
A Different Proof of Crochemore-Ilie
Lemma Concerning Microruns1

Frantisek Franek and Jan Holub

abstract. We present a different computational proof of the esti-
mate of the number of microruns established in a recent Crochemore-
Ilie paper. The original proof in Crochemore-Ilie paper relies on
computational means, and thus our proof provides an independent
verification of the fact. We also introduce a notion of R-cover that
is essential to our approach. The hope is that a further analysis of
R-covers will lead to a non-computational proof of the upper bound
of the number of microruns.

1 Introduction

An important structural characteristic of a string over an alphabet is its
periodicity. Repetitions (tandem repeats) have always been in the focus of
the research into periodicities. The notion of runs captures maximal repeti-
tions which themselves are not repetitions and allows for a succinct notation
([10]). Even though it had been known that there could be O(n log n) rep-
etitions in a string of length n ([1]), it was shown in 1997 by Ilioupoulos,
Moore, and Smyth that number of runs in Fibonnaci strings is linear ([7]).
In 2000, Kolpakov and Kucherov proved that number of runs was linear in
the length of the input string ([8]). Their proof was existential and thus did
not specify the constants of linearity. The behaviour of the maxrun func-
tion ρ(n) = max{r(x) | all strings x of length n}, where r(x) denotes
the number of runs in a string x, became an interest of study to many. In
several papers (e.g. [4], [11], [3]) several conjectures about ρ(n) were put
forth:

(1) ρ(n) < n,

(2) lim|x|→∞
ρ(x)
|x| = 3

1+
√

5

1Supported in part by a grant from the Natural Sciences & Engineering Research
Council of Canada, a grant from the Ministry of Education, Youth and Sports of Czech
Republic, and a grant from the Czech Science Foundation.

2 Frantisek Franek and Jan Holub

(3) ρ(n+1) ≤ ρ(n)+2,

(4) for any n, there is a cube-free binary string x so that
r(x) = ρ(x).

[4] introduced a construction of an increasing sequence {xn : n < ∞} of
binary strings “rich in runs” so that limn→∞

r(xn)
|xn| = α, where α = 3

1+
√

5
≈

0.927. The technique was used by Franek and Yang to provide an asymptotic
lower bound for ρ(n) ([5]). This proof was significantly simplified by Giraud
([6]). Just recently, [9] improved the lower bound, falsifying the conjecture
(2). The current value of the lower bound 0.944565 (not published yet) can
be found at the web site of one of the authors at

http://www.shino.ecei.tohoku.ac.jp/runs/

An explicit upper bound 6.3n was first given by Rytter in 2006 and
immediately improved by him to 5n (see [12]), later improved more to 3.44n.
Crochemore and Ilie ([2]) lowered the upper bound to 1.6n using a different
method. The current value of the upper bound standing at 1.048n (not
published yet) can be found at the web site of Ilie at

http://www.csd.uwo.ca/~ilie/runs.html

Crochemore-Ilie approach relies in two estimates: the first is an estimate
of the number of so-called δ-runs, and the other is an estimate of the number
of microruns, i.e. runs with period ≤ 9. The first estimate is proven in the
paper and states that in average, each interval of length δ contains at most
one center of δ-run. The estimate of the number of microruns (Lemma 2 in
the paper) states that the number of microruns is bounded by the length of
the string. As a sketch of the proof, one of 512 different cases is analyzed.
The supposedly complete and exhaustive list of all cases was generated using
computer. So, the estimate of the number of microruns is established using
computational means.

Since it is important for computational results to have independent veri-
fication, we present a totally different approach that establishes by compu-
tational means the estimate of the number of microruns. We also introduce
a notion of R-cover that is essential to our approach. The hope is that a
further analysis of R-covers will lead to a non-computational proof of the
number of microruns.

2 Preliminaries and definitions

Definition 1. x[s..(s+ep+t)] is a run in a string x[1..n]
if x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · ·
= x[(s+(e−1)p)..(s+ep−1)] and
x[(s+(e−1)p)..(s+(e−1)p+t)] = x[(s+ep)..(s+ep+t)],

A Different Proof of Crochemore-Ilie Lemma Concerning Microruns 3

where 0 ≤ s < n is the starting position of the run, 1 ≤ p < n is the
period of the run, e ≥ 2 is the exponent (or power) of the run, and
0 ≤ t < p is the tail of the run. Moreover, it is required that either s = 0
or that x[s−1] 6= x[s+2p−1] (in simple terms it means that it is a leftmost
repetition) and that x[s+(ep)+t+1] 6= x[s+e+1)p+t+1] (in simple terms
it means that the tail cannot be extended to the right). It is also required,
that the generator of the run, x[s..(s+p−1)] is primitive, i.e. not a rep-
etition itself.
x[s..(s+2p−1)] is referred to as the leftmost square of the run, and
x[(s+(e−2)p+t+1)..(s+ep+t)] as the rightmost square of the run (for
illustration see Figure 1).

..............

s
 s+p-1
 s+p
 s+2p-1
 s+(e-1)p
 s+ep-1
 s+ep
 s+ep+t

 generator

length =
p

 tail

t
 <

p

repeats
e
 times

leftmost square
 rightmost square

s+(e-1)p-t

Figure 1. Illustration of a run

Note that each run can be uniquely encoded by the four-tuple (s, p, e, t).

The core of a run is an auxiliary notion used to construct R-covers (see
Lemma 1). Intuitively, it is a set of positions which “destroys” the run if
we split the run there into two parts.
We employ the convention that splitting a string x[1..n] in position k means
breaking it into x[1..k] and x[k+1..n].
For instance, a run aaa cannot be destroyed by splitting: a|aa preserves
a run aa from the original run aaa, aa|a does likewise, and thus it has an
empty core. On the other hand, ababab can be split into aba|bab and the
run is destroyed, so position 3 is in the core, while 2 is not since ab|abab
preserves a run abab from the original run ababab (for illustration using a
more complex run abaabaa see Figure 2).

Definition 2. The core of a run r = (s, p, e, t) is the set of positions where
the leftmost and the rightmost squares of the run overlap less the last index,

4 Frantisek Franek and Jan Holub

a
 b
 a
 a
 b
 a
 a

1
 2 3 4 5
6 7

core

leftmost square

rightmost square

a
 b
 a
 a
 b
 a
 a

a
 b
 a
 a
 b
 a
 a

a
 b
 a
 a
 b
 a
 a

a
 b
 a
 a
 b
 a
 a

Figure 2. Core of a run and the “destruction” of the run by splitting it in
a core position

or more precisely
{i : s ≤ i < s+2p−1 & s+(e−1)p−t ≤ i < s+ep+t}.

Note: Any run with power ≥ 4 has an empty core regardless its period, so
does the cube with period 1 (aaa), in a sense these runs are indestructible
by splitting. Cubes with higher periods have non-empty cores, and so do
squares. If a square has no tail, the core actually contains all positions
(except the last one), that is a maximal core – such run can be destroyed
by splitting it anywhere, for instance abab: a|bab or ab|ab or aba|b, none
of the splitting preserves anything of the run.

It seems intuitively clear that in a string with a maximum number of runs,
the runs must be distributed “uniformly” and “densely”. The following
notion of R-cover is an attempt to describe a dense distribution of runs in
a string (for illustration, see Figure 3).

Definition 3. A set {ri : 1 ≤ i < m} of squares in a string x is an R-cover
of x if

1. the union of all squares ri is the whole of x;

2. each square ri has a primitive generator;

3. each square ri is leftmost (i.e. cannot be shifted left);

4. the starting position of ri < the starting position of ri+1, and the end
position of ri < the end position of ri+1;

A Different Proof of Crochemore-Ilie Lemma Concerning Microruns 5

5. for any run r in x, the leftmost square of r is a substring of some ri.

In the following, for the sake of simplicity, a microrun (microsquare)
indicates a run (square) with period ≤ 9. A micro-R-cover is an R-cover
consisting of microsquares. µ(x) denotes the number of microruns in x.

Lemma 1. Let x = x[1..n] be a string. If every 1 ≤ i < n is in the core of
some microrun in x, then there exists a micro-R-cover of x.

Proof. Among all microruns that have 1 in its core, choose the one with the
largest period, call it R1. Set r1 to the leftmost square of R1. We proceed
by induction.

Assume to have constructed {R1 : 1 ≤ m} and {ri : 1 ≤ m} such that
{ri : 1 ≤ m} satisfies 2-5 from Definition 3 and each ri is the leftmost square
of Ri. If

⋃
1≤i≤m ri = x, then condition 1 from Definition 3 is satisfied and

{ri : 1 ≤ m} is an R-cover and the proof is complete.
Otherwise pick the leftmost position k ∈ {1, · · · , n−1} that is not covered
by

⋃
1≤i≤m ri. Among microruns that have k covered by its leftmost square

(at least one such must exists, since there is at least one that has k in its
core), choose the leftmost ones, and among those, choose the run with the
largest period, it is Rm+1. Set rm+1 to the leftmost square of Rm+1.
Since k is not covered by any ri, 1 ≤ i ≤ m, it is not in the core of any of
the microruns Ri, 1 ≤ i ≤ m, in fact k is to the right of the core of any Ri,
1 ≤ i ≤ m. Since k is either in the core of Rm+1 or to the left of the core
of Rm+1, Rm+1 is distinct from all Ri, 1 ≤ i ≤ m. 2 ¥

The following definition of cut is another auxiliary notion. It allows to carry
induction over number of microruns: if a string x[1..n] has a cut k, then
µ(x[1..n]) ≤ k+µ(x[k+1..n]).

Definition 4. A position k < n in a string x[1..n] is a cut, if the number
of all microruns with starting position ≤ k is ≤ k, and it is a smallest such
k.

The following lemma is crucial for our proof, it guarantees that under some
conditions, a cut exists.

Lemma 2. Let x be an arbitrary string with a micro-R-cover {ri : 1 ≤
i ≤ m}. Let r1 have not tail. Let there be another microsquare s with a
primitive generator of size < the period of r1, with no tail, and starting at
position 1. Further assume that |x| > 35. Then x has a cut.

Proof. Note that due to the size of x, m ≥ 2.
The proof is computational and was carried out by the following steps.

6 Frantisek Franek and Jan Holub

a
 a

a
 a

a
a
 b
 a
 b

a
 b
 a
 a
 b
 a
 b
 a
 a
 b
 a
 b

a
 a

b
a
 a
 b

b
 a
 b
 b
 a
 b

b
 b

b
 a
 b
 a
 a
 b
 a
 b
 a
 a
 b
 a
 b

b
 a
 b
 a

a
 b
 a
 a
 b
 a

a
 a

a
 b
 a
 b
 a

a
 b
 a
 a
 b
 a

a
 a

a
 b
 a
 b

b
 a
 b
 b
 a
 b

b
 b

b
 a
 b
 a

a
 b
 a
 a
 b
 a

a
 a

a
 b
 a
 b

b
 b

a
 b
b
 a
 b
 a
 a
 b
 a
 b
b
 a
 b
 a
 a
 b

a
 b
a
 b
 a
 a

a
 a
 b
 a
 b
a
 a
 b
 a
 b
 a
 a
 b
 b
 a
 b
 a
 a
 b
 a
 b
 a
 a
 b
 a
 b
 b
 a
 b
 a
 a
 b
 a
 b
 b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

a
 a
 b
 a
 a
 a
b

a
 b
 a
 b
a
 a
 b
 a
 b
 a
 a
 b
 b
 a
 b
 a
 b
a
 a
 b
 a
 b
 a
 a
 b
 a
b
 b
 a
 a
 b
 a
 b

b
b
 a
 b
 a
 a
 b
 a
 b
 b
 a
 b
 a
 a
 b
 a
 b

Figure 3. A string with all its runs, its R-cover is highlighted

1) s was generated, then it was extended to r1.

A Different Proof of Crochemore-Ilie Lemma Concerning Microruns 7

2) The cut k1 for r1 was computed (that the cut must exist follows from
the fact that ρ(n) < n for all n ≤ 35).
If r2 starting position > k1, then k1 is a cut for r1 ∪ r2 as well. Thus
we tried to generate a “bad” r2 with a starting position ≤ k1.
For most r1 generated, only “good” r2 could be generated, and so k1

was the cut for r1 ∪ r2 and thus the cut for
⋃

1≤i≤m ri = x as well.
In a few cases a “bad” r2 was generated. The configuration r1, r2 was
then processed further.

3) The cut k2 for r1 ∪ r2 was computed (it was always successful).
If r3 starting position > k2, then k2 is a cut for r1∪r2∪r3 as well. Thus
we tried to generate a “bad” r3 with a starting position ≤ k2. Only
“good” r3 could be generated, and so k2 was the cut for r1 ∪ r2 ∪ r3

and thus the cut for
⋃

1≤i≤m ri = x as well. 2

¥

3 The main theorem and its proof

Theorem 1. For any string x, µ(x) ≤ |x|.

Proof. It is known from various computational results, including the com-
putations carried by the authors of this paper, that ρ(n) < n for all n ≤ 35,
and so µ(x) < |x| for all strings x of size ≤ 35.
So we can assume that the size of x[1..n] is bigger than 35. We proceed by
induction. At each stage, we discuss two cases.

Case 1: there exists k, 1 ≤ k < n, that is not in the core of any microrun.
Then µ(x[1..n]) ≤ µ(x[1..k])+µ(x[k+1..n]. By the induction hypothesis,
µ(x[1..n]) ≤ µ(x[1..k])+µ(x[k+1..n] ≤ k+(n−k) = n.

Case 2: for any k, 1 ≤ k < n, k is in the core of some microrun.
Then by Lemma 1, x has a micro-R-cover {ri : 1 ≤ i ≤ m}. If the position
1 is not in the core of at least two microruns, then µ(x[1..n]) ≤ 1+µ(x[2..n])
and so by the induction hypothesis µ(x[1..n]) ≤
1+µ(x[2..n]) ≤ 1+(n−1) = n.
So we can assume that position 1 is in the core of at least two microruns.
It follows that r1 must be a microsquare with no tail and that there is a
microsquare s with a period < the period of r1, starting at position 1, and
no tail. Thus the conditions of Lemma 2 are fulfilled and so there is a cut
k. It follows that µ(x) ≤ k+µ(s[k+1..n) = k+(n−k) = n. 2 ¥

8 Frantisek Franek and Jan Holub

4 Conclusion and further research

We presented an alternative computational proof of the estimate of the
number of microrun. The method presented does not scale up well for
higher periods – though Lemma 2 holds as is for periods ≤ 10 – for higher
periods more than just two initial squares of the R-cover are needed before
the cut is guaranteed.

However, the most interesting aspect of R-covers was not fully exploited
here: for a given string x[1..n], if there is a position k in x that is not in the
core of at least two microruns, than µ(x[1..n]) ≤ µ(s[1..k−1])+1+µ(x[k+1..n])
and so by the induction hypothesis µ(x) ≤ n. This indicates that induction
breaks down only if a string has two micro-R-covers, one a refinement of
the other. There is a hope (and computational results carried to date pro-
vide some evidence), that such double covers are not possible. The future
research will thus focus on a non-computational proof that such double cov-
ers do not exist providing a route to a non-computational estimate of the
number of microruns.

BIBLIOGRAPHY
[1] M. Crochemore: An optimal algorithm for computing the repetitions in a word.

Inform. Process. Lett., 5 (5) 1981, pp. 297–315.

[2] M. Crochemore and L. Ilie: Maximal repetitions in strings. to appear in J. Comput.
Syst. Sci.

[3] Fan Kangmin and W. F. Smyth: A new periodicity lemma. to appear in SIAM J.
of Discr. Math.

[4] F. Franek, J. Simpson, and W. F. Smyth: The maximum number of runs in a
string in Proceedings of 14th Australasian Workshop on Combinatorial Algorithms
AWOCA 2003, Seoul National University, Seoul, Korea, July 13-16 2003.

[5] F. Franek and Q. Yang: An asymptotic lower bound for the maximal number of runs
in a string Int. Journ. of Foundations of Computer Science, 1 (19) 2008, pp. 195–203.

[6] M. Giraud: Not so many runs in strings The proceedings of the LATA 2008,
Tarragona, Spain, March 2008.

[7] C. S. Iliopoulos, D. Moore, and W. F. Smyth: A characterization of the squares
in a Fibonacci string Theoretical Computer Science 172 (1997) 281-291.

[8] R. Kolpakov and G. Kucherov: On maximal repetitions in words. J. of Discrete
Algorithms, (1) 2000, pp. 159–186.

[9] R. K. Kusano, W. Matsubara, A. Ishimo, H. Bannai, and A. Shinohara New
lower bounds for the maximum number of runs in a string, CoRR, abs/0804.1214,
May 2008, http://arxiv.org/abs/0804.1214,

[10] M. G. Main: Detecting leftmost maximal periodicities. Discrete Applied Maths., (25)
1989, pp. 145–153.

[11] S. J. Puglisi, W. F. Smyth, and A. Turpin: Some restrictions on periodicity in
strings, in Proceedings of 16th Australasian Workshop on Combinatorial Algorithms
AWOCA 2005, University of Ballarat, Victoria, Australia, September 18-21 2005,
pp. 263–268.

[12] W. Rytter: The number of runs in a string: Improved analysis of the linear upper
bound, in Proceedings of 23rd Annual Symposium on Theoretical Aspects of Computer
Science STACS 2006, Marseille, France, February 23-25 2006, pp. 184–195.

A Different Proof of Crochemore-Ilie Lemma Concerning Microruns 9

Frantisek Franek
Department of Computing & Software
McMaster University
Hamilton, Ontario, Canada L8S 4K1
Email: franek@mcmaster.ca
http://www.cas.mcmaster.ca/~franek

Jan Holub
Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo Namesti 13, 121 35 Prague 2, Czech Republic
Email: holub@fel.cvut.cz
http://cs.felk.cvut.cz/~holub

