
International Journal of Foundations of Computer Science

c© World Scientific Publishing Company

SORTING SUFFIXES OF TWO-PATTERN STRINGS.

FRANTISEK FRANEK and WILLIAM F. SMYTH∗

Algorithms Research Group,

Dept. of Computing & Software,

McMaster University,

Hamilton, Ontario,

Canada L8S 4L7.

ABSTRACT

Recently, several authors presented linear recursive algorithms for sorting suffixes of

a string. All these algorithms employ a similar three-step approach, based on an initial

division of the suffixes of x into two sets: in step 1 sort the first set using recursive

reduction of the problem, in step 2 determine the order of the suffixes in the second

set based on the order of the suffixes in the first set, and in step 3 merge the two sets

together. To optimize such an algorithm either for space or time, it may not be sufficient

to optimize one of the three steps, since in doing so, one might increase the resources

required for the others to an unacceptable extent.

Franek, Lu, and Smyth introduced two-pattern strings as a generalization of Sturmian

strings. Like Sturmian strings, two-pattern strings are generated by iterated morphisms,

but they exhibit a much richer structure.

In this paper we show that the suffixes of two-pattern strings can be sorted in linear time

using a variant of the three step approach outlined above. It turns out that, given the

order of the suffixes in a two-pattern string, one can almost directly list in linear time

all the suffixes of its expansion under a two-pattern morphism.

Keywords: two-pattern string, suffix, suffix tree, suffix array, sorted suffixes

1. Introduction

Ever since Manber and Myers in [9] introduced suffix arrays as data structures

comparable to suffix trees for most pattern matching tasks in strings, yet requiring

significantly less memory, the search was on for a linear time algorithm for their

construction. Such an algorithm for suffix tree construction had been known since

1997 [1]. In 2003 to our knowledge three different groups of researchers indepen-

dently proposed linear recursive algorithms to sort string suffixes: [6, 7, 8]. Though

different, all three algorithms employ three steps, based on a separation of the suf-

fixes into two sets. In step 1 the first set is ordered using recursive reduction of the

problem, in step 2 the suffixes of the second set are sorted based on the order of

the suffixes in the first set, and in step 3 both ordered sets are merged together.

∗also Department of Computing, Curtin University, Perth WA 6845, Australia.

1

The fact that all three algorithms follow this basic approach, yet use a completely

different separation into sets, a different way of ordering the second set based on

the first set, and a different merge technique, points to some common fundamental

aspect of these algorithms. To optimize such an algorithm either for space or time,

it may not be sufficient to optimize one of the three steps, since in doing so, one

might increase the resources required for the others to an unacceptable extent.

Two-pattern strings were introduced in [2] as a generalization of Sturmian

strings. Like Sturmian strings, two-pattern strings are generated by iterated mor-

phisms, but they exhibit a much richer structure. It was shown in [3] that the

iterated construction of these strings could be used to compute all the repetitions

and near-repetitions in time linear in string length.

This paper was motivated by our investigation of the three different linear suffix

sorting algorithms discussed above and our desire to fully understand the underlying

phenomena. Thus, we investigated whether the recursive nature of two-pattern

strings could be used in sorting of the suffixes in the approach of the three algorithms

mentioned. As it turned out, the “natural” recursive reduction of two-pattern

strings can be used for step 1, and then steps 2 and 3 can be simplified into a single

step: from having the suffixes of the reduced string ordered, one can almost directly

list the suffixes of the two-pattern string in the right order.

For the sake of completeness, let us recall the definition of a two-pattern string

(see [2]), including all supporting definitions. Throughout this paper, a binary

string means a string over the alphabet {a, b}.

Definition 1 A binary string q is said to be p-regular if and only if q = upvu

for some choice of (possibly empty) substrings u and v.

Definition 2 An ordered pair (p, q) of nonempty binary strings is said to be suit-

able if and only if

• p is primitive (that is, p has no nonempty border);

• p is not a suffix of q;

• q is neither a prefix nor a suffix of p;

• q is not p-regular.

Note: Since a two-pattern string is a concatenation of blocks piq and pjq, the

above two definitions make sure that p and q are dissimilar enough to be recognized

efficiently.

Definition 3 σ = [p, q, i, j]λ is an expansion of scope λ, if (p, q) is suitable,

|p| ≤ λ, |q| ≤ λ, 1 ≤ i, j, i 6= j are integers, and λ is an integer ≥ 1.

Note: An expansion σ = [p, q, i, j] is applied to a binary string x in the following

fashion: each occurrence of a in x is replaced by piq and each occurrence of b by

pjq. The resulting string is denoted as σ(x). We define σ(ε) = ε. The composition

of two expansions σ and σ, (σ◦σ)(x) is defined by (σ◦σ)(x) = σ(σ(x)).

The role of the scope λ is to limit the size of p and q that can be used in the following

definition.

2

Definition 4 A binary string x is a two-pattern string of scope λ if there exists

a sequence {σ1, σ2, . . . , σm} of expansions of scope λ so that x = σ1 ◦ · · · ◦ σm(a).

It was mentioned at the end of [2] that if the definition of p-regularity were made

more restrictive, a larger class of complete two-pattern strings could be obtained.

The more restrictive definition, sufficient to give two-pattern strings all their desired

properties, contained a few typographical errors as it was given in [2], and so we

provide a corrected definition here:

Definition 5 A binary string q is said to be p-regular (p a binary string) if and

only if there exist (possibly empty) strings u, v together with nonnegative integers

n1, n2, . . . , nk, k ≥ 1, r ≥ 0, such that

• the integers ni assume at most two distinct values — that is,

∣

∣{ni : i ∈ 1..k}
∣

∣ ≤ 2;

• q = (uprvpn1)(uprvpn2) · · · (uprvpnk)u for some u, v, r ≥ 0, where v = ε

if r = 0.

Note: the definition 5 can be used to replace the definition 1. In fact, all the proofs

accompanying this paper are compliant with the more restrictive definition 5.

Certain finite fragments of the well-known Fibonacci string and the equally well-

known Sturmian strings are in fact two-pattern strings of scope λ = 1 (see [2]).

Here are a few simple examples of two-pattern strings:

1. a, now apply σ = [ab, ba, 2, 3] to it, we get

2. σ(a) = ababba, now apply σ = [abb, aa, 1, 4] to it, we get

3. σ(σ(ababba)) = abbaa(abb)4aaabbaa(abb)4aa(abb)4aaabbaa.

Strings 1, 2, and 3 are all two-pattern strings of scope 3 (string 2 is in fact of scope

2, and string 1 is in fact of scope 1).

It was shown in [2] that complete two-pattern strings can be recognized in linear

time: the recognition algorithm outputs an essentially unique sequence of expan-

sions to construct the string from a. So in the following we can assume that not

only do we have a complete two-pattern string, but also the sequence of expansions

that iteratively generates the string.

In the next section we describe the principles underlying the algorithm for sorting

suffixes of a two-pattern string. In Section 3 we provide an overview of the algorithm

itself, while Section 5 we list some of the main lemmas on which the algorithm is

based. We conclude with Section 6.

2. The Principles Underlying the Algorithm

For the sake of clarity and brevity, we introduce several symbols: we use the

symbol u < v for strings u, v to express that u is lexicographically smaller than

v. We use the symbol ≺ in u ≺ v (or � in u � v) to express the fact that u < v

yet u is not a prefix of v (or v < u yet v is not a prefix of u). Note that u < v

3

iff (u ≺ v or u is a prefix of v). We use the symbol u �≺ v to indicate that either

u ≺ v or u � v.

For a binary string u, we will use u to denote its ones-complement; that is, the

string formed by interchanging a’s and b’s in u.

In accordance with [2], if x, y are complete two-pattern strings, σ an expansion,

and y = σ(x), then the occurrences of copies of p and copies of q in the concate-

nation of blocks piq and pjq as defined by σ(x) are called restrained copies. Any

other occurrence of p or q is referred to as free. A consecutive sequence of restrained

copies of p’s and/or q’s will also be referred to as a restrained configuration or

a restrained substring of y.

Throughout the following discussion we assume that the scope λ is fixed and that

y = σ(x), where x is a complete two-pattern string of scope λ and σ = [p, q, i, j]λ an

expansion of scope λ. Moreover we assume that all suffixes of x are lexicographically

sorted: ρ1 < · · · < ρ|x|. We then describe how to order the suffixes of y. We may

assume further that q < p. If it were not the case, according to Lemma 2 (see section

5 below), q < p, we sort all of the suffixes of y = σ(x), where σ = [p, q, i, j]λ, and

then we can list all suffixes of y in proper order efficiently in linear time.

Since we are assuming q < p, according to Lemma 1 (see section 5 below), for

any suffixes ρ1, ρ2 of x, if ρ1 < ρ2, then σ(ρ1) < σ(ρ2). In simple terms, the

assumption q < p makes all expansions to preserve the order of suffixes.

We put all the suffixes of y into disjoint buckets of five types A–E. Their

definitions follow (note that the expansion σ = [p, q, i, j]λ is fixed):

• For every nontrivial suffix δ of p and for every integer k, 0 < k < i,

Aδ,k
= {δpkqσ(ρ) :}ρ is a proper suffix of x or ρ = ε};

• for every nontrivial suffix δ of p that is also a suffix of q,

Aδ,i
= {δpiqσ(ρ) : ρ is a proper suffix of x or ρ = ε};

• for every nontrivial suffix δ of p that is not a suffix of q,

Aδ,i
= {δpiqσ(ρ) : bρ is a proper suffix of x, ρ can be empty};

• for every nontrivial suffix δ of p and for every integer k, i < k < j,

Aδ,k
= {δpkqσ(ρ) : bρ is a proper suffix of x, ρ can be empty}.

• for every nontrivial suffix δ of p,

Bδ = {δqσ(ρ) : ρ is a proper nontrivial suffix of x};

• for every nontrivial suffix δ of q that is not a suffix of p,

Cδ = {δpiqσ(ρ) : aρ is a proper suffix of x, ρ can be empty};

• for every nontrivial suffix δ of q,

Dδ = {δpjqσ(ρ) : bρ is a proper suffix of x, ρ can be empty};

• E = {δq : δ is a nontrivial suffix of p} ∪ {δ : δ is a nontrivial suffix

of q}.

4

(where the term proper suffix refers to a suffix that is not equal to the whole string

and the term trivial suffix refers to the empty suffix).

It is straightforward to check that any suffix of y belongs to one of the buckets A–E

(for proof see either [5] or [4]). We are going to order the suffixes in buckets A–D

based on the ordering of the suffixes for x (Step 1), then merge in the suffixes from

E (Steps 2 & 3); since |E| ≤ 2λ, this will not destroy the linearity of the algorithm.

Note that the order within each bucket is determined by the order of suffixes of x:

in the bucket Aδ,k
: δpkqσ(ρ1) < δpkqσ(ρ2) if ρ1 < ρ2;

in the bucket Bδ : δqσ(ρ1) < δqσ(ρ2) if ρ1 < ρ2;

in the bucket Cδ : δpiqσ(ρ1) < δpiqσ(ρ2) if ρ1 < ρ2;

and in the bucket Dδ : δpjqσ(ρ1) < δpjqσ(ρ2) if ρ1 < ρ2.

Thus, it is straightforward to list the suffixes in each bucket in the correct order,

given the order of the suffixes of x.

We make use of the following notation: if X, Y are sets of suffixes of y, we write

X � Y iff (∀x ∈ X)(∀y ∈ Y)(x < y). The major observation our algorithm is

based on is that the buckets are linearly ordered by �; that is, pairwise orderings

can be made between bucket pairs of types

AA, AB, AC, AD, BB, BC, BD, CC, CD, DD, (1)

based on five mutually exclusive (and exhaustive) conditions on any pair δ, δ of

suffixes of p and/or q:

(C1) δ1 ≺ δ2;

(C2) δ1 � δ2;

(C3) δ1 is a proper prefix of δ2;

(C4) δ2 is a proper prefix of δ1;

(C5) δ1 = δ2 = δ.

Observe that, given δ and δ, to determine which of these conditions holds requires

at most λ letter comparisons (since |δ| ≤ λ, |δ| ≤ λ).

Thus, for example, two A buckets can be compared as follows:

(C1) Aδ1,k1

� Aδ2,k2

.

(C2) Aδ2,k2

� Aδ1,k1

.

(C3) Let δ2 = δ1δ
′
1 for some nonempty δ′

1:

(a) if δ′
1 ≺ p, then Aδ2,k2

� Aδ1,k1

;

(b) otherwise, Aδ1,k1

� Aδ2,k2

.

(C4) Let δ1 = δ2δ
′
2 for some nonempty δ′

2:

(a) If δ′
2 ≺ p, then Aδ1,k1

� Aδ2,k2

;

5

(b) otherwise, Aδ2,k2

� Aδ1,k1

.

(C5) (a) If k1 < k2, then Aδ,k1

� Aδ,k2

;

(b) if k1 = k2, then Aδ,k1

= Aδ,k2

;

(c) if k1 > k2, then Aδ,k2

� Aδ,k1

.

It is not very hard to prove that this ordering is correct. The demonstration

for cases (C1), (C2) and (C5) is straightforward. For (C3), observe that we are

comparing δ1p
k1q· · · with δ2p

k2q· · ·, hence pk1q· · · with δ′
1p

k2q· · ·. Since δ′
1 is a

suffix of δ2, it is also a suffix of p and so cannot be a prefix of p. It follows that

either δ′
1 ≺ p or δ′

1 � p, and the result follows. The proof for (C4) is exactly

analogous.

Furthermore the AA ordering is efficient, since the cases (a) and (b) in (C3) and

(C4) can be processed in at most λ constant-time steps in addition to the λ steps

that may be required to identify which condition holds: thus a total of at most 2λ

steps altogether.

The results for the other pairs listed in (1) are similar: the details vary slightly

from one case to another. The main result is that any of the pairs can be processed

in at most 3λ steps, a constant. To avoid distracting the reader with unnecessary

and uninteresting detail, we do not include the other cases here. For those details,

please see either [4] or [5].

3. The High-Level Logic of the Algorithm

We describe only the recursive step (Step 1) that takes us from x and its sorted

suffixes to the corresponding sorted suffixes of y = σ(x), where σ = [p, q, i, j]λ.

Recall that we assume q < p.

1. Create names (A, δ) for every suffix δ of p. (This requires at most λ steps.

Each name will be eventually replaced by a sequence of buckets, see below.)

2. Sort the names according to the order described in the previous section for

mutual comparison of the four A buckets (of course, according to (C1)-(C4)

only). (This requires at most 2λ3 steps as we are sorting λ names and each

comparison requires ≤ 2λ steps.)

3. Replace every name (A, δ) by a sequence of names (A, δ, k), 1 ≤ k < j. Let us

call the resulting sequence BUCKETS. (Now we have the names of A buckets

in the proper order. This requires at most |y| steps as the size of BUCKETS

is ≤ |y|. Each name (A, δ, k) will eventually be replaced by a corresponding

bucket Aδ,k, see below.)

4. Create names (B, δ) for every suffix δ of p. (This requires at most λ steps.

Each name (B, δ) will eventually be replaced by a corresponding bucket Bδ,

see below.)

5. Merge into BUCKETS all names (B, δ) according to comparisons as described

in comparing A buckets to B buckets. (This requires at most |BUCKETS|3λ2

6

steps, as we are merging in λ names and each comparison requires ≤ 3λ steps,

hence at most |y|3λ2 steps.)

6. Create names (C, δ) for every suffix δ of q that is not a suffix of p. (This

requires at most λ2 steps. Each name (C, δ) will eventually be replaced by a

bucket Cδ, see below.)

7. Merge into BUCKETS all names (C, δ) according to comparisons as described

in comparing A buckets to C buckets and B buckets to C buckets. (This

requires at most |BUCKETS|3λ2 steps, hence at most |y|3λ2 steps.)

8. Create names (D, δ) for every suffix δ of q. (This requires at most λ steps.

Each name (D, δ) will eventually be replaced by a bucket Dδ, see below.)

9. Merge into BUCKETS all names (D, δ) according to comparisons as described

in comparing A buckets to D buckets, B buckets to D buckets, C buckets

to D buckets. (Now we have all required bucket names, except E, in proper

order. This requires at most |BUCKETS|3λ2 steps, hence at most |y|3λ2

steps.)

10. Traverse BUCKETS and replace each name by a sequence of suffixes according

to the sequence of suffixes of x. Let us call this sequence SUFFIXES. (We

turned the names into proper buckets and merged them all together in a single

list. Now we have all suffixes from buckets A–D in proper order. This requires

at most |y| steps as the size of SUFFIXES is ≤ |y|.)

11. Merge into SUFFIXES the suffixes from the bucket E. (This requires at most

|SUFFIXES|4λ2 steps, as we are merging in 2λ suffixes, each of length ≤ 2λ,

hence at most |y|4λ2 steps.)

SUFFIXES is now a sorted list of all suffixes of y and it took less than α|y| steps,

where we set α = 2λ3 + 14λ2 + 3λ + 2. Since every reduction of a complete two-

pattern string at least halves its length, altogether the algorithm with all iterative

steps included took less than αn + αn
2

+ αn
4

+ · · · < 2αn steps, where n is the size

of the input string.

4. An example

Let x = aab$, and let σ = [ba, ab, 1, 2]. (Thus q = ab < p = ba.) Hence

y = σ(x) = baabbaabbabaab$.

All nontrivial suffixes of x are (listed in the lexicographic order) a, aa, and aab. All

nontrivial suffixes of p are ba and a, and all nontrivial suffixes of q are ab and b.

Let us list the buckets:

Aba,1 = {babaabσ(ρ) : bρ is a proper suffix of x, ρ can be ε} = {babaab} = {y[9..14]}.

Aa,1 = {abaabσ(ρ) : bρ is a proper suffix of x, ρ can be ε} = {abaab} = {y[10..14]}.

Bba = {baabσ(ρ) : ρ is a proper suffix of x} = {baabσ(ab), baabσ(b)} =

{baabbaabbabaab, baabbabaab} = {y[1..14], y[5..14]}.

Ba = {aabσ(ρ) : ρ is a proper suffix of x} = {aabσ(ab), aabσ(b)} =

7

{aabbaabbabaab, aabbabaab} = {y[2..14], y[6..14]}.

Cab = {abbaabσ(ρ) : aρ is a proper suffix of x} = {abbaabσ(b)} = {abbaabbabaab} =

{y[3..14]}.

Cb = {bbaabσ(ρ) : bρ is a proper suffix of x} = {bbaabσ(b)} = {bbaabbabaab} =

{y[4..14]}.

Dab = {abbabaabσ(ρ) : bρ is a proper suffix of x, ρ can be ε} = {abbabaab} =

{y[7..14]}.

Db = {bbabaabσ(ρ) : bρ is a proper suffix of sx, ρ can be ε} = {bbabaab} =

{y[8..14]}.

E = {baab, aab, ab, b} = {y[11..14], y[12..14], y[13..14], y[14..14]}.

First note that we really listed all nontrivial suffixes of y: y[1..14], y[2..14], ...,

y[14..14]. Also note that the suffixes in the buckets are listed in lexicographic

order. Let us list the pairwise relationships of all buckets: Aba,1 � Aa,1 (by C2),

Aba,1 � Bba (by C5), Aba,1 � Ba (by C2), Aba,1 � Cab (by C2), Aba,1 � Cb (by

C4a), Bba � Ba (by C2), Bba � Cab (by C2), Bba � Cb (by C4a), Bba � Dab

(by C2), Bba � Db (by C4a), Ba � Cab (by C3b), Ba � Cb (by C1), Ba � Dab

(by C3b), Ba � Db (by C1), Aba,1 � Dab (by C2), Aba,1 � Db (by C4a),

Aa,1 � Bba (by C1), Aa,1 � Ba (by C5), Aa,1 � Cab (by C3b), Aa,1 � Cb (by

C1), Aa,1 � Dab (by C3b), Aa,1 � Db (by C1), Cab � Cb (by C1), Cab � Dab

(by C5), Cab � Db (by C1), Cb � Dab (by C1), Cb � Db (by C5), Dab � Db

(by C1).

Now follow the 11 steps.

1. create names (A, ba), (A, a)

2. sort them: (A, a), (A, ba) (according to (C2))

3. ”refine” the names to BUCKETS=(A, a, 1), (A, ba, 1)

4. create names to (B, ba), (B, a)

5. merge them into BUCKETS=(B, a), (A, a, 1), (B, ba), (A, ba, 1)

6. create names to (C, ab), (C, b)

7. merge them into BUCKETS=(B, a), (A, a, 1), (C, ab), (B, ba), (A, ba, 1), (C, b)

8. create names to (D, ba), (D, a)

9. merge them into BUCKETS=(B, a), (A, a, 1), (C, ab), (D, ab), (B, ba),

(A, ba, 1), (C, b), (D, b)

10. replace the names by buckets: SUFFIXES= y[2..14], y[6..14], y[10..14],

y[3..14], y[7..14], y[1..14], y[5..14], y[9..14], y[4..14], y[8..14].

11. merge in E bucket: SUFFIXES= y[12..14], y[2..14], y[6..14], y[13..14],

y[10..14], y[3..14], y[7..14], y[14..14], y[11..14], y[1..14], y[5..14], y[9..14],

y[4..14], y[8..14].

8

5. The Supporting Lemmas

For the proofs, as mentioned above, see either [4] or [5].

The first lemma establishes that the ordering of suffixes is invariant under an

expansion with q < p.

Lemma 1 Let σ = [p, q, i, j]λ be an expansion and q < p. Let x and y be two-

pattern strings of scope λ and let y = σ(x). Let ρ1, ρ2 be suffixes of x so that

ρ1 < ρ2.

Then σ(ρ1) < σ(ρ2).

The next lemma tells us that after interchanging a and b in a binary string, we

can efficiently list the suffixes of the complement in lexicographic order knowing the

order of suffixes in the original string.

Lemma 2 Let ρ1 < · · · < ρn be the sequence of all suffixes of a binary string u

in ascending lexicographic order. Then there is an efficient linear-time procedure to

list all suffixes of u in ascending lexicographic order.

The next three lemmas are technical lemmas required for some of the proofs (see

website referenced above) that the pairs (1) can be processed correctly in O(3λ)

time. Essentially these lemmas tell us that the ordering of restrained suffixes of y

can be accomplished in at most 2λ constant-time algorithmic steps.

Lemma 3 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an expansion,

and y = σ(x). Let u be a non-empty binary string and let uqp be a suffix of a

restrained configuration pqp of y and let qp be a restrained configuration of y. Then

uqp �≺ qp and whether uqp≺qp or uqp�qp can be determined in ≤ 2λ steps.

Lemma 4 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an expansion,

and y = σ(x). Let u be a non-empty binary string and let up be a suffix of a

restrained configuration qp of y. Let 1 ≤ k, and let pkq be a restrained configuration

of y. Then up �≺ pkq and whether up≺pkq or up�pkq can be determined in ≤ 2λ

steps.

Lemma 5 Let x, y be two-pattern strings of scope λ, σ = [p, q, i, j]λ an expansion,

and y = σ(x). Let u be a non-empty binary string and let upkq, 1 ≤ k, be a suffix of

a restrained configuration pk+1q or qpkq of y. Let qp be a restrained configuration

of y. Then upkq �≺ qp and whether upkq≺qp or upkq�qp can be determined in

≤ 2λ steps.

6. Conclusion

Even though it is known that suffixes for all strings can be sorted in linear time

using recursive algorithms, our research verified that for the class of complete two-

pattern strings the sorting can be done iteratively, also in linear time. The analysis

shows that the approach presented here is rather straightforward, thus providing

9

additional evidence of how two-pattern strings are well-suited for computational

processing, the main goal of this effort.

Acknowledgements

The first author would like to acknowledge the support and hospitality of the

School of Computing, Curtin University, Perth, Australia during the research for

this paper. The research of both authors was supported in part by their respective

research grants from the Natural Sciences and Engineering Research Council of

Canada.

References

1. M. Farach, “Optimal suffix tree construction with large alphabets”, in Proc. 38th

Annual Symposium on Foundations of Computer Science, IEEE (1997) 137–143.

2. F. Franek, W. Lu, and W. F. Smyth, “Two-pattern strings I — a recognition algo-
rithm”, J. Discrete Algorithms, 1 (2003) 445–460.

3. F. Franek, W. Lu, and W. F. Smyth, “Two-pattern strings II — computing all
repetitions and near-repetitions”, submitted to J. Discrete Algorithms.

4. F. Franek and W. F. Smyth, “Sorting suffixes of two-pattern strings”, Technical

Report CAS-04-09-FF, Dept. of Comp. & Soft., McMaster University, October
2004.

5. F. Franek and W. F. Smyth, “Web supplement for paper: Sorting suffixes of two-
pattern strings”, to be found at URL:
http://www.cas.mcmaster.ca/˜franek/web-publications.html

6. P. Ko and S. Aluru, “Space efficient linear time construction of suffix arrays”, Pro-
ceedings of the 14th Annual Symposium CPM, LNCS 2676, Springer (2003) 200–
210.

7. D. K. Kim, J. S. Sim, H. Park, and K. Park, “Linear-time construction of suffix
arrays”, Proceedings of the 14th Annual Symposium CPM, LNCS 2676, Springer
(2003) 186–199.

8. J. Kärkkäinen and P. Sanders, “Simple linear work suffix array construction”, Pro-
ceedings of the 30th International Colloquium on Automata, Languages and Pro-
gramming, LNCS 2719, Springer (2003) 943–955.

9. U. Manber and G. Myers, “Suffix arrays: a new method for on-line string searches”,
SIAM Journal on Computing 22 (1993) 935–948.

10

