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Abstract

The Knuth–Morris–Pratt (KMP) pattern-matching algorithm guarantees both independence from alphabet size and worst-case
execution time linear in the pattern length; on the other hand, the Boyer–Moore (BM) algorithm provides near-optimal average-case
and best-case behaviour, as well as executing very fast in practice. We describe a simple algorithm that employs the main ideas of
KMP and BM (with a little help from Sunday) in an effort to combine these desirable features. Experiments indicate that in practice
the new algorithm is among the fastest exact pattern-matching algorithms discovered to date, apparently dominant for alphabet size
above 15–20.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since 1977, with the publication of both the Boyer–Moore [2] and Knuth–Morris–Pratt [24] pattern-matching
algorithms, there have certainly been hundreds, if not thousands, of papers published that deal with exact pattern-
matching, and in particular discuss and/or introduce variants of either BM or KMP. The pattern-matching literature
has had two main foci:

1. reducing the number of letter comparisons required in the worst/average case (for example, [4–6,8,13–15], see
also [29, pp. 219–225]);

2. reducing the time requirement in the worst/average case (for example, [7,9,20,21,30]).

✩ A preliminary version of this paper appeared in Proc. 16th Annual Symp. Combinatorial Pattern Matching, LNCS 3537, Springer-Verlag, 2005.
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This contribution resides in the second of these categories: in an effort to reduce processing time, we propose
a mixture of Sunday’s variant [30] of BM [2] with KMP [24,27]. Our goal is to combine the best/average case
advantages of Sunday’s algorithm (BMS) with the worst case guarantees of KMP. According to the experiments we
have conducted, our new algorithm (FJS) is among the fastest in practice for the computation of all occurrences
of a pattern p = p[1..m] in a text string x = x[1..n] on an alphabet Σ of size k. Moreover, based on �(m + k)-
time preprocessing, it guarantees that matching requires at most 3n − 2m letter comparisons and O(n) matching
time.

Several comparative surveys of pattern-matching algorithms have been published over the years [10,21,25,26,29]
and a useful website [3] is maintained that gives executable C code for the main algorithms (including preprocessing)
and describes their important features.

In this paper we first introduce, in Section 2, the new algorithm, establish its asymptotic time and space require-
ments in the worst case, and demonstrate its correctness. Next, extensions to the algorithm for large alphabets and
patterns with don’t-care letters are discussed in Section 3. Then in Section 4 we describe experiments that compare
Algorithm FJS with algorithms that, from the available literature, appear to provide the best competition in practice;
specifically,

• Horspool’s algorithm (BMH) [20];
• Sunday’s algorithm (BMS) [30];
• Reverse Colussi (RC) [7];
• Turbo-BM (TBM) [9].

Finally, in Section 5, we draw conclusions from our experiments.

2. The new algorithm

Algorithm FJS searches for matches to p = p[1..m] in x = x[1..n] by shifting p from left to right along x. At
the start of each step, position j = 1 of p is aligned with a position i ∈ 1..n − m + 1 in x, so that position m of p is
therefore aligned with position i′ = i + m − j in x.

In KMP matching, p is matched left-to-right with x[i],x[i + 1], and so on until either a match with all of p is
found or else a mismatch is located at some position j ∈ 1..m. In the case of a mismatch at j > 1, we say that a partial
match has been determined with p[1..j − 1]. As matching proceeds, both i and j are incremented, thus maintaining
the relationship i′ = i + m − j , the basic invariant of Algorithm FJS.

The strategy of FJS is as follows:

1. Whenever no partial match of p with x[i..i + m − 1] has been found, Sunday shifts (described below) are per-
formed to determine the next position i′ at which x[i′] = p[m]. When such an i′ has been found, KMP matching
is then performed on p[1..m − 1] and x[i′ − m + 1..i′ − 1].

2. If a partial match of p with x has been found, KMP matching is continued on p[1..m].

The pseudocode shown below illustrates this overall strategy.

Algorithm 1 (Hybrid matching).
Find all occurrences of p = p[1..m] in x = x[1..n]

if m < 1 then return
j ← 1; i ← 1; i ′ ← m; m′ ← m − 1
while i′ � n do

if j � 1 then

– If no partial match with p, perform Sunday shifts,
– returning next position i′ such that x[i′] = p[m]
SUNDAY-SHIFT(i′)
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– Reset invariant for KMP matching of p[1..m − 1]
j ← 1; i ← i′ − m′
KMP-MATCH(m′; j, i)

else

– Continue KMP matching of p[1..m]
KMP-MATCH(m; j, i)

– Restore invariant for next try (SUNDAY or KMP)
j ← β ′[j ]; i′ ← i + m − j

As discussed in [22], the real rationale for the algorithm resides in the avoidance of Markov effects combined
with efficient shifting. A match of p[m] with x[i′] can in most circumstances reasonably be regarded as independent
of a match (or mismatch) with p[1], where KMP matching begins. That is, we suppose that when p[1] = x[i] but
p[1..m] �= x[i..i′], it is more likely that p[m] �= x[i′] than p[2] �= x[i + 1] because p[1] is better able to predict
x[i + 1] than x[i′]. When this supposition holds, we can detect partial matches more quickly by testing positions at
opposite ends of the pattern than by testing positions in sequence. In addition, testing first at position m of p provides
a very efficient mechanism for sliding p across x using the Sunday shift when p[m] �= x[i′], which is expected to be
the most common case.

Thus, in a sense, once a suitable i′ has been found, the first half of FJS (executed when j � 1) just performs KMP
matching in a different order: position m of p is compared first, followed by 1,2, . . . ,m − 1. Indeed, since the KMP
shift is also employed, the number of worst-case letter comparisons required for FJS is bounded above, as we show
below, by 3n − 2m, compared with KMP’s 2n − m.

2.1. Preprocessing

The algorithm uses two arrays: Sunday’s array Δ = Δ[1..k], computable in �(m + k) time, and the KMP array
β ′ = β ′[1..m + 1], computable in �(m) time.

The hth position in the Δ array is accessed directly by the letter h of the alphabet, and so we need to make the
assumption required by all BM-type algorithms, that the alphabet is indexed [29]—essentially, that Σ = {1,2, . . . , k}
for some integer k fixed in advance. Then for every h ∈ 1..k, Δ[h] = m − j ′ + 1, where j ′ is the position of rightmost
occurrence of the letter h in p, if it exists; zero otherwise. Thus in case of a mismatch with x[i′], Δ[x[i′ +1]] computes
a shift that places the rightmost occurrence j ′ of letter x[i′ + 1] in p opposite position i′ + 1 of x, whenever j ′ exists
in p, and otherwise shifts p right past position i′ + 1. The computation of Δ is straightforward (see Appendix A for
C code and [10,29] for further discussion).

To describe the β ′ array, we introduce the border of a string u: a proper prefix of u that is also a suffix of
u. The empty string is a border of every nonempty u. Next define an array β[1..m + 1] in which β[1] = 0 and
for every j ∈ 2..m + 1, β[j ] is one plus the length of the longest border of p[1..j − 1]. Then β ′[j ] is defined as
follows:

If j = m + 1, β ′[j ] = β[j ]. Otherwise, for j ∈ 1..m, β ′[j ] = j ′ where j ′ − 1 is the length of the longest border of
p[1..j − 1] such that p[j ′] �= p[j ]; if no such border exists, β ′[j ] = 0.

See Appendix A for C code and [10,29] for further discussion.

2.2. The algorithm

The KMP parts of the algorithm need to compare position i of x with position j of p, where j may be the extension
of a partial match with p[1..j − 1] or the result of an assignment j ← β ′[j ]. We show below the pseudocode for the
KMP version that does matching of p[1..m − 1]:
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KMP-MATCH(m′; j, i)

while j < m and x[i] = p[j ] do
i ← i + 1; j ← j + 1

if j = m then
i ← i + 1; j ← j + 1; output i − m

The full p[m] version is as follows:

KMP-MATCH(m; j, i)

while j � m and x[i] = p[j ] do
i ← i + 1; j ← j + 1

if j > m then output i − m

Observe that after each execution of a KMP version, the last line of Hybrid Matching is executed, performing a
KMP shift (j ← β ′[j ]) and reestablishing the invariant i′ = i + m − j required subsequently by SUNDAY-SHIFT:

SUNDAY-SHIFT(i′)

while x[i′] �= p[m] do
i′ ← i′ + Δ[x[i′ + 1]]
if i′ > n then return

2.3. Correctness

The correctness of Algorithm FJS is a consequence of the correctness of BMS and KMP. Note that a sentinel
letter needs to be added at position n + 1 of x to ensure that Δ[x[i′ + 1]] is well defined for i′ = n. There are no
restrictions on the choice of sentinel except that it should be in Σ : it may occur anywhere in x and p. If using a
sentinel is undesirable, the algorithm can be modified without sacrificing efficiency by testing the final alignment at
x[n − m + 1..n] as a special case outside of the main loop.

2.4. Letter comparisons

If, in Algorithm FJS, it is always true that j > 1, then the maximum number of letter comparisons is 2n − m,
identical to that of Algorithm KMP (see, for example, [29]). Suppose then that it is always true that j � 1. This means
that in the worst case there may be as many as n − m + 1 executions of the match in SUNDAY-SHIFT. Then KMP-
type letter comparisons could take place on the remaining m − 1 positions of the pattern over a text string of length
n − 1 (under this hypothesis, the final letter of x would never be subject to KMP-type matching). Since Algorithm
KMP performs at most 2n′ − m′ letter comparisons to find matches for a pattern of length m′ in a string of length n′,
we find, substituting n′ = n − 1, m′ = m− 1, that the largest possible number of letter comparisons by Algorithm FJS
is

2(n − 1) − (m − 1) + (n − m + 1) = 3n − 2m.

It is straightforward to verify that this bound is in fact attained by p = aba, x = an. Thus

Theorem 1. Algorithm FJS requires at most 3n − 2m letter comparisons in the worst case, a bound attained by
p = aba, x = an.

It appears that the matching problem p = aba, x = an is essentially the only one that yields worst case behaviour.
Thus there is not a large price to be paid for the improved average-case efficiency of FJS. We remark that a preliminary
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version of this algorithm published in conference proceedings [12], though faster in practice than the one described
here, did not in fact achieve the 3n − 2m bound given here.

3. Extensions

3.1. “Don’t-care” approximate patterns

There has recently been revived interest in using extensions of exact pattern-matching algorithms to handle
“don’t-care” letters ∗ or letters λ = [a, e, i, o,u] that match any one of a specified subset {a, e, i, o,u} of “regular”
letters [17–19].

[17] distinguishes, apparently for the first time, two forms of matching between strings that contain indeterminate
letters—that is, letters (such as ∗ or λ) that match specified subsets of letters of a given alphabet Σ . One form of
matching of indeterminate letters, called quantum, permits an indeterminate letter to match distinct letters in the same
match—for example, a∗ is allowed to match ∗b even though this requires that ∗ match both a and b. On the other
hand, determinate matching requires that an indeterminate letter should always match consistent subsets of letters in
the same match: [a, b]b cannot match a[a, b] because it requires that [a, b] match both a and b.

In [18] it is shown that, for both the quantum and indeterminate cases, variants of the BMS algorithm generally
outperform the agrep-style algorithms [1,11,28,31]; in [19] it is shown that these benefits extend, rather more clearly,
to corresponding variants of FJS. These results on BMS/FJS extensions thus to some degree confirm the results of this
paper.

3.2. Preprocessing large alphabets

The alphabet-based preprocessing arrays of BM-type algorithms are their most useful feature, but they can be a
source of trouble as well. We have already discussed one such caveat: that the alphabet must be indexed, but that is
not the only pitfall. When the size of the alphabet is a significant fraction of the size of the text, preprocessing time
can easily overwhelm any skip benefits gained while searching.

In the past, this has rarely been a problem. The typical application is searching natural language text, and the
alphabets used to represent that text were usually of 8 bits or less. This is small enough that the preprocessing time is
unlikely to be noticed regardless of text length. However, circumstances are changing: larger alphabets are increasingly
common when dealing with natural language strings. Coding schemes such as Unicode make use of “wide characters”
that may be up to 32 bits wide, with 16 bits being more common. But even a 16-bit alphabet is large enough to make it
counterproductive to use FJS in many applications. Typed consecutively, the letters of a 16-bit alphabet would cover
about 20 sheets of paper. To see any gain, the text being searched would need to be longer still. Using FJS with a
32-bit alphabet is not practical—nor even possible on the majority of present-day computers.

On the other hand Algorithm FJS—or nearly any BM-derived algorithm— can easily be extended to allow effec-
tive use of indexed alphabets of any practical size. The best- and worst-case number of letter comparisons remains
unchanged by this extension. The key to this is the observation that the values stored in Δ are effectively upper bounds
on the number of positions that can be safely skipped. If fewer positions are skipped, then no harm is done other than
to force the algorithm to do a bit more work than needed—but even if the skip amount is fixed at 1 and the inequality
p[m] �= x[i′] always holds, the limit of n − m + 1 executions of the BM-type match is unchanged.

The extension works by using a smaller preprocessing array as a kind of hash table. First, choose a new size t < k

for the modified array Δ′[1..t], and define a hash function f :Σ → [1..t] with constant time and space complexity.
Then for every g ∈ 1..t and every h ∈ 1..k, the value stored in Δ′[g] is the smallest r such that f (h) = g and Δ[h] = r .
The Δ′ array can be computed in �(t +m) time and space with simple modifications to the standard algorithm for Δ.
Finally, the completed extension replaces the lookup Δ[h] in Algorithm FJS with Δ′[f (h)].

As a practical example of this technique, we suppose that Σ is a wide character encoding with k = 216 or k = 232.
We let t = 28, and define f as the masking function that keeps the lowest 8 bits of its input. Although the upper and
lower bounds on time and space complexity are unchanged, the effect on average-case behaviour is harder to predict
and will be highly sensitive to the patterns processed and the way the alphabet is indexed. For example, the subset of
Unicode corresponding to the ASCII character set occurs in a single 256 character block. Searching a 16-bit Unicode
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string that consisted only of ASCII characters using the example just described would require exactly the same number
of letter comparisons as unmodified FJS since no hash collisions would occur in Δ′.

4. Experimental results

We conducted a number of experiments to compare Algorithm FJS with other exact pattern matching algorithms
known to be among the fastest in practice. As mentioned in Section 1, we selected the four algorithms BMH, BMS,
RC, and TBM for this purpose.

Colussi presents two versions of the RC algorithm in [7]; we use the first version, which matches in O(mn) time
in certain pathological cases. The alternative version matches in �(n) time but requires additional computation after
each match, and so is typically slower in practice. Tests with the alternative version did not produce significantly
different results relative to FJS.

We note that, of the four algorithms tested against FJS, only TBM shares with FJS the property of having an order
n upper bound in the worst case; in fact, TBM requires at most 2n letter comparisons as opposed to 3n − 2n for FJS,
but in our tests it consistently runs slower than FJS.

Implementations of the four competing algorithms were adapted from [3], which provides well-tested C code for a
large number of exact pattern matching algorithms. This gave a standard which we mimicked closely in implementing
FJS, yielding code of consistent quality and thereby helping to ensure fairness in testing.

Our implementations vary from [3] in three significant ways. First, pattern preprocessing was moved inline to
remove the function call overhead from our execution times. Second, the arrays used for preprocessing, which were
allocated on the stack, were replaced with statically allocated arrays. This was done to prevent the stack from being
dynamically extended by the operating system and distorting our results. Finally, calls to the C library functions
memcmp() and memset(), which were made by some implementations, were replaced with equivalent simple loops.
The library calls are optimized for large arrays, while most of our patterns are relatively short. Changing the call made
the relevant competitors four to five times faster in our tests.

These C functions are optimized for operation on large memory regions. Our tests feature relatively small pattern
lengths, so these functions perform poorly in our tests. Eliminating them increased execution speed by four to five
times, maintaining our consistent quality imperative.

To time the algorithms, we made use of high-frequency hardware clocks that are available on the majority of
modern computer systems. A run of each implementation for a given text and pattern was repeated 20 times, and the
fastest time was taken as the result. The fastest time is closest to the minimum time that the run would have taken
independent of interrupts, cache misses, or other external effects. All timings include preprocessing as well as the
string search algorithm itself.

The results presented here were taken from the system that, of those available, provided the most precise and
accurate timing hardware—namely an AMD Athlon 2500+ PC with 512 MB RAM, running Windows 2000 (SP4),
and using software compiled with version 12.00.8168 of Microsoft’s C/C++ compiler. However, the resulting trends
were highly stable across seven environments using a variety of hardware, operating system, and compiler vendor
combinations (see Table 1).

Table 1

CPU OS Compiler

AMD Athlon 2500+ Windows 2000 (SP4) MS C/C++ 12.00
AMD Athlon 1000 MHz Windows 98 MS C/C++ 12.00
AMD Athlon 1000 MHz Windows 98 DJGPP 2.03
AMD Athlon 1000 MHz Red Hat Linux 7.1 GNU C++ 2.96
Hitachi SuperH SH-3 133 MHz Windows CE H/PC 2.11 MS Embedded C++ 3.0
Motorola MC68EC030 25 MHz AmigaOS 3.1 SAS C 6.0
Motorola MC68EC030 25 MHz AmigaOS 3.1 GNU C++ 2.96
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4.1. Test data

The primary source of text strings for these experiments was Project Gutenberg [16], an online source of copyright-
expired or otherwise freely distributable texts. A set of 2434 texts was obtained, consisting of texts published by
Project Gutenberg on or before August 16, 2001. Of these, some texts were present multiple times owing to corrected
editions being published at a later date. In these cases, all but the latest editions were removed from the set. Of the
remaining texts, 1000 were selected at random to make up the final corpus. The corpus contained a total of 446 504 073
letters, with individual texts ranging from 10 115 to 4 823 268 letters in length. The distribution of lengths is left-
skewed as there are many more short files than long ones, a similar distribution to many practical applications.

A second corpus was constructed from a version of the Human Genome Project’s map of the first human chromo-
some. Filtering the original file to remove non-DNA data left a string of 210 992 564 letters drawn from the nucleotide
alphabet {A,T ,C,G}. This was transformed into a bit string by mapping each A, T , C, or G to 00, 01, 10, or 11, re-
spectively. Random substrings of the resulting binary string were then used to construct strings drawn from alphabets
of size varying by powers of 2 from 2 to 64.

4.2. Frequency of occurrence

We constructed high- and moderate-frequency pattern sets to observe the effect of match frequency on performance.
To obtain comparable results, we fixed the number and length of the patterns in both sets. As both values must be kept
fairly small to construct a meaningful high-frequency pattern set, we settled on sets of seven patterns of length six.

The high-frequency pattern set consisted of the following (where represents the space symbol):

of th of the f the that , and this n the

These were selected by finding the seven most frequent substrings of length six in a random sample of 200 texts from
our primary corpus. These patterns occur 3 366 899 times in the full corpus. Fig. 1 graphs the performance of the
tested algorithms for the high-frequency set. The execution time for each text is the total time taken for all patterns,
where the time for each pattern is determined as described above. Strictly speaking, as the selection of patterns was
not randomized, it is not statistically valid to infer that these results apply to all possible frequent patterns. However,
considering all our results together, we are confident that the results given here are typical.

For the moderate frequency set, we randomly selected 7 words of at least length 6 from those words sharing an
expected frequency of 4 instances per 10 000 words. Actual match frequency may vary since patterns may occur often

Fig. 1. Execution time versus text length for high-frequency pattern set.
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Fig. 2. Execution time versus text length for moderate-frequency pattern set.

within other words, but this tends to occur in practice as well. After truncating long words at six letters the final set
was:

better enough govern public someth system though

These patterns occur 266 792 times in our corpus, or about one thirteenth as often as the patterns in the high-frequency
set. Fig. 2 graphs the results of this test; as in the high-frequency test, the execution time is the total time for all patterns
on a given text.

4.3. Pattern length

Pattern sets were constructed consisting of nine patterns for each possible length from three to nine. These were
selected using the methods similar to the moderate frequency experiment above, but with an expected frequency of
2–3 times per 10 000 words. The reduced frequency was needed to allow sufficient candidates of each length. As
above, the actual frequency of some patterns, shorter patterns in particular, will be higher due to their occurring more
frequently within other words. The sets, and their respective match frequencies are shown in Table 2.

Fig. 3 graphs the results from this test. The time for each pattern length is the total time for searching for all nine
patterns in the relevant set in each of the texts of the primary corpus.

The trends of FJS and BMS suggested that they are asymptotically the same. To investigate further, we tested
90 patterns with lengths from 25 to 175, randomly selected from our corpus. We found that FJS and BMS became
indistinguishable from about m = 100 onward. RC’s performance was burdened by its O(m2) preprocessing time in

Table 2

Length Matches Pattern set

3 586 198 air, age, ago, boy, car, I’m, job, run, six
4 346 355 body, half, held, past, seem, seen, tell, week, word
5 250 237 death, field, money, quite, seems, shall, taken, whose, words
6 182 353 became, behind, cannot, having, making, moment, period, really, result
7 99 109 already, brought, college, control, federal, further, provide, society, special
8 122 854 anything, evidence, military, position, probably, problems, question, students, together
9 71 371 available, community, education, following, political, situation, sometimes, necessary,

therefore
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Fig. 3. Execution time versus pattern length.

this test. RC was second last at m = 25, and last from m = 30 on. At m = 175, it was already more than an order of
magnitude slower than its nearest competitor.

4.4. Alphabet size

The secondary corpus of DNA-derived texts was used to test the effect of alphabet size on the algorithms. This
corpus consists of six texts of 500 000 letters each, each text drawn from an alphabet of a different size from 2, 4, 8,
16, 32, and 64. Each text was searched with 20 patterns of length six, each pattern selected at random from the source
text. The results, seen in Fig. 4, suggest that Algorithm FJS may be a poor choice for k < 15—thus not optimal for
DNA sequences (|Σ | = 4), but suitable for proteins composed of amino acids (|Σ | = 20).

4.5. Pathological cases

It is well known that periodic strings can induce theoretical worst-case behaviour in pattern-matching algorithms.
For FJS, x = an,p = aba maximizes the comparison count for a given text size. We compared performance on this
text and pattern for values of n from 10 000 to 100 000 at 10 000 letter intervals. The rank order, from fastest to
slowest, was consistently RC, BMH, BMS, FJS, TBM, with RC timing 41% faster than FJS on average. These results
are graphed in Fig. 5.

On the other hand, patterns of the form x = an,p = am (and in particular, m = [n/2]) maximize comparisons for
many non-linear BM variants, including BMH and BMS. Fixing the text as x = a100 000, we timed the five algorithms
for p = a3 through p = a9. The results, shown in Fig. 6, showcase the O(n) matching time guarantees of FJS and
TBM and indicate a clear preference for FJS.

The worst case for the original BM algorithm can be triggered with strings of the form x = (akb)r , p = ak−1bak−1.
As in the previous case, both the pattern and the text are highly repetitive. We performed two final tests using string
pairs of this kind. In the first test, shown in Fig. 7, we held r constant at 100 000 and varied k from 2 through 20. In
the second test, shown in Fig. 8, we held k at 10 and varied r from 100 000 through 500 000. Both cases showed a
15–20% advantage for FJS over BMS and RC, which were indistinguishable, and by a large margin over all others.

5. Discussion and conclusion

We have tested FJS against four high-profile competitors (BMH, BMS, RC, TBM) over a range of contexts: pattern
frequency (C1), pattern length (C2), alphabet size (C3), and pathological cases (C4).
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Fig. 4. Execution time versus alphabet size.

Fig. 5. Execution time versus text length for x = an,p = aba.

Over contexts (C1) and (C2), and for English texts and patterns, FJS was uniformly superior to its competitors,
with an up to 10% advantage over BMS and RC, the closest adversaries. For very long patterns, it appears that FJS
and BMS have approximately the same behaviour, a not unexpected result since the Sunday skip loop dominates.

In terms of (C3), for small alphabets the statistical incidence of p[m] = x[i′] will be high, and so KMP will be
invoked often, thus slowing FJS with respect to BMS and RC. However, for k � 15 or so, FJS appears to again be the
algorithm of choice, again with a time advantage of 5–10%. We remark again that an alternate version of FJS runs
faster in practice than the one tested here [12], and in fact appears to be dominant for k � 8.
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Fig. 6. Execution time versus pattern length for x = a100 000, p = am .

Fig. 7. Execution time versus k for x = (akb)100000, p = ak−1bak−1.

The overall speed advantage of FJS probably relates to its efficient average-case processing of the most common
case (initial mismatch):

• use of a tight skip loop to find alignments with an initial match and avoid repeated settings of j = 1;
• Markov independence of position m and position j in the pattern p.

As discussed in [22], the first of these factors, slight as it is, appears to be the more important.
For FJS the pathological cases (C4) are those in which the KMP part is forced to execute on prefixes of patterns

where KMP provides no advantage (that is, the portion of the pattern p that partially matches the text always has
only an empty border). On the other hand, FJS performs well on periodic patterns, precisely because of its KMP
component.
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Fig. 8. Execution time versus r for x = (a10b)r , p = a9ba9.

The advantage of FJS over TBM seems to be related to the extra time involved in TBM’s shift logic; while the
advantage over BMH seems to be a compound of an improved shift methodology together with the effect of the KMP
component.

In summary: we presented a hybrid exact pattern-matching algorithm, FJS, which combines the benefits of KMP
and BMS. It requires �(m + k) time and space for preprocessing, and finds all matches in at most 3n − 2m letter
comparisons. We also presented extensions of FJS that encourage its use in a wider variety of practical contexts:
approximate pattern matching with “don’t-care” letters, and large alphabets. Finally, we compared FJS with some of
the fastest algorithms available. The results suggest that FJS is competitive with these algorithms in general, and that
for k � 8 it is the algorithm of choice.

Appendix A. An implementation

What follows is a straightforward implementation of FJS in the C programming language. The null character used
to terminate strings in C provides the needed sentinel. This and related code can be downloaded from [23], which also
provides an interactive animation of the algorithm.

#include <stdio.h>
#include <string.h>

typedef unsigned char CTYPE; // type of alphabet letters

#define ALPHA (256) // alphabet size
#define MAX_PATLEN (100) // maximum pattern length

int betap[ MAX_PATLEN+1 ];
int Delta[ ALPHA ];

void output( int pos ) {
static int matches = 0;
printf( "match %d found at position %d\n", ++matches, pos );

}

void makebetap( const CTYPE* p, int m ) {
int i = 0, j = betap[0] = -1;
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while( i < m ) {
while( (j > -1) && (p[i] != p[j]) )

j = betap[j];
if( p[++i] == p[++j] )

betap[i] = betap[j];
else

betap[i] = j;
}

}

void makeDelta( const CTYPE* p, int m ) {
int i;

for( i = 0; i < ALPHA; ++i )
Delta[i] = m + 1;

for( i = 0; i < m; ++i )
Delta[ p[i] ] = m - i;

}

void FJS( const CTYPE* p, int m, const CTYPE* x, int n ) {
if( m < 1 ) return;
makebetap( p, m );
makeDelta( p, m );

int i = 0, j = 0, mp = m-1, ip = mp;
while( ip < n ) {

if( j <= 0 ) {
while( p[ mp ] != x[ ip ] ) {

ip += Delta[ x[ ip+1 ] ];
if( ip >= n ) return;

}
j = 0;
i = ip - mp;
while( (j < mp) && (x[i] == p[j]) )

{ ++i; ++j; }
if( j == mp ) {

output( i-mp );
++i; ++j;

}
if( j <= 0 )

++i;
else

j = betap[j];
} else {

while( (j < m) && (x[i] == p[j]) )
{ ++i; ++j; }

if( j == m )
output( i-m );

j = betap[j];
}
ip = i + mp - j;

}
}

int main( int argc, char** argv ) {
int m;
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if( argc == 3 ) {
if( ( m = strlen( argv[2] )) <= MAX_PATLEN )

FJS( (CTYPE*) argv[2], m,
(CTYPE*) argv[1], strlen( argv[1] ) );

else
printf( "Recompile with MAX_PATLEN >= %d\n", m );

} else
printf( "Usage: %s text pattern\n", argv[0] );

return 0;
}
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