is the turn on time distribution of the server, the second is
the idling time distribution, and the last is the number of jobs
allowed to accumulate before the server begins to turn on. For
example, the queue in Figure 1 is an M/M/1 ◦ {M,M, k}
system while if the job processing times along with the server
turn on times follow general distributions, the system would be
an M/G/1 ◦ {G,M, k}. The reason for denoting the systems
in this way, as we will show later, is that their metrics can often
be written as a decomposition where one of the terms will be
the corresponding metric of the non-energy-aware counterpart
(the first set of parameters).

A. Assumptions Justification and Parameter Summary

The model includes several assumptions in order to be
tractable. Firstly, arrival times, set-up times, processing times,
and idling times are initially all assumed to be exponentially
distributed. The assumptions on the arrival and processing
times are quite standard for approximating systems of this
kind. It will be shown later on that the exponential assumption
for the idling times is dampened by properties of the optimal
policies. However, in general, the assumption that the turn on
times of the servers as well as the job processing times are
exponentially distributed is typically not a good approxima-
tion. Later in our analysis we relax these assumptions on the
distributions and analyse the system under general settings.

There are several constraints imposed on the model to
ensure stability and that the model is non-trivial:

0 < λ < µ, 0 < γ, 0 ≤ α, 1 ≤ k.

The parameters of the model are summarized in Table I.

TABLE I: Parameter Summary

Parameter(s) Explanation
ELow , ESetup, The energy values associated with the different
EBusy , EIdle system states.
rLow , rSetup, The ratios between the system states energy values

rIdle and EBusy .
λ The arrival rate of jobs to the system.
µ The server’s processing rate.
γ The rate at which the server moves to its higher

energy state from the lower.
α The rate at which a server waits while idle before

moving to its lower energy state.
The number of jobs the system allows to

k accumulate in the queue before beginning to move
to the higher energy state.

III. ANALYSIS

The goal of our analysis is to arrive at closed form expres-
sions for a range of system metrics. Namely we wish to solve
for the expected number of jobs in the system, the expected
response time of a job, the expected energy used by the system,
and the expected rate of switching to the system’s lower energy
state from its higher energy state. In our analysis, we denote
these quantities as E[N ], E[R], E[E], and E[Sw], respectively.
Once we derive these expressions, we can solve for optimal
values of the parameters which the system manager has control
over, in particular α and k.

A. Set of Optimal Policies

Before we begin to analyse our model, we must first define
what we mean by an optimal policy. We define our cost to
be a function of M weighted terms each containing E[R],
E[E], E[Sw], each raised to given powers. We leave out the
system metric of E[N ] since we can always obtain it by
weighting E[R] by 1

λ via Little’s Law. Formally, our cost
function f(β,w) is,

f(β,w) =

M∑
i=1

βiE[R]wR,iE[E]wE,iE[Sw]wSw,i , (1)

where ∀i.0 ≤ βi, wR,i, wE,i, wSw,i are of the appropriate
units. Our model makes two assumptions about the optimal
policies.



π0,n = π0,0 (0 ≤ n < k) (2)

π0,n = π0,0

(
λ

λ+ γ

)n−(k−1)

(k ≤ n) (3)

π1,n = π0,0

(
λ

α
ρn +

λ

µ− λ
(1− ρn)

)
(0 ≤ n < k) (4)

π1,n = π0,0

[(
λ

α
− λ

µ− λ

)
ρn +

1

µ− λ− γ

(
(λ+ γ)

(
λ

λ+ γ

)n−(k−1)

− γ

1− ρ
ρn−(k−1)

)]
(k ≤ n) (5)

π0,0 = (1− ρ)
αγ

kαγ + αλ+ λγ
(6)

• The decision to start transitioning between lower and
higher energy states is made at the moment a job arrives
to the system.

• If there are jobs in the system and the server is in its
higher energy state, the server will never move to its
lower energy state.

The first assumption is made without loss of generality due
to the memoryless property of the arrival stream (the same
decision would be made at any point in time between arrivals).
The second assumption is a property of the optimal policy due
to the nature of the cost function. If the system were to turn
the server off while a job(s) remains in the system, E[R] will
increase, since the job(s) that was in the system when it turned
off must now wait until the system turns on before it can be
completed. At the same time, the system does not gain any
benefit with respect to the E[E] component since it will still
have to expend energy to complete the job(s) in the system
at some point in the future. So, as the weights in the cost
function are positive we know that in the optimal policy the
server will only be turned off while the server is idling. Similar
assumptions are made in the model used in [2]. Knowing that
these two assumptions are valid, we know that any optimal
policy can be instantiated using the model we have described,
under the model’s assumptions.

Similar to the argument made to justify the servers begin-
ning to turn on only when an arrival occurs to the system, the
decision to turn a server off or keep it on is made when a job
departs the system and leaves it idle. This would imply that in
our model, in any policy which minimizes the cost, α = 0 or
α→∞. We leave α as part of our model for several reasons.
Firstly, it gives us insight on how scaling between these two
extremes affects the system. Secondly, it allows us to easily
determine where in the parameter space the optimal policy
switches between α = 0, and α → ∞. Thirdly, it allows
for easier extensions of the model where this property may
not necessarily hold. For example, this property does not hold
when the arrivals do not follow a Poisson process, or in a
multi-server setting. Lastly when optimizing under different
conditions, i.e. minimizing a linear function of E[E] with a
constraint on E[R], the optimal α could lie anywhere on the
positive real line.

B. Steady State

To analyse our model, we begin by solving the steady state
probabilities for the Markov chain in Figure 1. Each row of
the Markov chain is partitioned into two sections according to
n < k, or n ≥ k. The balance equations used to solve for the
four different sections of the Markov chain are:

π0,n = π0,0 (n < k)

(λ+ γ)π0,n = λπ0,n−1 (n ≥ k)

µπ1,n = λπ1,n−1 + λπ0,n−1 (0 < n < k)

(µ+ λ)π1,n = λπ0,n−1 + γπ0,n + µπ1,n+1 (n ≥ k)

where πn1,n2
denotes the steady state probability of being in

state (n1, n2). We also have the boundary and normalization
conditions:

π1,0 =
λ

α
π0,0 and

∞∑
n1=0

∞∑
n2=0

πn1,n2 = 1

While the first three balance equations can be solved with
respect to π0,0 via simple recursions, the fourth equation takes
more effort to solve. However, using similar methods to those
used in [2], we are able to arrive at a closed form solution.
For n > k, we fit the steady state distribution to be of the
form,

π1,n = Aρn−(k−1) +B

(
λ

λ+ γ

)n−(k−1)

where with the use of the boundary equations we find that,

B = π0,0
λ+ γ

µ− λ− γ
and,

A = π0,0

[(
λ

α
− λ

µ− λ

)
ρk−1 − µγ

(µ− λ)(µ− λ− γ)

]
.

With the balance equations solved we use some algebra to
yield the steady state distribution for our system model.

Theorem 1. The steady state distribution for an M/M/1 ◦
{M,M, k} queue, depicted by the Markov chain in Figure 1
is given by the set of equations (2)-(6).



C. System Metrics

With the steady state distribution of our model now solved,
we wish to arrive at closed form expressions for the system
metrics, namely E[N ], E[R], E[E], and E[Sw]. Determining
these expectations will allow us to build expressions for our
cost function and in turn allow us to arrive at optimal values
for α and k.

The simplest expression to solve for is E[Sw], the expected
rate at which the server turns off. The only state from which
the server turns off is the IDLE state, π1,0. Therefore the
expected switching rate is just the rate out of IDLE going
to OFF.

E[Sw] = απ1,0 = (1− ρ)
αλγ

kαγ + αλ+ λγ
(7)

Here we see some things we would expect. Firstly, the direct
relationship to (1 − ρ) is quite intuitive as a heavily loaded
system would rarely switch off. Secondly, k only appears in
the denominator, giving E[Sw] an inverse relationship to k.
This is also expected as allowing k jobs to build up slows
down the turn on rate of the server as k increases, and the
expected turn on rate is equal to the expected turn off rate.

We solve E[E] by viewing it as a sum of being in states
OFF, IDLE, SETUP, and BUSY weighted by the correspond-
ing energy values. We sum the states using equations (2)-(6),
and exploit our assumption that ELow = 0 in state OFF.

E[E] = EBusy

∞∑
n=1

π1,n + ESetup

∞∑
n=k

π0,n + EIdleπ1,0

= EBusy

[
ρ+

(1− ρ)λ

kαγ + αλ+ λγ
(rIdleγ + rSetupα)

]
= E[EM/M/1]

+ EBusy
(1− ρ)α

kαγ + αλ+ λγ
(λrsetup − (λ+ kγ)ridle)

This gives us the true expected energy of the system, however
since in our cost function we weigh E[E] by a constant β,
we can absorb the constant EBusy, and derive a new metric
normalized by this weight:

E[EN ] =
E[E]

EBusy

= E[ENM/M/1] +
(1− ρ)α

kαγ + αλ+ λγ
(λrsetup − (λ+ kγ)ridle).

(8)

We arrive again at a decomposition, the terms here are scaled
by ρ or (1 − ρ). As we would expect there is an EBusyρ
term present, since based on our model assumptions EBusyρ
is a lower bound to the expected energy consumed by the
system. We also note that letting α = 0, simply leaves us with
E[ENM/M/1], the expected normalized energy consumption in
an M/M/1 queue, as anticipated. How the rest of the terms arise
is at this point not intuitively clear, but in the next section we
give a different point of view on E[E] which allows us to gain
much more intuition.

To solve for E[R], we use the traditional method of solving
first for E[N ] by weighting the steady state distribution and
then applying Little’s Law.

E[N ] =

k−1∑
n=0

nπ0,n +

∞∑
n=k

nπ0,n +

k−1∑
n=0

nπ1,n +

∞∑
n=k

nπ1,n

After quite a bit of algebra we are able to write:

E[N ] = E[NM/M/1] +
αλ(λ+ kγ)

γ(kαγ + αλ+ λγ)

+
kαγ(k − 1)

2(kαγ + αλ+ λγ)
.

(9)

Applying Little’s Law gives us:

E[R] = E[RM/M/1] +
1

γ

α(λ+ kγ)

kαγ + αλ+ λγ

+
1

2λ

kαγ(k − 1)

kαγ + αλ+ λγ
.

(10)

Both terms yield convenient decompositions. We would
expect to find some form of the M/M/1 queue embedded
within the M/M/1 ◦ {M,M, k} queue since many of its
metrics are optimized when their behaviours are equivalent
(α = 0). For the terms E[N ] and E[R], we obtain exact
M/M/1 expressions when we let α = 0. E[NM/M/1] and
E[RM/M/1] are lower bounds to E[N ] and E[R], respectively.

To analyse the second term of (10), it is easier to first allow
k = 1 which will eliminate the third term. With k = 1 and
letting α approach∞ our system reduces to that of the system
described in [2], where E[R] = E[RM/M/1] + 1

γ . We can
see from (10) that this is also the case here. So the expected
response time of a job is bounded below by E[RM/M/1] and
bounded above by E[RM/M/1] + 1

γ when k = 1. Moving α
along the positive real line scales E[R] between these two
bounds.

The third and last term of (10) is the effect imposed on the
response time when k jobs are allowed to accumulate. As k
increases, we see a linear increase in the response time in the
third term. In the second term k appears in both the numerator
and denominator scaled by the same coefficient so the effect
which is present is dampened, and in fact as k approaches ∞
the second term still approaches 1

γ .
Viewing equations (7), (8), and (10) together, one begins

to understand the mathematical difficulty of optimization of a
given metric with respect to choosing α and k. Each individual
metric prefers α and k to be either set to their respective
upper or lower bounds, but unfortunately they pull in different
directions, as seen in Table II.

TABLE II: Optimal Parameters of Metrics

Optimal Values of
Metric α k

E[R] 0 1
E[E] 0 or → ∞ → ∞
E[Sw] 0 → ∞



Note that to minimize E[E], the system will let α = 0 when

ridle <
λ

kγ + λ
rsetup

and will let α→∞ otherwise.

D. Work-cycle Analysis

Here we approach the analysis of our system from a
different angle. This method allows us to relax several of our
assumptions while still arriving at closed form expressions, as
well as allowing us to gain deeper insight and intuition into
the equations we derived in the previous section.

We view the system using the rate at which “Work-cycles”
complete. Let S0,0 denote the state of the system where the
server is off and there are 0 jobs in the system, and let P0,0

denote the proportion of time the system spends in S0,0 in
steady state. We define a Work-cycle to start at state S0,0,
moving through the energy state OFF into state SETUP. Once
the server has turned on, it continues to move between states
BUSY and IDLE a number of times before it lastly moves
from IDLE back to S0,0. In our model, during a Work-cycle
the total time spent idling is remembered, and not reset each
time the server switches between BUSY and IDLE. Once the
system moves back to state S0,0 however, the idling time is
reset and all knowledge of the past is forgotten. Since for every
Work-cycle the system visits state S0,0 exactly once, the rate at
which Work-cycles occur in the system is the rate out of state
S0,0. The rate out of state S0,0 is simply the arrival rate to the
system, λ. Therefore in steady state the rate of Work-cycles
is λP0,0.

We also make the observation that the expected proportion
of time which the system spends in states OFF, SETUP,
BUSY and IDLE (denoted POff , PSetup, PBusy, and PIdle
respectively) over just one of its Work-cycles, is equal to
the proportion of time the system spends in those states, in
steady state. For each Work-cycle the server turns on a single
time, therefore PSetup equals the product of the Work-cycle
rate and the expected turn on time of the server i.e. λ

γP0,0.
This same argument can be used for POff , which is the time
it takes for k jobs to arrive to the system multiplied with
the Work-cycle rate, k 1

λλP0,0 = kP0,0. We know that the
rate into state S0,0 must equal the rate out which implies
P1,0 = λ

αP0,0. However, once again this is also just the product
of the expected time waited before turning off and the Work-
cycle rate of the system. Finally we get the proportion of time
the system spends in state BUSY for free since we know it
must be ρ. Putting it all together we have:

1 = ρ+
λ

α
P0,0 +

λ

γ
P0,0 + kP0,0.

This analysis has been done without imposing assumptions
on any of the distributions, expect for the arrival stream. This
assumption was made when we assumed the rate out of state
S0,0, is λP0,0. Isolating and solving for P0,0 we find it is equal
to π0,0 from our previous analysis, and the same can be said
for the expected energy used by the system.

Theorem 2. The proportion of time spent in the energy states
of an M/G/1 ◦ {G,G, k} queue, is completely insensitive to
the distributions themselves, giving general expressions for
E[EN ] and E[Sw]. That is,

E[EN ] = ρ+
(1− ρ)λ

kαγ + αλ+ λγ
(rIdleγ + rSetupα)

E[Sw] = (1− ρ)
αλγ

kαγ + αλ+ λγ

and for any single server system if ridle < λ
kγ+λrsetup it is

always optimal, to leave the server on.

It may be counter intuitive for the proportion of time spent
in different energy states to be independent of the underlying
distributions of the processing and setup times. However, this
is similar to the fact that an M/G/1 queue is in state BUSY
and IDLE with probabilities ρ and (1− ρ) respectively.

While the energy and switching metrics can be solved in
almost complete generality, the response time is harder to
arrive at. We therefore again impose exponential assumptions
upon the idling times of the system, but still allow for general
distributions on the the processing and setup times. Some gen-
erality is lost, but we argue that the exponential assumptions on
the idling and interarrival times are not nearly as limiting. For
many applications, modelling the arrivals as a Poisson process
is a reasonable assumption, while as we have stated before,
having the server turn on times and job processing times being
exponentially distributed can be problematic. We also know
that if the arrivals do follow a Poisson process then α is either
0 or approaches ∞, meaning the actual distribution has little
impact. With this in mind, we analyse the M/G/1◦{G,M, k}
queue with the goal of determining E[R].

We tackle the problem similar to the way one would
traditionally solve an M/G/1 queue. We define Nn to be a
random variable denoting the number of jobs left in the system
as the nth job departs. As in the M/G/1 analysis,

Nn+1 =

{
Nn +An+1 − 1 Nn ≥ 1

An+1 Nn = 0

where An+1 denotes the number of arrivals which occurred
between the departure of the nth and (n + 1)th jobs, not
counting the (n + 1)th if it arrived during that period. For
our model, we have to condition An+1 on Nn,

An+1 =

{
AS,n Nn ≥ 1

AS,n +XOff,n(k − 1 +AΓ,n) Nn = 0

where AS,n is a random variable denoting the number of jobs
which arrive while the nth job is being processed. AΓ,n is
a random variable denoting the number of jobs which arrive
to the system during the server’s setup time, given the (n +
1)th job is the first to arrive once the server has switched off.
XOff,n is an indicator variable that is 1 when the system is
in state IDLE and the next state it moves to is OFF or 0 if the
next state it moves to is BUSY, given that the nth job to depart,
leaves behind an empty system. We note that the distributions



for all three of these random variables are independent of n,
and from here on refer to them simply as AS , AΓ, and XOff .
We can now rewrite the expressions for Nn+1 and An+1 with
the use of the Heaviside step function.

Nn+1 = Nn − U(Nn) +An+1

An+1 = AS + (1− U(Nn))XOff (k − 1 +AΓ)

⇒ Nn+1 = Nn − U(Nn) +AS

+ (1− U(Nn))XOff (k − 1 +AΓ) (11)

If we let n→∞ and then take the expectation of both sides,
the Nn and Nn+1 terms cancel out. We also exploit the fact
that XOff is independent from AΓ, since AΓ is dependent
only on the interarrival and turn on times. After some algebra
we are left with an expression for E[U(N)].

E[U(N)] =
E[AS ] + E[XOff ](k − 1 + E[AΓ])

1 + E[XOff ](k − 1 + E[AΓ])

This should not give us any new information about the system,
as an M/G/1 queue this would yield E[U(N)] = ρ. Of course
the interpretation of E[U(N)] is the steady state probability
there is at least one job in the system. From our previous
analysis we know this to be:

1− P0,0 − P1,0 = ρ+ (1− ρ)α
γ(k − 1) + λ

kαγ + αλ+ λγ
.

As a sanity check this is what E[U(N)] evaluates to when,

E[AS ] = ρ, E[XOff ] =
α

λ+ α
, and E[AΓ] =

λ

γ
.

To arrive at E[N ], we use the usual approach: square both
sides of (11), let n → ∞, take expectations and exploit the
following equalities.

U2(N) = U(N)

NU(N) = N

N(1− U(N)) = 0

U(N)(1− U(N)) = 0

E[XOffAS ] = E[XOff ]E[AS ]

E[XOffAΓ] = E[XOff ]E[AΓ]

Substituting those equations into (10) after squaring both sides
yields,

2(1− E[AS ])E[N ] =

E[U(N)][1 + 2E[AS ](1− E[XOff ](k − 1 + E[AΓ]))]

+ E[A2
S ]E[XOff ](k − 1 + E[AS ])

+ (1− E[U(N)])E[XOff ]

((k − 1)2 + 2(k − 1)E[AΓ] + E[A2
Γ]).

After some algebra, we are able to arrive at a relatively clean
expression for the expected number of jobs in the system.

Theorem 3. For an M/G/1 ◦ {G,M, k} queue, the expected
number of jobs in the system and the expected response time

for a job are given by:

E[N ] = E[NM/G/1]

+ α
γ(k − 1) + λ

kαγ + αλ+ λγ

[
1

2
− ρ

− ρ α

α+ λ

(
γ(k − 1) + λ

γ

)
− 1

2

α

α+ λ
Γ

]
+ ρ

α

α+ λ

(
γ(k − 1) + λ

γ

)
+

1

2

α

α+ λ
Γ

where letting σ2
setup denote the variance of the setup time

distribution,

Γ = (k − 1)2 + (2k − 1)
λ

γ
+ λ2σ2

setup

and,

E[R] =
E[N ]

λ
.

Again we see this recurring decomposition of the energy-
aware system into its classical queue counterpart plus addi-
tional terms. We would expect to see this result for the same
reasons discussed when we solved the M/M/1 ◦ {M,M, k}
queue. Combining Theorem 2 and Theorem 3 now gives us
the tools to optimize M/G/1 ◦ {G,M, k} systems under any
metric defined by (1).

IV. APPLICATIONS

In this section, we derive optimal values for the parameters
under popular optimization criteria, as well as how these
results can be used in other settings. We revert back to
our model with exponential assumptions for simplification of
calculations, however all methods used are still applicable in
the general setting.

A. Weighted Sum Cost Function

One of the more popular metrics used is a weighted sum
of the three system metrics, E[R] +β1E[E] +β2E[Sw]. Often
E[Sw] is ignored (β2 = 0) and the weights β1 and β2 convert
the units of the overall function to be dollars. This means
of course that E[R] must be scaled by a unit constant of
dollars/time. We take the partial derivatives first with respect
to α.

∂

∂α
E[R] =

λ(λ+ kγ)

(kαγ + αλ+ λγ)2
+

γ2k(k − 1)

(kαγ + αλ+ λγ)2

∂

∂α
E[EN ] = (1− ρ)λγ

rsetupλ− ridle(λ+ kγ)

(kαγ + αλ+ λγ)2

∂

∂α
E[Sw] = (1− ρ)

λ2γ2

(kαγ + αλ+ λγ)2

As expected, α only appears in the denominators. This
means that when we take the weighted sum of the derivatives,
there is no value of α to make the sum evaluate to 0. In other
words, the optimal value of α occurs at one of its bounds,
α = 0 or α→∞ (which we knew from our previous analysis).
What this yields that we did not have before is the point where
the preference of α switches. From our cost function we can



see that when the following inequality holds, the optimal value
is to have α→∞, while it is 0 otherwise.

β1(1− ρ)λγridle(kγ + λ) ≤ λ(λ+ kγ) + γk(k − 1)

+ β1(1− ρ)λ2γrsetup

+ β2(1− ρ)λ2γ2

(12)

When solving for the optimal value of k, we can simplify our
equations by initially having α → ∞ since we know that if
α = 0 an optimal k does not exist since the server never shuts
off. Taking the partial derivatives of the metrics with α→∞
gives us,

∂

∂k
E[R] =

γ

2λ

k2γ + 2kλ− λ
(λ+ kγ)2

∂

∂k
E[EN ] = −(1− ρ)

λγrsetup
(λ+ kγ)2

∂

∂k
E[Sw] = −(1− ρ)

λγ2

(λ+ kγ)2
.

Setting the weighted sum of the above three terms equal to 0,
we arrive at the following quadratic.

0 =
γ2

2λ
k2 + γk − (λ+ (1− ρ)λγ(β1rsetup + β2γ)). (13)

Solving (13) and substituting it into (12), one can determine
the optimal values of the system parameters. If there exists a
solution, k∗, for (13) on the constrained range of k, due to
the convexity of our metrics with respect to k, one would just
need to check both dk∗e and bk∗c to see which yields the best
result.

B. Optimization with SLA Constraints

Here we consider a constrained optimization problem. We
find that the optimal value of α is not necessarily at the bounds
of its range. Imagine a server where for simplicity k is fixed
at 1 and there is a service level agreement (SLA) that the
expected response time for a job must be less than or equal to
some constant T , where 1

µ−λ ≤ T ≤
1

µ−λ+ 1
γ , and we wish to

minimize the expected energy consumed by the system under
the assumption that ridle < λ

λ+γ rsetup. We set (10) equal to
T and solve for α.

α =
λγ2

λ+ γ

T − E[RM/M/1]

1− γ(T − E[RM/M/1])

Using this value for α will minimize the expected energy used
by the system. This value is optimal due to our assumption
that implies E[E] decreases as α increases.

C. Sleep States

Modern servers usually have several different discrete sleep
settings which they can be set to. While in these sleep states,
the server consumes a lower amount of energy than being
idle but it cannot process jobs. We define a class of policies
P , which exhibit very similar behaviour to the polices we
have been considering. Policies of class P wait for k jobs to
accumulate in the queue while in a lower energy state before
beginning to turn on. Once turned on the system processes

jobs until it becomes idle. If the system idles for a certain
amount of time before a new job arrives, it moves to the same
lower energy state that it started in, and repeats its behaviour.
The key difference here is now that we have different lower
energy states (the sleep states), and we allow the server to
only use one of them. We show that our model can be used
to find the optimal policy contained in P .

We add the following variation to our previous model: the
system now has I different sleep states it can be set to, where
each of the i sleep states is denoted by SLEEPi. As stated
before, jobs cannot be processed while the server is in state
SLEEPi, ∀i : 0 < i ≤ I . For each state SLEEPi, there is a
corresponding energy cost, denoted ESleep,i (along with an
energy ratio with respect to EBusy, rSleep,i), as well as a
corresponding turn on rate, denoted γi. Typically, ∀i : 0 <
i < I.ESleep,i ≤ ESleep,i+1 and γi ≤ γi+1.

Our original model can describe a system where instead of
turning off after a given idling time, it instead transitions to
some state SLEEPi. Here the steady state probabilities of πi0,0
to πi0,k−1 now correspond to the steady state probabilities of
being in state SLEEPi rather than OFF, and γ is replaced with
γi. To analyse this system, we must also replace each instance
of γ in our equations for E[R], E[EN ], and E[Sw] to γi as
well as make a slight addition to the expression for E[EN ],
(8), to account for energy now being consumed in the sleep
state.

E[ENSleep,i] = E[EN ] + (1− ρ)
kαγi

kαγi + αλ+ λγi
rSleep,i

From here we can analyse the system, and obtain the optimal
values of α and k. Substituting these values into our opti-
mization metric gives us some value, denoted opti. Once we
have these I optimal values as well as the optimal value for
the server turning off, we can take the minimum of them and
design our policy to always transition to the corresponding
state OFF, or SLEEPi.

Although accounting for the sleep states of the server allows
us to determine improved policies than if we were to ignore
them, we can no longer claim that our model can describe
the optimal policy of the server, i.e. the optimal policy may
not be contained in P . This is due to the fact that the optimal
policy may have the server be in some sleep state until k1 jobs
accumulate, then move to a higher sleep state where it waits
for k2 jobs to accumulate before turning on. However, when
the optimal values of k are low for any individual sleep state
under our analysis, we conjecture that the policy will be close
to optimal.

V. RANDOM ROUTING

Here we present an application of our model in a random
routing setting, where we leverage our single server solutions.
Imagine a system with two M/M/1 ◦ {M,M, k} queues.
When a job arrives to the system, it is sent to the first
queue with probability p and is sent to the second queue with
probability (1 − p). If we wish to optimize for some metric,
we now have five decision variables, α1, α2, k1, k2, and p,



(a) µ = 2, λ = 1.9, γ = 0.2, β = 22, k1 =
5, k2 = 7

(b) µ = 2, λ = 1, γ = 0.2, β = 15, k1 =
1, k2 = 4

(c) µ = 2, λ = 3, γ = 0.5, β = 15, k1 =
3, k2 = 2

(d) µ = 2, λ = 1.9, γ = 3, β = 15, k1 =
1, k2 = 2

(e) µ = 2, λ = 1, γ = 1, β = 0, k1 = 1, k2 = 1 (f) µ = 2, λ = 1, γ = 1, β = 100, k1 =
1, k2 = 1

Fig. 2: Random Routing: Optimization vs p

where the subscripts 1 and 2 denote the values for the first
and second server, respectively. We know that the values for
α1 and α2 will be either set to 0 or approach∞, which breaks
the problem set into three cases (due to symmetry) where we
instead look to optimize against k1, k2 and p and then take
the lowest value from among the three cases. We classify the
cases as follows. The first is α1 = α2 = 0, the second is
α→∞ and α2 = 0, and the third is α1 →∞ and α2 →∞.

We wish to minimize E[N ] + βE[E]. This falls within our
class of cost functions, as E[N ] can be scaled to give us E[R]
and here it is in fact scaled by a unit constant of dollars/jobs.
We know that for the first case since the servers will always
be on and each server will be in BUSY for pλ

µ and (1−p)λ
µ

proportion of time respectively, that the optimal configuration
in that case is to set p = 0.5, i.e. balance the loads. As we
will see, the other cases provide non-trivial optimal values for
p.

Figure 2 shows several examples under different parameter
configurations of the cost function versus p in the three
different cases where the optimal k values are used, and ridle
and rsetup are both set to 0.8. In Figure 2(a), we see a medium
loaded system where either server could take the full load of
the arrival rate and still be stable. Here we can see that the
optimal server configuration is to have a server which is always

on which takes the majority of the system load (89.5%), while
a server which turns off when it becomes idle takes a small
portion of the system load (10.5%). This means that a lot of
the time, the server that turns off will just remain off with up
to four jobs waiting in the queue. This may seem unfair to
the jobs which are “unlucky” enough to be put into this queue
but this is an unfortunate side effect of energy concerns in this
setting.

In Figure 2(b), we see a lightly loaded system and get a
result that is not surprising. The optimal configuration is still
one server that remains on and one that turns off. However,
the server which turns on and off is completely ignored. In
other words, the configuration which optimizes the random
routing problem is simply an M/M/1 queue. This is somewhat
expected since the load on the system is so light it is not
advantageous to use the second server.

Figures 2(c) and 2(d) show the results for a heavily loaded
system where both servers must be used or the system will
be unstable. We can see the curves of the three cases here
begin to converge to similar curvatures. In Figure 2(c), where
the setup rate is relatively low (γ = 0.5), the classical load
balancing approach gives us the best configuration with both
servers always on and p = 0.5. We notice that as we increase
the setup rate of the server (γ = 3), both servers being on



(a) µ = 2, λ = 1.9, γ = 0.1, β = 15, k1 =
6, k2 = 3

(b) µ = 2, λ = 1.9, γ = 0.1, β = 30, k1 =
3, k2 = 4

(c) µ = 2, λ = 0.5, γ = 0.1, β = 50, k1 =
7, k2 = 1

Fig. 3: Random Routing: Single Case

becomes sub-optimal and the case of both servers turning on
and off begins to dominate. In fact, the optimal value is p =
0.505 and not p = 0.5 as one might expect. This is as we
would expect since the faster the server can turn on, the more
appealing it is to shut it off.

As we see from Figure 2, simple load balancing is not
sufficient to arrive at the optimal configuration as we have
shown non-trivial values of p that optimize the system. Taking
a more narrow look at the single case of having both servers
able to turn off in Figure 3, shows a similar non-trivial result.
Here the graphs also become asymmetric with respect to p,
and even the optimal values of k1 and k2 are not equal.
As in the case of having one server always on, and one
server able to turn off, load balancing is not optimal. It is
noted that if load balancing was used in Figure 3 (b), i.e
p = 0.5, the result would be a disaster, as it is one of the
worst configurations possible in this context. Adding energy
concerns to these systems greatly impacts the complexity of
the analysis as typical load balancing algorithms are no longer
optimal. This also raises questions on the implications for
other multi-server settings such as round robin routing or
in an M/M/c ◦ {M,M, k} queue. Specifically, there is no
reason why in general each server should be homogeneous
with respect to the server’s α and k values.

VI. CONCLUSION

As energy costs of servers as well as the relative energy
consumed by servers increase, we must put greater emphasis
on determining optimal policies. Here we gave a complete
analysis of the single server systems M/M/1 ◦ {M,M, k}
and M/G/1 ◦ {G,M, k}, with respect to E[N ], E[R], E[E],
and E[Sw] as well as analysis for an M/G/1◦{G,G, k} queue
with respect to E[E] and E[Sw]. This gave us an array of tools
and equations to arrive at optimal policies for many single
server energy-aware systems under general settings. We also
leveraged our analysis in several other applications, such as
SLA optimization, servers with sleep states, and a multi-server
system with random routing. For the latter we showed that
typical load balancing algorithms are not enough to arrive at an
optimal configuration. Furthermore, this context gives a deeper

insight into the analysis of these energy-aware multi-server
system with other routing policies. In particular, heterogeneous
servers may be desirable, in contrast to models where energy
costs are not considered. Energy factors will always be present
in these systems and it is important that we gain as much
insight and understanding into these problems as possible.

Acknowledgement. This research was funded by the Nat-
ural Sciences and Engineering Research Council of Canada.

REFERENCES

[1] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch. “Optimality
Analysis of Energy-Performance Trade-off for Server Farm Manage-
ment.” Performance Evaluation, vol. 67, 2010, pp. 1155-1171.

[2] A. Gandhi and M. Harchol-Balter. “M/M/k with Exponential Setup.”
CMU Technical Report CMU-CS-09-166, 2010.

[3] A. Gandhi, M. Harchol-Balter, and I. Adan. “Server Farms with Setup
Costs.” Performance Evaluation, vol. 67, no. 11, 2010, pp. 1123-1138.

[4] A. Penttinen, E. Hyytia, and S. Aalto. “Energy-Aware Dispatching in
Parallel Queues with On-Off Energy Consumption.” IEEE International
Performance Computing and Communications Conference, 2011.

[5] A. Wierman, L. L. H. Andrew, and A. Tang. “Power-Aware Speed Scaling
in Processor Sharing Systems.” INFOCOM, 2009.

[6] D. Meisner, B. T. Gold, T. F. Wenisch. “PowerNap: Eliminating Server
Idle Power.” ACM Sigplan Notices, 2009, pp. 205-216.

[7] L. A. Barroso and U. Holzle. “The Case for Energy-Proportional Com-
puting.” Computer, Dec 2007, pp. 33-37.

[8] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wand, and N. Gautam.
“Managing Server Energy and Operational Costs in Hosting Centers.”
ACM SIGMETRICS, 2005, pp. 303-314.

[9] A. Wierman, L. L. H. Andrew, and M. Lin. “Speed Scaling: An Algo-
rithmic Perspective.” Chapter in Handbook on Energy-Aware and Green
Computing, CRC Press, 2012, pp. 385-406.

[10] A. Gandhi, S. Doroudi, M. Harchol-Balter and A. Scheller-Wolf. “Exact
Analysis of the M/M/k/setup Class of Markov Chains via Recursive
Renewal Reward.” ACM SIGMETRICS, 2013.

[11] X. Xu, and N. Tian. “The M/M/c Queue with (e, d) Setup Time.” Journal
of Systems Science and Complexity 21 2008, pp. 446-455.

[12] M. Hassan, and M. Atiquzzaman. “A Delayed Vacation Model of an
M/G/1 Queue with Setup Time and Its Application to SVCC-Based
ATM Networks.” IEICE TRANSACTIONS on Communications, vol. E80-
B, 1997, pp. 317-323.

[13] S. W. Fuhrmann, and R. B. Cooper. “Stochastic Decompositions in
the M/G/1 Queue with Generalized Vacations.” Operations Research,
September/October 1985, vol. 33, pp. 1117-1129.

[14] J. Slegers, N Thomas, and I. Mitrani. “Dynamic Server Allocation for
Power and Performance.” Performance Evaluation: Metrics, Models and
Benchmarks Lecture Notes in Computer Science, vol. 5119, 2008, pp.
247-261.


