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A computational substantiation of the d-step approach

to the number of distinct squares problem
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Abstract

Motivated by the recent validation of the d-step approach for the number
of runs problem, we investigate the largest possible number σd(n) of distinct
primitively rooted over all strings of length n with exactly d distinct symbols.
New properties of σd(n) are presented, and the notion of s-cover is introduced
with an emphasis on the recursive computational determination of σd(n). In
particular, we were able to determine all values of σ2(n) for n ≤ 70, σ3(n)
for n ≤ 45 and σ4(n) for n ≤ 38. These computations reveal the unexpected
existence of pairs (d, n) satisfying σd+1(n+ 2)−σd(n) > 1 such as (2,33) and
(2,34), and of three consecutive equal values: σ2(31) = σ2(32) = σ2(33). No-
ticeably, we show that among all strings of length 33, the maximum number
of distinct primitively rooted squares cannot be achieved by a non-ternary
string.

Keywords: string, square, primitively rooted square, maximum number of
distinct primitively rooted squares, parameterized approach, (d, n−d) table

1. Introduction

The notion of an r-cover was introduced by Baker, Deza, and Franek [1]
as a means to represent the distribution of the runs in a string and thus
describe the structure of the run-maximal strings. Ignoring the number of
distinct symbols d in the string, a key assertion states that essentially any
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run-maximal string has an r-cover. This fact was used in [2] to compute
values of the maximum number of runs for strings of previously intractable
lengths, and to provide computational substantiation for the d-step approach
to the problem of the maximum number of runs proposed by Deza and
Franek [4]. Recently, Bannai et al. [3] proved that the number of runs in
a string is at most its length minus 3 using the maximal Lyndon roots of
runs. Considering the largest possible number ρd(n) of runs over all strings
of length n with exactly d distinct symbols, Deza and Franek [4] conjectured
that ρd(n) ≤ n− d and ρd(n) ≤ n− d− 1 for n ≥ 2d + 1 which was proven
by Bannai et al. [3]. The bound was slightly improved to ρd(n) ≤ n− d− 2
for n ≥ 2d+ 5 by Deza and Franek [5] and, consequently, the number of runs
in a string of length at least 9 is at most its length minus 4. Fischer, Holub,
I, and Lewenstein further exploited the maximal Lyndon root approach and
strengthened the upper for the maximum number of runs for binary strings
in [9].

In this paper, we present a method of computing square-maximal strings
similar to the one used for runs in [2] and similarly based on the d-step
approach. We introduce the notion of s-cover which is used to speed up
computations of the maximum number of distinct primitively rooted squares
allowing computing σd(n) for previously intractable values of d and n. The
paper is organized as follows: Section 2 gives the basic facts and notation,
Section 3 discusses the computational approach to the number of distinct
primitively rooted squares, Section 4 introduces a heuristic for speeding up
the computation, Section 5 discusses how s-covered string can be generated,
Section 6 discusses how to compute σd(n) values, Section 7 discusses how
to compute σd(2d) values. In Section 8 some additional theoretic properties
of σd(n) not presented in [7] are discussed. The computational results are
summarized in Section 9.

2. Notations

We encode a square as a triple (s, e, p) where s is the starting position of
the square, e is the ending position of the square, and p is its period. Note
that e = s + 2p − 1. The join x[i1.. ik] ∨ x[j1.. jm] of two substrings of
a string x = x[1.. n] is defined if i1 ≤ j1 ≤ ik + 1 and then x[i1.. ik] ∨
x[j1.. jm] = x[i1..max{ik, jm}], or if j1 ≤ i1 ≤ jm + 1 and then x[i1.. ik] ∨
x[j1.. jm] = x[j1..max{ik, jm}]. In other words, the join is defined when the
two substrings either are adjacent or overlapping. The join S1 ∨ S2 of two
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squares of x encoded as S1 = (s1, e1, p1) and S2 = (s2, e2, p2) is defined as
the join x[s1.. e1] ∨ x[s2.. e2]. The alphabet of x is denoted by A(x), (d, n)-
string refers to a string of length n with exactly d distinct symbols, s(x)
denotes the number of distinct primitively rooted squares in a string x, and
σd(n) refers to the maximum number of distinct primitively rooted squares
over all (d, n)-strings. A singleton is a symbol which occurs exactly once
in the string under consideration. For the empty string ε, we set s(ε) = 0
and σd(0) = 0. In the d-step approach the main tool is the (d, n−d) table
of the σd(n) values where the row index represents d while to column index
represents n−d rather than the usual n. A 20 x 20 fragment of the table with
computed values is shown in Table 1, see [6] for a table with all currently
computed values. An important aspect of the d-step approach is the fact that
the bounding of σd(n) is determined by the bounding on the main diagonal,
i.e. σd(2d). More precisely, σd(n) ≤ n − d for any n ≥ d ≥ 2 if and only
if σd(2d) = d for any d ≥ 2. Additional properties σd(n) are discussed and
used in the following sections, see [4, 7] for details.

n− d
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d

2 2 2 3 3 4 5 6 7 7 8 9 10 11 12 12 13 13 14 15
3 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 13 14 14 15
4 2 3 4 4 5 5 6 7 8 9 9 10 11 12 13 14 14 15 15
5 2 3 4 5 5 6 6 7 8 9 10 10 11 12 13 14 15 15 16
6 2 3 4 5 6 6 7 7 8 9 10 11 11 12 13 14 15 16 16
7 2 3 4 5 6 7 7 8 8 9 10 11 12 12 13 14 15 16 17
8 2 3 4 5 6 7 8 8 9 9 10 11 12 13 13 14 15 16 17
9 2 3 4 5 6 7 8 9 9 10 10 11 12 13 14 14 15 16 17
10 2 3 4 5 6 7 8 9 10 10 11 11 12 13 14 15 15 16 17
11 2 3 4 5 6 7 8 9 10 11 11 12 12 13 14 15 16 16 17
12 2 3 4 5 6 7 8 9 10 11 12 12 13 13 14 15 16 17 ?
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14 14 15 16 17 18
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 15 16 17 18
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 16 17 18
16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 17 18
17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 18
18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19
19 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19
20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Table 1: (d, n−d) table for σd(n) with 2 ≤ d ≤ 20 and 2 ≤ n − d ≤ 20 where the main
diagonal corresponding to n = 2d is shown in bold

3. Computational approach to distinct primitively rooted squares

In the computational framework for determining σd(n) we will be discussing
later, we first compute a lower bound of σd(n) denoted as σ−d (n). It is enough

3
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to consider (d, n)-strings x that could achieve s(x) > σ−d (n) for determining
σd(n), thus significantly reducing the search space. The purpose of this sec-
tion is to introduce the necessary conditions that guarantee that for such an
x, s(x) > σ−d (n) for a given σ−d (n). The necessary conditions are the exis-
tence of an s-cover and a sufficient density of the string, see Lemmas 5, 9, 10.
The s-cover is guaranteed through generation, while the density is verified in-
crementally during the generation at the earliest possible stages. Note that
the notion of s-cover, though similar to r-cover for runs [1, 2], is slightly
different.

Definition 1. An s-cover of a string x = x[1.. n] is a sequence of primitively
rooted squares {Si = (si, ei, pi) | 1 ≤ i ≤ m} so that

(1) for any 1 ≤ i < m, si < si+1 ≤ ei+1 and ei < ei+1, i.e. two consecutive
squares are either adjacent or overlapping;

(2)
∨

1≤i≤m

Si = x;

(3) for any occurrence of square S in x, there is 1 ≤ i ≤ m so that S is a
substring of Si, denoted by S ⊆ Si.

Lemma 2. The s-cover of a string is unique.

Proof. Let us assume that we have two different s-covers of x, {Si | 1 ≤ i ≤
m} and {S ′j | 1 ≤ j ≤ k}. We shall prove by induction that they are iden-
tical. By Definition 1 (3), S1 ⊆ S ′1 and, by the same argument, S ′1 ⊆ S1,
and thus S1 = S ′1. Let the induction hypothesis be Si = S ′i for 1 ≤ i ≤ t.
If
∨

1≤i≤t Si = x, we have t = m = k and we are done. Otherwise consider
St+1. By Definition 1 (3), there is S ′v so that St+1 ⊆ S ′v and v > t. We need
to show that v = t+ 1. If not, then St+1 would neither be a substring of S ′t
nor of S ′t+1 contradicting Definition 1 (3). Therefore St+1 ⊆ S ′t+1. By the
same argument, S ′t+1 ⊆ St+1 and so St+1 = S ′t+1. 2

Lemma 3. If a string admits an s-cover, then it is singleton free.

Proof. Let {Sj | 1 ≤ j ≤ m} be the s-cover of x = x[1.. n]. For any 1 ≤ i ≤ n,
x[i] ∈ St for some t by Definition 1 (2). Since St is a square, the symbol x[i]
occurs in x at least twice. 2

4
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Before we define what a dense string is, we first define the notion of a core
of a square, similarly to the core of a run [2, 11]. For the problem of distinct
squares, a core of a square is the set of indices formed by the intersection of
the indices of all its occurrences in the string.

Definition 4. The core vector k(x) of a (d, n)-string x is defined by ki(x) =
the number of cores of squares of x containing i for i = 1, . . . , n. A singleton-
free (d, n)-string x is dense if its core vector k(x) satisfies ki(x) > σ−d (n) −
s(x[1.. i − 1]) − mi for i = 1, . . . , n where mi = max {σd′(n − i) : d −
|A(x[1.. i− 1])| ≤ d′ ≤ min(n− i, d)}.

Lemma 5. If a (d, n)-string x is not dense, then s(x) ≤ σ−d (n).

Proof. The proof follows from the basic observation that for any string x,
s(x) ≤ s(x[1.. i−1])+s(x[i+1.. n])+ki(x) for any i. Note that the inequal-
ity occurs when there are the same type of squares in both x[1.. i − 1] and
x[i+1.. n]. If x is not dense, then for some i0, ki0(x) ≤ σ−d (n)−s(x[1.. i0−1])−
mi0 . Then s(x) ≤ s(x[1.. i0−1])+s(x[i0 +1.. n])+ki0(x) ≤ s(x[1.. i0−1])+
mi0 +ki0(x) ≤ s(x[1.. i0−1])+mi0 +σ−d (n)−s(x[1.. i0−1])−mi0 = σ−d (n). 2

Lemma 6. If the core vector k(x) of a (d, n)-string x satisfies ki(x) > 0 for
i = 1, . . . , n, then x has an s-cover.

Proof. We build an s-cover by induction: Since the k1(x) ≥ 1, 1 is in at
least one core, hence there must be at least one square starting at position
1. Among all squares starting at position 1, set the one with the largest
period to be S1. Suppose that we have built the s-cover {Si = (si, ei, pi) :
i ≤ t}. If

∨
1≤i≤t Si = x, we are done. Otherwise

∨
1≤i≤t Si = x[1.. et] where

et < n. Since ket+1(x) ≥ 1, there is at least one square (s, e, p) in x so that
s ≤ et + 1 ≤ s+ 2p− 1. From all such squares choose the leftmost ones, and
among them choose the one with the largest period and set it as St+1. It is
straightforward to verify that all the conditions of Definition 1 are satisfied
and that we have built the s-cover of x. 2

Note that for a (d, n)-string, having an s-cover implies being singleton free.
However, it does not imply that every ki(x) ≥ 1, even though it is close to it.
Consider the s-cover {Sj = (sj, ej, pj) : 1 ≤ j ≤ m} of x. If S1 has another
occurrence in x and there is no other square in x starting at position 1, then 1

5
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is not in any core and k1(x) = 0. Similarly, if the s-cover has two consecutive
adjacent squares Sj and Sj+1, if there is no other square occurring at position
sj+1, and if the square Sj+1 has some other occurrence, then ksj+1

(x) = 0. In
this sense, the s-cover is a computationally efficient structural generalization
of the property that every ki(x) ≥ 1.

Lemma 7. Let {Si = (si, ei, pi) | 1 ≤ i ≤ m} be an s-cover of x. Let
k = k(x) be the core vector of x. Then for 1 ≤ i < m, 1 ≤ j < si+1,
kj(x[1.. e1]) ≥ kj(x).

Proof. Let us assume that for some i = 1, 2, . . . ,m − 1 there is a j so that
kj(x) > kj(x[1.. ei]). Then there must exists a square (s, e, p) in x = x[1.. em]
that is not a square of x[1.. ei], i.e. e > ei and s < si+1, so it is an interme-
diate square violating the definition of s-cover, see Definition 1 (3). 2

Lemma 8. If a square-maximal (d, n)-string x has an s-cover with two con-
secutive adjacent squares, then σd(n) ≤ σd1(n1) + σd2(n2) for some 2 ≤
d1, d2 ≤ d ≤ d1 + d2 and some n1, n2, possibly equal to zero, such that
n1 + n2 = n.

Proof. Let {Si : 1 ≤ i ≤ m} be the s-cover of x and let Sj ∩ Sj+1 = ∅.
Then s(x) ≤ s(x1) + s(x2), where x1 =

∨
1≤i≤j

Si and x2 =
∨

j<i≤m

Si. Therefore

σd(n) = s(x) ≤ s(x1) + s(x2) ≤ σd1(n1) + σd2(n2) where x1 and x2 are,
respectively, a (d1, n1)- and a (d2, n2)-string. 2

Lemma 9. If a singleton-free square-maximal (d, n)-string x does not have
an s-cover, then σd(n) = σd(n− 1).

Proof. Since x does not have an s-cover, there exist some i0 such that
ki0(x) = 0 by Lemma 6. Remove x[i0] to form a (d, n − 1)-string y. This
will not decrease the number of distinct squares in x since there is no core
of any square containing i0. Then σd(n) = s(x) ≤ s(y) ≤ σd(n− 1); that is,
σd(n) = σd(n− 1) since σd(n) ≥ σd(n− 1). 2

Lemma 10. If a square-maximal (d, n)-string has a singleton, then
σd(n) = σd−1(n− 1).

6
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Proof. Remove the singleton to form a (d − 1, n − 1)-string y with σd(n) =
s(x) ≤ s(y) ≤ σd−1(n − 1). Since σd(n) ≥ σd−1(n − 1), see [7], therefore
σd(n) = σd−1(n− 1). 2

4. Heuristics for a lower bound σ−
d (n)

Recall that σ−d (n) denotes the best available lower bound for σd(n). The
higher the value of σ−d (n), the less computational effort must be spent on
determining σd(n). For d = 2, we generate L2(n), the set of (2, n)-strings
admitting an s-cover, being balanced over every prefix, having a maximum
period bounded by at most a predefined constant, and containing no triples
such that aaa or bbb. Note that the frequencies of a’s and b’s differ by at
most a predefined constant. Thus, we set

σ−2 (n) = max {σ2(n− 1), max
x∈L2(n)

s(x)}.

For d ≥ 3, we set σ−d (n) = max {σd−1(n − 1), σd−1(n − 2) + 1, σd(n − 1)}.
The heuristic was found to be efficient as in almost all cases it gave the
appropriate maximum value.

5. Generating special (d, n)-strings admitting an s-cover

Rather than generating strings, we generate their s-covers. By special in
the title of this section we mean only s-covers that have no consecutive
adjacent squares. The generation proceeds by extending the partially built
s-cover in all possible ways. Every time a potential square of the s-cover
is to be extended by one position, all previously used symbols and the first
unused symbol are tried. For each symbol, the frequency counter is checked
that the symbol does not exceed n + 2 − 2d. Once a symbol is used, the
frequency counter is updated. When the whole s-cover is generated, the
counter is checked whether all d symbols occurred in the resulting string;
if not, the string is rejected. A typical implementation of the generation
of the s-cover would be through recursion as backtracking is needed. For
computational efficiency reasons we opted instead for a user-stack controlled
backtracking implemented as a co-routine Next() allowing us to call the
co-routine repeatedly to produce the next string. Note that the strings are
generated in a lexicographic order. The generation of the s-cover follows

7
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these principles: The generator for the first square is created by iterative
calls to Next() producing all the possible generators. Each generator is
checked for the additional properties – including must be primitive, did not
create an intermediate square in the partial string – before it is accepted. For
each subsequent square, its generator may be partially or fully determined.
If it is partially determined, iterative calls to Next() are used to generate
all possible completions of the generator. The complete generator is checked
and accepted or rejected. In addition, if the density of the string being
generated is to be checked, we use Lemma 7 and the core vector of the
partially generated string to reject the string or allow it to be extended
further.

6. Recursive computation of σd(n)

First, σ−d (n) is computed by the heuristic of Section 4. Then it is verified
that σd1(n1) + σd2(n2) ≤ σ−d (n) for 2 ≤ d1, d2 ≤ d ≤ d1 + d2 and n1 +n2 = n.
Then Ud(n), the set of all dense special (d, n)-strings admitting an s-cover is
generated as described in Section 5. It follows that

σd(n) = max {σ−d (n), max
x∈Ud(n)

s(x)}.

To see that, first consider the existence of a square-maximal (d, n)-string with
singletons: by Lemma 10, σd(n) = σd−1(n− 1). Then consider the existence
of a singleton-free square-maximal string x not in Ud(n):

(i) either x does not have an s-cover, in which case by Lemma 9, σd(n) =
σd(n− 1);

(ii) or x has an s-cover with two consecutive adjacent squares and by
Lemma 8, σd(n) ≤ σd1(n1) + σd2(n2) for some 2 ≤ d1, d2 ≤ d and
some n1 + n2 = n, and so σd(n) ≤ σ−d (n);

(iii) or x has a special s-cover, but is not dense and by Lemma 5, σd(n) ≤
σ−d (n).

7. Recursive computation of σd(2d)

To compute the values on the main diagonal we can use s-covers satisfying
additional necessary parity condition. The s-cover {Si = (si, ei, pi) : 1 ≤ i ≤
m} of x = x[1.. n] satisfies the parity condition if for 1 ≤ i < m, A(x[1.. ei])
∩ A(x[si+1.. n]) ⊆ A(x[si+1.. ei]).

8
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Lemma 11. The singleton-free part of a square-maximal (d, 2d)-string x with
all its singletons at the end has an s-cover satisfying the parity condition.

Proof. We can assume that x has 0 ≤ v ≤ d − 2 singletons, all at the
end. Let k(x) be the core vector of x. Suppose the singleton-free part
x[1.. 2d− v] does not have an s-cover, then there exist some 1 ≤ i0 ≤ 2d− v
such that ki0(x) = 0. Remove x[i0] to form a (d, 2d− 1)-string y. Therefore,
σd(2d) = s(x) ≤ s(y) ≤ σd(2d − 1) = σd−1(2d − 2), a contradiction. So
x[1.. 2d− v] has an s-cover {Si : 1 ≤ i ≤ m}. Let us assume that the s-cover
does not satisfy the parity condition. Then either

(i)
∨

1≤i≤t Si and
∨

t<i≤m Si for some 1 ≤ t ≤ m are adjacent and their
respective alphabets have at least one symbol in common, say c. If
we replace c in

∨
1≤i≤t Si by a new symbol ĉ /∈ A(x), we get a new

(d+ 1, 2d)-string y so that s(y) ≥ s(x). Thus σd(2d) = s(x) ≤ s(y) ≤
σd+1(2d) = σd(2d− 1) = σd−1(2d− 2), a contradiction, or

(ii)
∨

1≤i≤t Si and
∨

t<i≤m Si for some 1 ≤ t ≤ m are overlapping, and
there is a symbol c occurring in

∨
1≤i≤t Si and in

∨
t<i≤m Si, but not in

the overlap St ∩ St+1. If we replace c in
∨

1≤i≤t Si by a new symbol
ĉ /∈ A(x), we get a new (d + 1, 2d)-string y so that s(y) ≥ s(x). Thus
σd(2d) = s(x) ≤ s(y) ≤ σd+1(2d) = σd(2d − 1) = σd−1(2d − 2), a
contradiction.

2

With additional assumptions, Lemma 11 can be strengthened to exclude
consecutive adjacent squares from the s-cover of a square-maximal (d, 2d)-
string.

Lemma 12. Let σd′(2d
′) = d′ for d′ < d. Either σd(2d) = d or for every

square-maximal (d, 2d)-string x with v singletons all at the end, 0 ≤ v ≤
d− 2, its singleton-free part x[1.. 2d− v] has an s-cover satisfying the parity
condition and which has no consecutive adjacent squares.

Proof. The existence of the s-cover {Si | 1 ≤ i ≤ m} of x[1.. 2d − v] satis-
fying the parity condition follows from Lemma 11. We need to prove that
either σd(2d) = d or there are no adjacent squares in the s-cover. Since
σd′(2d

′) = d′ for d′ < d, σd′(n
′) ≤ n′ − d′ for n′ − d′ < d. Let us assume that

the s-cover of x has two adjacent squares St and St+1. Let x1 =
∨

1≤i≤t Si and

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

let x2 =
∨

t<i≤m Si. Then s(x) ≤ s(x1) + s(x2) where x1 and x2 are, respec-
tively, a (d1, n1)- and a (d2, n2)-string with n1+n2 = 2d−v and d1+d2 ≥ d−v.
Since the s-cover satisfies the parity condition, A(x1) and A(x2) are disjoint
and hence d1 + d2 = d − v. Therefore (n1 − d1) + (n2 − d2) = d. Since
both x1 and x2 are singleton-free, n1 − d1 > 0 and n2 − d2 > 0. Hence
n1 − d1 < d and n2 − d2 < d, and therefore σd(2d) = s(x) ≤ s(x1) + s(x2) ≤
σd1(n1) + σd2(n2) ≤ (n1 − d1) + (n2 − d2) = d. 2

Since the number of distinct squares in a singleton-free (d, 2d)-string is at
most d, we do not need to consider singleton-free strings. Moving a singleton
to the end of a string does not decrease the number of distinct squares,
therefore we shall only consider (d, 2d)-strings that have singletons at the end.
We can set σ−d (2d) = σd−1(2d−2)+1 and thus consider only the strings that
have the non-singleton part dense. By Lemma 12, we need only to consider
strings whose s-covers of the non-singleton part satisfy the parity condition
with no consecutive adjacent squares. Moreover, the number of singletons
must be at least d2d

3
e, see [7]. Let Tv denote the set of all singleton-free

σ−d (2d)-dense (d−d2d
3
e, 2d−d2d

3
e)-strings admitting an s-cover satisfying the

parity condition with no consecutive adjacent squares. Thus, we set

σd(2d) = max {d, max
x∈Tv

s(x)}.

8. Additional properties of σd(n)

Though key properties of σd(n) were presented in [7], we present some ad-
ditional properties concerning the gaps between consecutive values in the
(d, n−d) table where the value of σd(n) is the entry on the d-th row and the
(n−d)-th column. Lemma 13, respectively Lemma 14, shows that the differ-
ence between any two consecutive entries along a row, respectively between
any two consecutive entries on the main diagonal, in the (d, n−d) table is
bounded by 2.

Lemma 13. For 2 ≤ d ≤ n, σd(n+ 1)− σd(n) ≤ 2.

Proof. Let (d, n+ 1)-string x = x[1.. n+ 1] be square-maximal, then s(x) =
σd(n + 1). We can assume that the first symbol of x is not a singleton as
otherwise we can move all singletons from the beginning of x to the end of
x without destroying any square type. Let y = x[2.. n + 1]. Then y is a

10
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(d, n)-string and s(y) ≤ σd(n). By Fraenkel and Simpson [10], there are at
most two rightmost occurrences of squares starting at the same position in
a string. In other words, the removal of x[1] destroyed at most two square
types. That is, s(x) − 2 ≤ s(y). Therefore, σd(n + 1) − 2 ≤ s(y) ≤ σd(n),
implying σd(n+ 1)− σd(n) ≤ 2. 2

Lemma 14. For 2 ≤ d, σd+1(2d+ 2)− σd(2d) ≤ 2.

Proof. By Lemma 13, σd+1(2d + 2) − σd+1(2d + 1) ≤ 2. The entries un-
der and on the main diagonal along a column are constant, see [7]; that is,
σd+1(2d+ 1) = σd(2d). Therefore, σd+1(2d+ 2)− σd(2d) ≤ 2. 2

Lemma 15. For d ≥ 2, if there is a square-maximal singleton-free (d, 2d+1)-
string x, then there exists a square-maximal (d, 2d + 1)-string y of the form
y = aaabbccdd....

Proof. Since x contains no singletons, then x contains exactly d − 1 pairs
and 1 triple. To prove there exists a square-maximal string in the form that
all pairs consist of adjacent symbols and the triple also consists of adjacent
symbols, we need to show the non-adjacent symbols can be moved together
without reducing the number of distinct squares. Let us suppose that there
is a non-adjacent pair of c’s in x.

(i) If the c’s did not occur in any square, then we could move both c’s
to the end of the string without destroying any square type. Moreover, we
would gain a new square cc, contradicting the square-maximality of x.
(ii) If the c’s occur in exactly one square ucvucv, where u and v are some
strings, we can move both c’s to the end of x to form a new string y. The new
squares created by this move are uvuv and cc while the old square ucvucv
was destroyed. If uvuv did not exist in any other part of x, then s(y) > s(x)
which contradicts the square-maximality of x; thus uvuv already existed
in some other part of x, so we lost the square ucvucv, but gained cc, so
s(y) = s(x).
(iii) If the c’s occur in more than one square, these squares must form a
non-trivial run, i.e. a run with a non-empty tail. Since there is only one
symbol t occurring in x 3 times, the only form of such a non-trivial run can
be tucvtucvt. If u = v = ε, then the run is tctct containing two distinct

11
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squares tctc and ctct. We can change it to tttcc, destroying the two squares
tctc and ctct, but gaining two new squares tt and cc. If either u 6= ε or
v 6= ε, then by moving both c’s to the end of x, we destroy the two distinct
squares tucvtucv and ucvtucvt, but gain three new squares tuvtuv, uvtuvt,
and cc. Note that neither tuvtuv nor uvtuvt can exist anywhere else in x for
the lack of t’s. Thus we have more distinct squares than x, which contradicts
the maximality of x.
Since we can move safely all pairs together to the end of x, the symbols of
the triple will end up also adjacent at the beginning of the string. 2

Lemma 16 shows that the two entries of the (d, n−d) table in the same
column just above the main diagonal must be identical.

Lemma 16. For 3 ≤ d, σd(2d+ 1) = σd−1(2d).

Proof. We prove it by induction. Let (Hd) be the statement that σd(2d+1) =
σd−1(2d). (Hd) for 2 ≤ d ≤ 10 is true from the values in the (d, n−d) table
computed so far, see [7]. Thus let us assume that H1 through Hd−1 are true,
and let us prove that (Hd) is true. Let (d, 2d+1)-string x be square-maximal.
If x contains a singleton, remove it to form a new (d− 1, 2d)-string y. Then
σd(2d + 1) = s(x) ≤ s(y) ≤ σd−1(2d) and since σd(2d + 1) ≥ σd−1(2d),
see [7], thus σd(2d+1) = σd−1(2d). If x contains no singletons, by Lemma 15
we can assume that it has the form aaabbccdd.... Remove a pair from z
forming a new (d − 1, 2d − 1)-string y. Then σd(2d + 1) − 1 = s(x) − 1 =
s(y) ≤ σd−1(2d− 1) and since σd(2d+ 1)− 1 ≥ σd−1(2d− 1) by [7], therefore
σd(2d+ 1) = σd−1(2d− 1) + 1. Since Hd−1, σd−1(2d) ≥ σd−2(2d− 2) + 1 and
σd(2d+ 1) ≥ σd−1(2d) according to [7], hence σd(2d+ 1) = σd−1(2d). 2

Corollary 17 demonstrates that the difference between any two consecutive
entries on the two diagonals immediately above the main diagonal of the
(d, n−d) table is bounded by 2.

Corollary 17. For 3 ≤ d, σd(2d + 1) − σd−1(2d − 1) ≤ 2 and
σd(2d+ 2)− σd−1(2d) ≤ 2.

Proof. By Lemma 13, σd−1(2d) − σd−1(2d − 1) ≤ 2, and by Lemma 16,
σd−1(2d) = σd(2d + 1). Therefore, σd(2d + 1)− σd−1(2d− 1) ≤ 2. Similarly,
σd(2d + 2) − σd(2d + 1) ≤ 2 by Lemma 13, and σd(2d + 1) = σd−1(2d) by

12
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Lemma 16. Therefore, σd(2d+ 2)− σd−1(2d) ≤ 2. 2

Remark 18. Fraenkel and Simpson [10] gave a universal upper bound of
2n for distinct squares. Ilie [13] provided an asymptomatic bound of 2n −
Θ(log n). Deza, Franek, and Thierry in [8] gave an improved universal upper
bound of

⌊
11n
6

⌋
. In the following we provide some local bounds based on the

computational results and the observations that for 2 ≤ d ≤ n and n ≥ d0+2,
σd(n) ≤ 2n − d0 − 2d, where d0 is the maximum d such that σd(2d) = d is
known. The current value of d0 = 24. If, for a given d, nd is the largest n
such that σd(nd) is known, then

σd(n) ≤


n− d if n ≤ nd

2n− (2nd − σd(nd)) if nd < n < 6(2nd − σd(nd))⌊
11n
6

⌋
if n ≥ 6(2nd − σd(nd))

Since n2 = 70 and σ2(70) = 55, then σ2(n) ≤


n− 2 if n ≤ 70

2n− 75 if 70 < n < 510⌊
11n
6

⌋
if n ≥ 510

Similarly slightly improved local bounds for σ3(n), . . . , σ20(n) can be derived.

Proof of the observation: By Lemma 14, σd(n) ≤ d0+2k, where n−d = d0+k
and k ≥ 1. Thus σd(d0+k+d) ≤ d0+2k = 2(d0+k+d)−d0−2d. Therefore,
σd(n) ≤ 2n− d0 − 2d for n ≥ d0 + 2. 2

9. Computational Results

We implemented the described algorithms in C++, and ran the programs
in parallel on the Shared Hierarchical Academic Research Computing Net-
work (SHARCNET) computer cluster. We were able to compute all σ2(n)
values for n ≤ 70 in a matter of hours. The higher the d, the longer the
computations: currently we have these maximal values computed: σ2(70) =
55, σ3(45) = 34, σ4(38) = 27, σ5(37) = 26, σ6(35) = 24, σ7(37) = 25,
σ8(29) = 18, σ9(31) = 19, σ10(33) = 20, σ11(35) = 21, σ12(31) = 17,
σ13(33) = 18, σ14(35) = 19, σ15(37) = 20, σ16(37) = 19, σ17(37) = 18,
σ18(38) = 19, σ19(40) = 20, and σ20(41) = 20. The results and sample
square-maximal strings may be found at [6]. Whenever the computation re-
quired determining the number of distinct primitively rooted squares in a
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concrete string, a C++ implementation of the Franek, Jiang, and Weng’s
algorithm [12] was used. The values of interest include three consecutive
equal values: σ2(31) = σ2(32) = σ2(33), and unexpected pairs (d, n) satisfy-
ing σd+1(n+ 2)− σd(n) > 1 such as (2,33) and (2,34). To show that among
all strings of length 33, the maximum number of distinct primitively rooted
squares can not be achieved by a non-ternary string, we reproduce in Table 2
a fragment of the (d, n−d) table from [6] where the entries for strings of
length 33 are in bold. All known values for strings of length 33 are at most 23
except σ3(33) = 24. The 3 undetermined entries σ12(33), σ9(33), and σ8(33)
are at most 23 using the following observations: σ12(33) ≤ σ14(35) = 19,
σ9(33) ≤ σ11(35) = 21, and σ8(33) ≤ σ8(32) + 2 ≤ σ9(33) + 2 = 23.

n− d
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

d

2 12 13 13 14 15 16 17 18 19 20 20 21 22 23 23 23
3 13 13 14 14 15 16 17 18 19 20 21 21 22 23 24 24
4 13 14 14 15 15 16 17 18 19 20 21 22 22 23 24 25
5 13 14 15 15 16 16 17 18 19 20 21 22 23 23 24 25
6 13 14 15 16 16 17 17 18 19 20 21 22 23 24 ? ?
7 13 14 15 16 17 17 18 18 19 20 21 22 23 24 25 ?
8 13 14 15 16 17 18 ? ? ? σ8(33) ? ? ? ? ? ?
9 14 14 15 16 17 18 19 ? σ9(33) ? ? ? ? ? ? ?
10 14 15 15 16 17 18 19 20 ? ? ? ? ? ? ? ?
11 14 15 16 16 17 18 19 20 21 ? ? ? ? ? ? ?
12 14 15 16 17 ? σ12(33) ? ? ? ? ? ? ? ? ? ?
13 14 15 16 17 18 ? ? ? ? ? ? ? ? ? ? ?
14 15 15 16 17 18 19 ? ? ? ? ? ? ? ? ? ?
15 15 16 16 17 18 19 20 ? ? ? ? ? ? ? ? ?
16 16 16 17 17 18 19 ? ? ? ? ? ? ? ? ? ?

Table 2: (d, n−d) table for σd(n) with 2 ≤ d ≤ 16 and 16 ≤ n− d ≤ 31 where the entries
for strings of length 33 are in bold
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