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This companion contains most of the proofs of the results in the main paper.

1 Proof of Proposition 1

The proof follows from Theorem 1 of [1], where 1,4, A, and a4 in [1] are replaced by s ik,
7, and ag i), respectively, from this paper. Replacing oy, in [1] by axAix) is equivalent to

setting po in [1] equal to Ajxypok/ Zfil A; in this paper.

2 Proof of Proposition 2

In [1], a different system is considered, but Proposition 4 of [1] directly examines an LP
((3)-(5) in [1]) that is the same as our allocation LP, with v, A, and f;zu;x here playing
the roles of A, ay,, and p;, in [1], respectively. So, using the result of Proposition 4 of [1],

V({1 K}) = min Zﬁl B;1{f;x =1 for some k in I'} )
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the numerator is Zj\il B; for all " under full flexibility and the denominator is maximized

when I' = {1,..., K}.



Now, for the “2-chain” flexibility structure, the minimum in (A) is achieved for a set of

the form I';,,. To see this, suppose that I" achieves the minimum in (A). We can write

I'= U Ty, (B)
where iy < dgq; for £ = 1,...,L — 1 and there is at least one task separating I';, ,, and
Uiy ey, (and Ty, 5 and Iy, ,, where tasks K and 1 are considered to be adjacent). Thus,

the term in the minimum in (A) becomes

25:1 (Zjerie_l,nﬁl ﬁj)
25:1 (Zkel“ xk/:“’f) |

where in particular each 3; appears at most once. Now, as for by >0, ¢, >0,¢=1,...,L,

ig,ny

be Zszl be

min — < =7 ,
Eoce T Yl

we can conclude that the minimum is achieved by one of the sets I';,,, in (B). However,
under (6), the minimum is uniquely achieved when I' = {1, ..., K'} (note that (6) holds for
all i when n = K — 1) and is equal to 7, so (4) holds. Finally, (5) holds as it suffices to
consider sets I' with K — 1 elements (see the middle of page 15). In this case, the numerator

in (A) remains unchanged, while the denominator decreases.

3 Proof of Proposition 3

Without loss of generality, suppose that it is fj;; that is changed to zero. Then we triv-
ially have v*({1}) = v*({1,...,K}) = pu/), achieved with 67, = 1 for all j (recall that

YL, K}) <y ({1})).



4 Proof of Proposition 4

From Proposition 2 of [1], we know that under full flexibility (all f;; = 1), there exists an
optimal solution to the allocation LP with no more than five values in the set {J7,} greater
than zero.

First note that if there are exactly three non-zero values, then each server j and each
task k must have exactly one 47, greater than zero (because pj), > 0 for all j, k), so we can
relabel the servers and tasks such that 67, = 3, = 933 = 1 under full flexibility. So, setting
fi1 = fa2 = f33=1and f;; = 0 otherwise satisfies (4), while (5) is satisfied by the 2-chain
constructed by adding fio = fo3 = f31 = 1.

If there are exactly four non-zero values under full flexibility, then as each server j and
each task k£ must have at least one d7, greater than zero, we can relabel the tasks such that
011, 019 > 0and 635, = 0353 = 1. Setting f11 = fi2 = fop = f33 =1 and fj; = 0 otherwise
then satisfies (4), while (5) is satisfied by the 2-chain constructed by adding fo3 = f51 = 1.

After relabelling servers and/or tasks as necessary, there are five potential cases for the

sets {07, } with exactly five non-zero values. These sets of non-zero values are:
(1) {5T,1a ik,27 225 3,37 §,3}§

(ii) {5ik,17 51‘,27 53,17 55,27 5§,3}§

(iii) {5T,1a ;,17 §,1a 5,2> §,3}5

(iv) {5i1’ 5?,27 5?,37 55,2: 5;,3}3

(v) {5T,1a f,27 i3a ;,27 §,2}-

For case (i), we have that if we choose a flexibility structure that has f;, = 1 for the

j and k represented in the given set, then 7 is still achieved with the same solution, so (4)
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is satisfied, but (5) may not be. Now, setting f;3 = 1 leaves 4 unchanged, but now (5) is
trivially satisfied. The structure {f;;} is a 2-chain.

For case (ii), applying Proposition 2 of [1] to servers 1 and 2 and classes 1 and 2 yield
that one of {67 1,67 4,05 ,,05,} is zero, so case (ii) is not possible.

For case (iii), note that d7, = 1. We have that the solution must satisfy

fag + 0y fian + 031 fis1 = 7,

Ogoll22 = 7,

O33M33 = 7

Clearly this is only possible if fi; 1 < min{figo, fi33}. We seek a condition under which either
05 or 03, is zero and thus case (iii) cannot occur. If

firg + 03 ji31 = (1 — 63 )fls3,

then solving for (1 —d3,) = d3 3 yields

1—5, = /_il,l +/f3,1'
' 3,3+ 31
So,
_ f11 + 43 1) _
— | > C
s (Ms,s + 13,1 e ©

implies that 05, = 1 and hence 65 ; = 0. The same argument for 03 ; = 0 yields the condition

_ Hi1 + [lo1 _
Al bl Ml ok > . D
2.2 (/1272 I ﬁ2,1> = M3,3 ( )

So, (C) or (D) implies that case (iii) is not possible. Undoing the relabelling of servers and/or
tasks yields that (8) implies that case (iii) is not possible.
Similar arguments yield that (9) is sufficient for case (iv) to be eliminated and (10) is

sufficient for case (v) to be eliminated.



To show the second part, conditions (8)-(10) imply that a 2-chain satisfies (4) and (5).
There are six possible 2-chains. In addition to the one in the Proposition statement, the

remaining five are (only non-zero values of f; are given):
(@) fir=fiz=fo2=foz=fa1=fa2=1
(b) fir=fiz=fo1=fop=fa2=faz =1
(€) fia=fiz=for1=foz=fa1=fa2=1
(d) fie=fis=lor=lfe2=fa1=faz=1
(e) fir=fia=fo1=fos=fa2=fa3=1

We proceed by showing that for the 2-chains (a) through (e), the desired 2-chain has no
worse value of 4. This implies the desired 2-chain satisfies (4), and it also satisfies (5)
because (1 > 0 for all j, k.

Suppose that chain (a) satisfies (4) and (5). Suppose first that 675 > 0 and 5, > 0.
Suppose that we add € to 0] 5 and subtract € from 07 3. Also, we add « to 43 3 and subtract

the inequalities

a from 63 ,. Since 22 < F12

13,3 — H1,3’

EM12 — QU3 2 > 0,

apss — ey = 0

admit a solution satisfying a,e > 0. Therefore, we can decrease either 473 or 43, to zero
without impacting (4). If both are zero, then we have that the desired 2-chain satisfies (4)
and (5).

Now, suppose that 03, > 0 and 473 = 0. Suppose that we add « to 035 and subtract «



from 03 ,. Also, we add ¢ to d;, and subtract € from 45 ;. Since % < £22

- < o the inequalities

Efog — apizs > 0,

apzs — gz = 0

admit a solution a, € > 0. Therefore, we can make either 03 5 or 05 3 zero. If 43, = 0, we have
that the desired 2-chain satisfies (4) and (5). If 053 = 0, then we have that the flexibility
structure with only 67 |, 6] 5, 055,03 1,03 9,03 3 > O satisfies (4) and (5).

Assume that 03, > 0. If 07, = 0, we are done, as by relabeling the servers we have

structure (v), which contradicts (10). If 67; > 0, we have

P10y 1 + 131037 = 7,

v
=

1,207 9 + f12,205 5 + 13,203 5

(AV4
Y

k
M3,353,3

* : * * : *
Suppose that we decrease d7; by «, increase 7, by «, decrease 93, by €, and increase 93

by e. If % < %, the inequalities

ez — oy > 0,

apiyg —€pz2 = 0

admit a solution o, > 0. Therefore, we can make either 07, or 03, zero. If 63, = 0, as
before we are done. If 67 is zero, then we have structure (v), a contradiction.

If 07 3 > 0 and 43, = 0, the proof is similar to the case when 03, > 0 and 67 3 = 0. This
completes the proof for chain (a).

The proof for chains (b) through (e) is similar and is omitted in the interest of space.



5 Proof of Proposition 5

(i) The fact that 57 = uM/S 1, A follows as in the proof of Proposition 2. Tt is not

difficult to see that 7*({1,...,K}) = 7. Set i, = 1 and §;; = MM/ SE A 07, =

(Z,f:l i — Mj\j)/szzl M for j = 2,...,M. The conditions of the Proposition imply

M/ K N> (M —1)/M, and hence

MY LA )
oga;,jg%:MG—%)a,
Zk:l/\k Zkzl)‘k

for j =2,..., M. However, ud},; = 3, for j =2,..., M, and similarly oy 4 + ,uzjj\iz 05, =
AA1. This shows that (4) holds. Now, v*({1,..., K} \ {k}) > +*({1,..., K}) is trivial for
k=1,..., K. Since (5) must only be verified for all subsets of {1,..., K} of size K — 1, we
have (i).

(ii) For k = 1, we have Zj\il d;1fj1 < 2, which in turn implies that v*({1,...,K}) <

2u/ 1 <2/(M —1) <5 when M > 2.

6 Proof of Proposition 6

We will write the allocation LP for full flexibility in standard form,

min 'z s.t.

where
b = (0,0,0,1,1,1),
¢ = (-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

T = (%51,1,51,2,51,3,52,1,52,2,52,3,53,1,53,2,53,3,31752,83754,35,56)7
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s1,...,Sq are slack variables, and

(1 s 0 0 —jy O 0 —jgy O 0 10000 0]
1 0 —fus O 0  —fins O 0 —fisa 0 010000
Ao 1 0 0 —l13 0 0 — 2,3 0 0 —pzz 001 0 0 O
0 1 1 1 0 0 0 0 0 0 000100
0 0 0 0 1 1 1 0 0 0 000 O0T1OQO0
_O 0 0 0 0 0 0 1 1 1 000 0O 1_
To prove (4), it suffices to prove that the basis
I —p1n —pep 0 —pzr O
1 0 0 — 22 0 0
L1000 0y
0 1 0 0 0 0
0 0 1 1 0 0
_O 0 0 0 1 1 |

corresponding to the decision variables v and d; 5, where (5, k) € {(1,1),(2,1),(3,1),(2,2),(3,3)},
is optimal. We will show that the corresponding basic solution is feasible and that the
corresponding reduced costs are nonnegative (see for example Definition 3.3 in Bertismas
and Tsitsiklis [2]). Let ¢ = (—1,0,0,0,0,0). We will verify that the vectors B~'b and
¢ — dyB7'A are nonnegative. Algebra shows that the only terms in B~'b that could be

negative are the terms corresponding to dy; and ds, which are given by

fo2(fiz1 + fis3) — fis3(fa1 + fs1) and fs3(fioq + fiz2) — fo2(f1 + fi2q) (E)
fo2l31 + 21 3,3 + 22133 fo2l31 + 21 3,3 + 22133

respectively, and both are nonnegative under condition (12). Similarly, the only terms in
¢ — dg B A that could be negative are the terms corresponding to 19, 013, d2.3, and d3,

which are given by

fis3(fi1 122 — fi12fi2.1) P2 ([ flss — f,3M3,1)
Ro2fisy + fioifiss + fAooflss Hoofisn + foafiss + fzofss
f2.2(fl21fis3 — f2,3031) fis,3(fi22fis1 — f21[t32)

fioofis1 + fo1fiss + foofiss Hoofisy + Hoifiss + Hoofss
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respectively, and are all nonnegative under conditions (13) and (14) (note that (12) implies
that pg9, 133 > 0). This proves that (4) holds.
In order to prove (5), it suffices to show that us o9, i3 3, and the terms corresponding to

d21 and &3 in B7'b are positive. This follows from condition (12), see (E).

7 Proof of Proposition 7

(i) The fact that ¥ = (K —1+d)u/ K\ follows as in Proposition 2. To show that v*({1,..., K}) =
¥, set 67, = (d+ K —1)/Kd > 0 and 67, = (d —1)/Kd > 0, k = 2,..., K, so that
21[::1 63, = 1. Moreover, dudy, = YA and similarly dudy ; + ud;; = A\ for j =2,..., M.
This shows that (4) holds, and (5) is trivial.

For (ii), note that for K > 2, we have 07, = 0 for j # 2,3, so that

2 K —1+d

'7*({17"‘7K}) SV*({SD < T < T X

> =
I
Y

8 Proof of Proposition 8

The proof resembles the proof of Proposition 6, except that we now have

1 @, 0 0 0 0
I 0 —ma 0  —fi2p O
B L0 0 —m3 0 —is3
0 1 1 1 0 0
0 0 0 0 1 0
I 0 0 0 0 0 1 |

Algebra shows that the only terms in B~'b that could be negative are the terms corresponding

to 012 and 03 3, which are given by

fia(fis + fiss) — foo(fir + fi13) and fia(fire + fizg) — fss(fi1 + fi12) (F)
B2 + i + Hi2fi13 Piifig + B+ figfns




respectively, and both are nonnegative under condition (15). Similarly, the only terms in
¢ — dg B A that could be negative are the terms corresponding to dy1, 2.3, 431, and d3,

which are given by

f13(fi1 122 — f12fi2.1) P ([ 3fize — fa,2f2,3)
Paafine + s + Bofiis fuifie + Baafins + firef s
f12(fin1fiss — f1,3031) fra (i 2fiss — fi1,3032)

Paafie + fiafs + fuefis fiifae + Bafls + figfns
respectively, and are all nonnegative under conditions (16) and (17). This proves that (4)
holds.
In order to prove (5), it suffices to show that p;; and the terms corresponding to d; o

and 01 3 in B~'b are positive. This follows from condition (15), see (F).

9 Proof of Proposition 9

We first consider the full flexibility structure and make (1) and (2) tight for & = 1,2:

fi1,101,1 + fl2,1021 = 7,

f1ao(l —0d11) + fiea(l —d21) = 7,

where fi;, = ,Uszg/S\k;, J,k =1,2. Rewriting:

o1 = —M@J + M,
M1+ 2 M1+ 2

. _ fi21 + [i2.2 P (a2 + flo2)
vo= |feq — g | =———==) | 021 + —= — :
M1+ 2 H11+ 2

So, the solution to the LP (1)-(3) satisfies 05, = 0, 07, < 1, and § = iy 1 (fi1,2 + flo2) /(fir,1 +

fi1,2) when

N _ 21 + fh2 2)
< 9 9 G
H21 S U1 <—ﬂ1,1 s ( )
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and

f1,2 + fi2,2

— —= < 1. (H)
M1+ 2

The relation (G) reduces to poip12 < p11pe2 and (H) reduces to 5\1/,u171 < 5\2//1272. The
fact that 65, = 0 means that (4) holds for the “N” structure, and the fact that (5) holds

follows from 07 ; < 1 and py2 > 0.

10 Proof of Proposition 10

As for the “N” structure in Proposition 9 we rewrite (1) and (2) with both constraints tight

for full flexibility:

fi1101,1 + fl21021 = 7,
(1 =611 —013)fn2+ (1 — 021 — 023)fiee = 7,

fi13013 + flasdas = 7,

where fi;, = ujyk/j\k, 7 =12, k=1,2,3. This can be rewritten as

5. = 2T fl2,102.1

11 = ——
Hi1

5 Y — 3013

23 — ————,
H2.3

(M2,_1M1,2 _ /12,2) 5271 1 (M1,_3M2,2 _ ﬂw) 51’3 Y i+ fine = (1 i /:h,z 4 /102,2) .
M1 H2,3 M1 2.3

So, the optimal solution to the LP (1)-(3) satisfies 65, =0, 073 =0, 67, < 1, 653 < 1, and

f12ft1,1 2,3 + 2201123
1,123 + fh12fte3 + M2 2fi11

'7:

when (18)-(20) hold. That the “W” structure satisfies (4) follows from &5, = 67 ;3 = 0, and

(5) holds from 67, < 1,655 <1, 12 >0, paz >0, pzp > 0 and py; > 0.
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