
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The New Periodicity Lemma Revisited

Haoyue Bai1 , Frantisek Franek1 , William F. Smyth1,2,3

1 Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada
2 School of Engineering & Information Technology,

Murdoch University, Perth, Western Australia
3 School of Computer Science & Software Engineering

University of Western Australia, Perth, Western Australia

Abstract

In 2006, the New Periodicity Lemma (NPL) was published, showing that
the occurrence of two squares starting at a position i in a string necessarily
precludes the occurrence of other squares of specified period in a specified
neighbourhood of i. The proof of this lemma was complex, breaking down
into 14 subcases, and requiring that the shorter of the two squares be regular.
In this paper we significantly relax the conditions required by the NPL and
removing the need for regularity altogether, and we establish a more precise
result using a simpler proof based on lemmas that expose new combinatorial
structures in a string, in particular a canonical factorization for any two
squares that start at the same position.

Keywords: string, square, canonical factorization, double square, New
Periodicity Lemma

1. Introduction

In 1995 Crochemore and Rytter [3] considered three distinct squares, all
prefixes of a given string x, and proved the Three Squares Lemma, stating
that, subject to certain restrictions, the largest of the three was at least the
length of the sum of the other two. In 2006 Fan et al. [5] considered two
squares that were prefixes of x with the third square offset some distance
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to the right; they proved a New Periodicity Lemma (NPL), describing con-
ditions under which the third square could not exist. Since that time there
has been considerable work done [2, 7, 8, 10] in an effort to specify more
precisely the combinatorial structure of the string in the neighbournood of
such squares.

In this paper we first discuss a canonical factorization, a unique break-
down into primitive strings of what we call a double square, i.e. a pair of two
squares starting at the same position and being of “comparable” lengths.
A weaker form of the factorization was instrumental in the improved upper
bound for the number of distinct squares [4]; weaker in the sense that it only
applied to FS-double squares, i.e. two squares that start at the same position
and both are rightmost occurrences. Note that our notion of double squares
is weaker and hence every FS-double square is a double square, but not the
other way around. The canonical factorization indicates that double squares
indeed have an intricate highly periodic intrinsic structure. This structure
has two factors that are unique in their occurrences within the double square.
They were introduced in [4] and referred to as inversion factors due to their
structure. In [12], Thierry discusses the core of the period interrupt, a very
similar concept to the one we introduce here as RIS (Right Inversion Sub-
factor) and LIS (Left Inversion Subfactor). RIS has only two occurrences
in the double square, and so does LIS. The usage of RIS, respective LIS,
is straightforward as it significantly limits the size and the placement of a
possible third square: let u2 be a prefix of v2 and consider a third square
w2; if it contains RIS in the first w, it must contain RIS in the second w and
vice-versa, and hence w has the same size as v. So the only other possibilities
are that either w2 is “too small” that it does not contain RIS, or “too big”
that it contains both RIS in the first w. The restrictions imposed by RIS or
LIS allow us to prove a new version of the NPL that is much more general
in its application while at the same time being more precise in its result.

The paper is structured as follows: in Section 2 we discuss the basic
facts and notations. In Section 3 we present and prove the Two Squares
Factorization Lemma giving what we refer to as the canonical factorization
of a double square. In Section 4 we discuss the inversion factors and their
refinements RIS and LIS. The new formulation of the NPL is then presented
and proved in Section 5. Finally, Section 6 presents a brief conclusion of the
research described.
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2. Preliminaries

In this section we introduce the basic notation and develop the combina-
torial tools that will be used to determine a canonical factorization for a dou-
ble square. Chief among these are the Synchronization Principle (Lemma 2)
and the Common Factor Lemma (Lemma 3), that lead to the Two Squares
Factorization Lemma (Lemma 5).

A string x is a finite sequence of symbols, called letters, drawn from a
(finite or infinite) set Σ, called the alphabet. The length of the sequence is
called the length of x, denoted |x|. Sometimes for convenience we represent
a string x of length n as an array x[1..n]. The string of length zero is called
the empty string, denoted ε. If a string x = uvw, where u,v,w are strings,
then u (respectively, v,w) is said to be a prefix (respectively, substring,
suffix ) of x; a proper prefix (respectively, proper substring, proper
suffix ) if |u| < |x| (respectively, |v| < |x|, |w| < |x|). An empty prefix or
suffix is called trivial. A substring is also called a factor. Given strings
u and v, lcp(u,v) (respectively, lcs(u,v)) is the longest common prefix
(respectively, longest common suffix ) of u and v.

If x is a concatenation of k ≥ 2 copies of a nonempty string u, we write
x = uk and say that x is a repetition ; if k = 2, we say that x = u2 is
a square ; if there exist no such integer k and no such u, we say that x is
primitive. If x = uk, k ≥ 1, and u is primitive, we call u the primitive
root of x. If x = v2 has a proper prefix u2, |u| < |v| < 2|u|, we say that x
is a double square and write x = DS(u,v). A square u2 such that u has
no square prefix is said to be regular.

For x = x[1..n], 1 ≤ i < j ≤ j+k ≤ n, the string x[i+1.. j+1] is a right
cyclic shift of x[i.. j] by 1 position if x[i] = x[j+1]; the string x[i+k.. j+k]
is a right cyclic shift of x[i.. j] by k positions if x[i+k−1.. j+k−1] is a right
cyclic shift of x[i.. j] by k−1 positions and x[i+k.. j+k] is a right cyclic shift
of x[i+k−1.. j+k−1] of 1 position. Equivalently, we can say that x[i.. j] is a
left cyclic shift by k positions of x[i+k.. j+k]. When it is clear from the
context, we may leave out the number of positions and just speak of a left
or right cyclic shift.

Strings uv and vu are conjugates, written uv ∼ vu. We also say

that vu is the |u|th rotation of x = uv, written R|u|(x), or the −|v|th
rotation of x, written R−|v|(x), while R0(x) = x. As for the cyclic shift,
when it is clear from the context we may leave out the number of rotations
and just speak of a rotation. Note that whenever x[i+k.. j+k] is a cyclic
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shift of x[i.. j], the two substrings must therefore be conjugates; however,
for k > j−i+1, the converse does not hold (for example, in x = abacbaa,
x[5.. 7] = baa is a conjugate, but not a cyclic shift, of x[1.. 3] = aba).

Lemma 1. [11, Lemma 1.4.2] Let x be a string of length n and minimum
period π ≤ n, and let j ∈ 1..n−1 be an integer. Then Rj(x) = x if and only
if x is not primitive and π is divisible by j.

The following results (Lemmas 2–3) were first stated in [4] without proof
as they all follow from the Periodicity Lemma of Fine and Wilf, [6]. Although
proofs were later provided in [1], we repeat them here for completeness.

Lemma 2 (Synchronization Principle). The primitive string x occurs exactly
p times in x2x

px1, where p is a nonnegative integer and x1 (respectively, x2)
is a proper prefix (respectively, proper suffix) of x.

Proof. From Lemma 1 a cyclic shift Rj(x) of x can equal x only if x is not
primitive. Since here x is primitive, the only occurrences of x are exactly
those determined by xp.

Lemma 3 (Common Factor Lemma). Suppose that x and y are primitive
strings, where x1 (respectively, y1) is a proper prefix and x2 (respectively,
y2) a proper suffix of x (respectively, y). If for integers p ≥ 2 and q ≥ 2,
x2x

px1 and y2y
qy1 have a common factor of length |x|+|y|, then x ∼ y.

Proof. First consider the special case x1 = x2 = y1 = y2 = ε, where xp, yq

have a common prefix f of length |x|+|y|. We show that in this case x = y.
Observe that f has prefixes x and y, so that if |x| = |y|, then x = y,

as required. Therefore suppose WLOG that |x| < |y|. Note that y 6= xk for
any integer k ≥ 2, since otherwise y would not be primitive, contradicting
the hypothesis of the lemma. Hence there exists k ≥ 1 such that k|x| < |y|
and (k+1)|x| > |y|. But since f = yx, it follows that

R|y|−k|x|(x) = x,

again by Lemma 1 contrary to the assumption that x is primitive. We
conclude that |x| 6< |y|, hence that |x| = |y| and x = y, as required.

Now consider the general case, where f of length |x|+ |y| is a common
factor of x2x

px1 and y2y
qy1. Then x2x

px1 = ufu′ for some u and u′. If
|u| ≥ |x|, then f is a factor of x1x

p−1x2, and so we can assume WLOG that
|u| < |x|. Setting x̃ = R|u|(x), we see that f is a prefix of x̃p.

4
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Similarly, by setting y2y
qy1 = vfv′, we can assume that |v| < |y|, hence

that f is also a prefix of ỹq for ỹ = R|v|(y). But this is just the special case
considered above, for which x̃ = ỹ. Since x ∼ x̃ and y ∼ ỹ, the result
follows.

The Common Factor Lemma gives rise to the following corollary useful
for showing the uniqueness of the canonical factorization of a double square
presented in Section 3:

Lemma 4 ([4]). Suppose that x and y are primitive strings, and that p and
q are positive integers.

(a) If xp = yq, then x = y and p = q.

(b) If x1 (respectively, y1) is a proper prefix of x (respectively, y) and
xpx1 = yqy1 for p ≥ 2, q ≥ 2, then x = y, x1 = y1 and p = q.

Proof. For (a), first consider p = 1, thus x = yq. Since x is primitive,
therefore q = 1 and x = y, as required. Similarly for q = 1. Suppose then
that p, q ≥ 2. This means that xp and yq = xp have a common factor of
length p|x| = q|y| ≥ |x|+|y|, so that by Lemma 3 x ∼ y. Hence |x| = |y|
and so x = y.

For (b), since again p ≥ 2, q ≥ 2, it follows as in (a) that xpx1 = yqy1

has a common factor of length at least |x|+|y|, hence the result.

Note that in Lemma 4(b) the requirement p ≥ 2, q ≥ 2 is essential. For
instance, x = aabb, x1 = aa and p = 2 yields xpx1 = aabbaabbaa, identical
to yqy1 produced by y = aabbaabba, y1 = a and q = 1 — but of course
x 6= y.

3. Canonical Factorization of Double Squares

The most general unique factorization of any double square DS(u,v) dis-
cussed in this section was presented in [1]. For the sake of completeness, we
not only quote the results from [1], but include the proofs as well.

The uniqueness of the factorization allows us to speak of the canonical
factorization of DS(u,v). This structure has been described before [4, 5, 8,
7, 9], but not as precisely and with more assumptions required or in a weaker
form; above all, Lemma 5 establishes the uniqueness of the breakdown with
no additional assumptions.

5
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Lemma 5 ([1], Two Squares Factorization Lemma). If x = DS(u,v), there
exists a unique primitive string u1 such that u = u1

e1u2 and v = u1
e1u2u1

e2,
where u2 is a possibly empty proper prefix of u1 and e1, e2 are integers such
that e1 ≥ e2 ≥ 1. Moreover,

(a) if |u2| = 0, then e1 > e2 (thus e1 ≥ 2);

(b) if |u2| > 0, then v is primitive, and if in addition e1 ≥ 2, then u also
is primitive.

In both cases, the factorization is unique.

Proof. In this proof, for a tandem repeat ww, we use w[1] to refer to the
first w, while w[2] to refer to the second w.

Let z be the nonempty proper prefix of u[2] that is in addition a suffix
of v[1]. But then z is also a prefix of v[1], hence of v[2]; thus if |u| ≥ 2|z|,
it follows that z2 is a prefix of u. In general, there exists an integer k =⌊
|u|/|z|

⌋
≥ 1 such that u = zkz′ for some proper prefix z′ of z. Let

u1 be the primitive root of z, so that z = u1
e2 for some integer e2 ≥ 1.

Therefore, for some e1 ≥ e2k and some prefix u2 of u1, u = u1
e1u2 and

v = uz = u1
e1u2u1

e2 , as required. To prove uniqueness we consider two
cases:

|u2| = 0 : Here u = u1
e1 and v = u1

e1+e2 , so that x = u1
2(e1+e2). Since

|v| < 2|u| and e1 ≥ e2, it follows that e1 > e2. The uniqueness of u1 is
a consequence of Lemma 4(a).

|u2| > 0 : Suppose the choice of u1 is not unique. Then there exists some
primitive string w1 with proper prefix w2, together with integers f1 ≥
f2 ≥ 1, such that u = w1

f1w2 and v = w1
f1w2w1

f2 . If both e1 ≥ 2
and f1 ≥ 2, it follows from Lemma 4(b) that u1 = w1 and e1 = f1.
If e1 = f1 = 1, we observe that v = uu1 = uw1, so that again
u1 = w1. In the only remaining case, exactly one of e1, f1 equals
1: therefore suppose WLOG that f1 > e1 = 1. Then u = u1u2 =
w1

f1w2 and v = u1u2u1 = w1
f1w2w1

f2 , so that u1 = w1
f2 . But

since u1 is primitive, this forces f2 = 1 and u1 = w1, which, since
u1u2 = w1

f1w2 = u1
f1w2, implies that f1 = 1, a contradiction. Thus

all cases have been considered, and u1 is unique.

6
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We now show that v is primitive. Suppose the contrary, so there exists
some primitive w and an integer k ≥ 2 such that v = wk. It follows that
|w| ≤ |v|/2 ≤ |u1

e1|+|u2|. Note that

w2k = v2 = u1
e1u2u1

e1+e2u2u1
e2 , (1)

so that w2k and u1
e1+e2u2 have a common factor u1

e1+e2u2 of length

(|u1
e1|+|u2|) + |u1

e2| ≥ |w|+|u1|.

Thus we can apply Lemma 3 with variables

(x,y, p, q) ≡ (w,u1, 2k, e1+e2)

to conclude that w ∼ u1, thus by (1) that w = u1. Let u2 be a suffix of
u1 so that u1 = u2u2. By the Synchronization Principle (Lemma 2), (1)
implies that u2 is a prefix of u1, in contradiction to Lemma 1. We conclude
that v is primitive.

Now suppose in addition that e2 ≥ 2, but that u is not primitive. Then
there exists some primitive w and some integer k ≥ 2 such that u = wk.
Hence |w| ≤ |u|/2 = (|u1

e1 |+ |u2|)/2 < |u1
e1−1|+ |u2|, since e1 ≥ 2 and

|u2| > 0. Therefore, since u1
e1u2 is a prefix of u2 = w2k, and since

e2 ≥ 1 by Lemma 5, w2k and u1
e1+e2 have a common prefix u1

e1u2. Note
that |u1

e1u2| ≥ |v|+ |u1|, so that again applying Lemma 3 with variables
(x,y, p, q) ≡ (w,u1, 2k, e1 +e2), we conclude that u1 = w. This in turn
implies u = u1

e1u2 = u1
k, impossible since 0 < |u2| < |u1|. Therefore u is

primitive, as required.
Finally we remark that since u1 is a uniquely determined primitive string,

therefore u2, e1 and e2 are also uniquely determined.

The following examples show that the statement of the lemma is sharp:

(a) The second part of Lemma 5(b) requires that e1 ≥ 2. To see that this
condition is not necessary, consider x = abaababaab, where u = (ab)a,
v = (ab)a(ab), so that u1 = ab, u2 = a, e1 = e2 = 1, but u is primitive.

(b) On the other hand, consider x = abaabaabaababaabaabaab, where u =
(aba)2 = (abaab)a, v= (abaab)a(abaab), so that u1 = abaab, u2 = a,
e1 = e2 = 1, where now u is not primitive.

7
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Lemma 5 gives credence to the following definition of terminology and
notation:

Definition 6. For a double square DS(u,v) we call the unique factorization
v2 = u1

e1u2u1
e1+e2u2u1

e2 guaranteed by Lemma 5 the canonical factor-
ization of DS(u,v) and denote it by DS(u,v) = (u1,u2, e1, e2). The symbol
u2 denotes the suffix of u1 such that u1 = u2u2.

Lemma 5 gives rise to a number of important observations:

Observation 7. In Lemma 5, |u2| > 0 if any one of the following conditions
holds:

(a) v is primitive;

(b) u is primitive;

(c) there is no other occurrence of u2 farther to the right in v2;

(d) u2 is regular.

Moreover:

(e) |u2| > 0 if and only if v is primitive;

(f) If u2 is regular, then e1 = e2 = 1.

Proof. (a) |u2| = 0 implies that v = u1
e1+e2 and since e1+e2 ≥ 2, it follows

that v is not primitive.

(b) We show that |u2| = 0 implies u not primitive. First note that u =
u1

e1 . If e1 ≥ 2, then it follows directly that u is not primitive. If
e1 = 1, then e2 = 1 and so v = u1

2 and u = u1 which is a contradiction
as |v| < 2|u|.

(c) |u2| = 0 implies u2 = u1
2e1 , which occurs twice in v2 = u1

2(e1+e2), in
particular as a suffix.

(d) Since u2 is regular, therefore u is primitive, so that by (b) |u2| > 0.

(e) By (a), primitive v implies |u2| > 0; by Lemma 5, |u2| > 0 implies
that v is primitive.

8
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(f) By (d), regular u2 implies |u2| > 0, so that u = u1
e1u2, which is

regular only if e1 = e2 = 1.

In the context of Observation 7(f), consider the double square

DS(u,v) = aabaaaabaabaaaab,

with u = aabaa, v = aabaaaab. In this case, we find u1 = aab, u2 = aa,
e1 = e2 = 1, but observe that u has prefix a2, so u2 is not regular. Thus the
condition e1 = 1 is more general than the requirement that u2 be regular.

4. Rare Factors in Double Squares

In this section we consider a double square DS(u,v) = (u1,u2, e1, e2)
with nonempty u2. We present three kinds of factors of v2 that have highly
restricted number of occurrences in v2. The first of these, the so-called
inversion factor (IF for short) was introduced in [4]. The additional two
factors introduced here, right inversion subfactor (RIS for short) and left
inversion subfactor (LIS for short), are in fact subfactors of IF. Note that
A. Thierry [12] examines rare factors in configurations u1

e1u2u1
e2 .

Using the canonical factorization of DS(u,v), we have

v2 = (u2u2)e1u2(u2u2)e1+e2u2(u2u2)e2

= (u2u2)e1−1u2(IF)(u2u2)e1+e2−2u2(IF)(u2u2)e2−1 (2)

where IF = u2u2u2u2 = R|u2|(u1)u1 is called the inversion factor.

Lemma 8. Consider a double square DS(u,v) = (u1,u2, e1, e2) with nonempty
u2. Then the inversion factor IF has exactly two occurrences in v2 that are
distance |v| apart, as shown in (2).

Proof. If IF occurs elsewhere in v2, then by the Synchronization Principle
(Lemma 2) its primitive subfactor u2u2 can only align with another occur-
rence of u2u2. Therefore its other subfactor u2u2 must align with u2u2,
thus by Lemma 1 contradicting the primitiveness of u2u2.

9
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The quantity lcs(u2u2,u2u2) gives the maximum number of positions the
structures (u2u2)e1+e2 and (u2u2)e2 can be cyclically shifted to the left in v2,
while lcp(u2u2,u2u2) gives the maximum number of positions (u2u2)e1 and
(u2u2)e1+e2 can be cyclically shifted to the right. In [4], the following lemma
limiting the size of lcs(u2u2,u2u2)+lcp(u2u2,u2u2) was proved:

Lemma 9 ([4]). Consider u1
e1u2u1

e1+e2u2u1
e2, where u1 is primitive and

u2 is a nonempty proper prefix of u1, e1 ≥ e2 ≥ 1, and u2 a suffix of u1 so
that u1 = u2u2. Then lcs(u2u2,u2u2)+lcp(u2u2,u2u2) ≤ |u1|−2.

In fact, in [4] the inversion factor is defined more generally as any factor
wwww of v2 such that |w| = |u2| and |w| = |u2|; then a stronger result is
given (re-phrased in the terminology of this paper):

Lemma 10 ([4]). Consider a double square DS(u,v) = (u1,u2, e1, e2) with
nonempty u2, and let p = lcp(u2u2,u2u2), s = lcs(u2u2,u2u2). Then any
inversion factor in v2 is either Ri(IF) or R−j(IF) for some i ∈ 0.. p or some
j ∈ 0.. s. Moreover, for every i ∈ 0.. p (respectively, j ∈ 0.. s), every Ri(IF)
(respectively, R−j(IF)) occurs exactly twice in v2 with occurrences distance
exactly |v| apart.

The following simple lemma will be used for determining a different type
of rare factor in a double square. It says that if a substring u of a string
x and its rotation u′ completely overlap except for one symbol, then u can
be cyclically shifted one position to the right, or, equivalently, u′ can be
cyclically shifted one position to the left.

Lemma 11. If the substrings x[1..n] and x[2..n+1] of x = x[1..n+1] are
conjugates, then x[1] = x[n+ 1].

Proof. (Due to A. Thierry) Since x[1..n] and x[2..n+1] are conjugates, the
frequency of the alphabet symbols in both must be the same. Let x[1] =
a. Then x[1..n] must have the same number of a’s as x[2..n+1], and so
x[n+ 1] = a.

Note that Lemma 11 does not hold if u and u′ overlap less. For

abbbb︸ ︷︷ ︸
u

ba . . . and ab bbbba︸ ︷︷ ︸
u′

. . . ,

u cannot be cyclically shifted to the right nor u′ to the left, yet u′ is a
rotation of u.
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Definition 12. Consider a double square x = DS(u,v) = (u1,u2, e1, e2)
with nonempty u2. The right inversion subfactor (or RIS) is defined to
be a factor x[i.. j] of length |u1| where i = (e1−1)|u1|+|u2|+lcp(u2u2,u2u2)
and j = e1|u1|+ |u2|+ lcp(u2u2,u2u2)+1. Similarly, the left inversion
subfactor (or LIS) is a factor x[i.. j] of length |u1| where i = e1|u1|+|u2|−
lcs(u2u2,u2u2) and j = (e1+1)|u1|+|u2|−lcs(u2u2,u2u2)−1.

Note that another RIS also naturally occurs at position (e1−1)|u1|+
|u2|+ lcp(u2u2,u2u2) + |v|, and another LIS at position e1|u1|+ |u2| −
lcs(u2u2,u2u2)+|v|.

It is possible to view RIS in this way: let x[i.. j] be the maximum right
cyclic shift of the rightmost u2u2 of (u2u2)e1 , respectively of (u2u2)e1+e2 .
Then RIS is x[i+1, j+1]. Similarly, let x[i, j] be the maximum left cyclic
shift of the first u2u2 of (u2u2)e1+e2 , respectively of (u2u2)e2 . Then LIS is
x[i−1, j−1].

For a better understanding, we illustrate the two natural occurrences of
RIS in the following diagram:

u2u2 u2 u2 u2 u2u2 u2 u2 u2 u2 u2 u2 u2

RIS RIS

lcp(u2u2,u2u2)+1

|u2u2|

lcp(u2u2,u2u2)+1

|u2u2|

IF IF

and the two natural occurrences of LIS as follows:

u2u2 u2 u2 u2 u2u2 u2 u2 u2 u2 u2 u2 u2

lcs(u2u2,u2u2)+1

|u2u2|

LIS

lcs(u2u2,u2u2)+1

|u2u2|

LIS
IF IF

Lemma 13. Consider a double square DS(u,v) = (u1,u2, e1, e2) with nonempty
u2. Let p be the longest common prefix and s the longest common suffix of
u2u2 and u2u2. Then there is no occurrence of RIS, respectively LIS, that
is a factor of s(u2u2)e1+e2u2p.

Proof. Let us assume that there is an occurrence of RIS that is a factor of
s(u2u2)e1+e2u2p. Therefore RIS must be a rotation of u2u2 since its length
is |u1|. Consider w, the maximum right cyclic shift of the rightmost u2u2 of
(u2u2)e1 : w overlaps with RIS except for one symbol and RIS is its rotation,

11
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so we can apply Lemma 11 to conclude that w can be right cyclically shifted
one more position, a contradiction.

The proof for LIS follows the same line of reasoning.

5. New Periodicity Lemma Revisited

Let us first state the original New Periodicity Lemma (NPL) in terms
used in this paper:

Lemma 14 ([5], New Periodicity Lemma). Let x = DS(u,v), where we
require that u2 be regular and that v be primitive. Then for all integers k
and w such that 0 ≤ k < |v|− |u| and |v|− |u| < w < |v|, w 6= |u|,
x[k+1.. k+2w] is not a square.

First note that by Observation 7(d)-(e), the requirement that v be prim-
itive is redundant: the fact that u2 is regular forces |u2| > 0 as well as the
primitiveness of v. Also by Observation 7(f), the regularity of u2 implies
that in the canonical factorization DS(u,v) = (u1,u2, e1, e2), e1 = e2 = 1;
in other words, NPL applies only to a small subset of possible double squares.
Therefore u = u1u2, v = u1u2u1, and |v|−|u| = |u1|. Thus in loose terms,
NPL forbids a square w2 starting in u1 with size |u1| < |w| < |v|, with the
possible exception of size |u|.

Here we present a theorem that extends the result to all possible double
squares; the meaning of the suffix u′ of v will be illuminated in the proof of
the theorem.

Theorem 15. Consider a double square DS(u,v) and let u′ be a suffix of v
such that v = uu′. Let w2 be any square that is a factor of v2. Then exactly
one of the following mutually exclusive cases holds:

(a) w = v, or
(b) |w| < |u|, or
(c) |u| ≤ |w| < |v| and the primitive root of w is a conjugate of the pri-

mitive root of u′.

Before we embark on the proof of the theorem, let us discuss how it relates
to the original NPL. As mentioned above, for a very specific double square,
NPL forbids squares starting in the first u1 of lengths bigger than |u1| but
smaller than |v| with a possible exception of length |u|. Theorem 15 for such
a double square forbids squares starting anywhere if their length is bigger

12
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than |u| and smaller than |v|. So the “forbidding power” of the theorem
is slightly less than that of NPL with respect to the sizes of w2; however
it covers a larger range of possible starts for “forbidden” squares (anywhere
instead of in the first u1), and above all, it applies to all double squares
without any additional conditions or constraints — more than a fair trade-
off in our opinion.

Proof. If |w| ≥ |v|, then w = v since w2 is a factor of v2, and thus case (a)
holds. Hence, for the remainder of the proof we can assume that |w| < |v|.
Let DS(u,v) = (u1,u2, e1, e2). Then u′ = u1

e2 and the primitive root of u′

is u1.
We first deal with the case |u2| = 0. By Lemma 5, u1 is the primitive

root of u = u1
e1 and of v = u1

e1+e2 with e1 > e2 ≥ 1. If case (b) does not
hold, we must have |w| ≥ |u| = |u1

e1| > |u1|. Thus w2 and u1
2e1+2e2 have a

common factor of size |u1|+|w|, so that by Lemma 3, the primitive root of
w is a conjugate of u1, i.e. case (c) holds.

Now let us deal with case |u2| > 0. Suppose that (b) does not hold and
so |u| ≤ |w| < |v|. We employ the same notation as in the proof of Lemma 5:
thus, for example, w[1] refers to the first occurrence of w in wk, w[2] to the
second, etc.

Let us assume that there is a square w2 starting in u1
e1 such that |w| >

|u|. Since for |w| = |u|, w can only be a conjugate of u, and hence the
primitive root of w must be a conjugate of the primitive root of u, i.e. u1,
so that (c) holds, we may suppose |w| > |u|. First note that due to the virtual
left-right symmetry of the canonical factorization u1

e1u2u1
e1+e2u2u1

e2 (only
the exponents e1 and e2 may differ), and to the fact that the arguments
presented below can be applied either from the left or from the right, we
therefore need only prove the assertion for w2 starting in v[1]. Several cases
need to be discussed:

(1) w2 starts in the first u1 of u1
e1 and ends in the first u1 of u1

e1+e2

u2

k

w

u1 u2

k’

u1 u1 u1 u1 u1

Since |w| > |u| = |u1
e1|+|u2|, k < k′.

(i) k′ ≤ lcp(u2u2,u2u2)
Then w[1] has as a prefix a k-th rotation of u1 and w[2] has as a

13
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prefix a k′-th rotation of u1. By the Synchronization Principle,
k = k′, a contradiction. This case is not possible.

(ii) k′ > lcp(u2u2,u2u2)
Here w[1] contains the first RIS, and so w[2] must contain an oc-
currence of RIS. Since w[2] is a factor in u1

e1+e2u2, therefore by
Lemma 13 w[2] must contain the second RIS and so |w| ≥ |v|, a
contradiction. This case is not possible.

(2) w2 starts in the first u1 of u1
e1 and ends past the first u1 of u1

e1+e2 .

u2

w

u1 u2u1 u1 u1 u1 u1

The same argument as in (1)(ii) gives |w| ≥ |v|, a contradiction. This
case is not possible.

(3) w2 starts in u1
e1−1u2 but not in the first u1.

u2

w

u2u2u2 u2u2 u2u2 u2u2(u2u2)     (u2  u2)e1-1

Then e1 > 1 and since |w| > |u| = |u1
e1u2|, w[1] ends past the first

u1 of u1
e1+e2 . Therefore, w[1] contains RIS and so |w| ≥ |v|, i.e. this

case is not possible.

(4) w2 starts in the suffix u2u2 of u whose length ≤ lcs(u2u2,u2u2).

u2

w

u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

lcs(u2u2,u2u2) lcp(u2u2,u2u2)

s(u2u2)         u2p
e1+e2

Here w[1] is a factor in su1
e1+e2u2p, where s is the maximal common

suffix and p the maximal common prefix of u2u2 and u2u2. Thus
w2 and su1

e1+e2u2p have a common factor of size |u1 +w| and by
the Common Factor Lemma (Lemma 3), the primitive root of w is a
conjugate of u1, i.e. case (c) holds.

14
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(5) w2 starts in the suffix u2u2 of u whose length > lcs(u2u2,u2u2).

u2

w

u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

lcs(u2u2,u2u2)

Then w[1] contains LIS and thus w[2] must contain an occurrence of
LIS and so |w| ≥ |v|, and so this case is not possible.

(6) w2 starts past the first u.

u2

w

u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2 u2

s(u2u2)         u2p
e1+e2

The same argument as in (4) shows that the primitive root of w is a
conjugate of u1 and so case (c) holds.

6. Conclusion

We presented a unique factorization, referred to as the canonical factor-
ization, of a double square; that is, a configuration of two squares starting
at the same position of “comparable” lengths. Utilizing the canonical fac-
torization we discussed so-called rare factors; that is, factors occurring in
a few well-defined positions in a double square. The existence of the rare
factors RIS and LIS is then used to establish existential limits for a third
square (Theorem 15), greatly generalizing the New Periodicity Lemma. The
theorem in comparison to NPL vastly extends the range of applicability from
a very specific type of double square DS(u,v) (u2 must be regular) to any
type of double square.
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