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Abstract. We show that for a discrete semigroup S there exists a uniquely de-

termined complete Boolean algebra B(S) - the algebra of clopen subsets of M(S).

M(S) is the phase space of the universal minimal dynamical system for S and it is

an extremally disconnected compact Hausdorff space. We deal with this connection

of semigroups and complete Boolean algebras focusing on structural properties of

these algebras. We show that B(S) is either atomic or atomless; that B(S) is weakly

homogenous provided S has a minimal left ideal; and that for countable semigroups

B(S) is semi-Cohen. We also present a class of what we call group-like semigroups

that includes commutative semigroups, inverse semigroups, and right groups. The

group reflection G(S) of a group-like semigroup S can be constructed via universal

minimal dynamical system for S and, moreover, B(S) and B(G(S)) are the same.

1. Introduction

In topological dynamics it is usual to consider an action of a group on a topolog-
ical space [E], [G], [A], [deV]. We shall consider an action of a discrete semigroup on
a compact Hausdorff space and focus our attention to universal minimal dynamical
systems. For this we shall consider the semigroup (C(X,X), ◦), where C(X,X) is
the set of all continuous functions from a topological space X into itself, and the
operation ◦ is defined by (f◦g)(x) = f(g(x)) for f, g ∈ C(X,X) and x ∈ X. From
now on, unless stated otherwise, by a semigroup or a group we mean a discrete
semigroup or group.
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Definition 1.1. Let S = (S, ·) be a semigroup. A dynamical system (X,S, π)
consists of

(i) a non-empty compact Hausdorff space X, called phase space;
(ii) an action π of the semigroup S on the space X; that is, a homomorphism

π : (S, ·) → (C(X,X), ◦) such that if S has the identity e, then π(e) is the
identity function on X.

For a given dynamical system (X,S, π) we will omit π and refer to the system
as (X,S), if no ambiguities or confusion arise. Similarly we may write s(x) for
π(s)(x). Note that we do not demand that the action of S be effective, i.e. that π
be an embedding, and so it is possible that π(s) = π(t) while s 6= t, s, t ∈ S.

For a subset A of X and s ∈ S, s[A] denotes the set {s(a) : a ∈ A}. Unless
stated otherwise, s−1 does not refer to the inverse element of s but rather to the
inverse function of s, i.e. s−1[A] = {x ∈ X : s(x) ∈ A}.

Let us recall some fundamental notions from topological dynamics.

Let (X,S, π) be a dynamical system. A subset Y of X is an S-invariant set if
Y 6= ∅ and if, for every s ∈ S, π(s)[Y ] ⊆ Y . For a closed S-invariant subset Y of X
we can restrict the action of S on X to an action on Y by defining πY (s) = π(s)�Y
for every s ∈ S. The resulting dynamical system (Y, S, πY ) is a subsystem of
(X,S, π). The orbit of x ∈ X is the set Orb(x) = {π(s)(x) : s ∈ S}.

Definition 1.2. The system (X,S) is called minimal if X has no proper closed
S-invariant subset.

It is easy to see that for a system (X,S) the following are equivalent:
(i) (X,S) is minimal;
(ii) the orbit of each x ∈ X is dense in X;

(iii) for every non-empty open U ⊆ X,
⋃

s∈S

s−1[U ] = X.

Proposition 1.3. For every dynamical system (X,S) there is a dynamical subsys-
tem of (X,S) that is minimal.

The proposition follows from Zorn’s principle and the fact that X is compact.

Definition 1.4. A homomorphism from a dynamical system (X,S, π) into a dy-
namical system (Y, S, σ) is a continuous mapping φ : X → Y that commutes with
the actions; i.e. φ(π(s)(x)) = σ(s)(φ(x)) for all s ∈ S and all x ∈ X. If moreover
φ is a homeomorphism, then φ is called an isomorphism. (Y, S, σ) is a factor of
(X,S, π) if there is a homomorphism from (X,S, π) onto (Y, S, σ).

Lemma 1.5.

(1) If φ : (X,S) → (Y, S) is a homomorphism and (Y, S) is minimal, then φ
must be onto.

(2) A factor of a minimal system is also minimal.
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Definition 1.6. A system (X,S) is called a universal minimal dynamical system
if it is minimal and every minimal dynamical system for S is a factor of (X,S).

For every discrete semigroup there is a unique (up to isomorphism) universal
minimal dynamical system [E]. It has been known that for a group the phase space
of a universal minimal system is an extremally disconnected compact Hausdorff
space (Ellis - see [vD], for countable groups see [Ga]). We prove that the same
holds true for semigroups (Theorem 3.3).

This was the motivation for studying extremally disconnected dynamical sys-
tems in [BD], in particular two natural dynamical systems: (X,Hom(X)) and
(X,Emb(X)), where X is an extremally disconnected compact Hausdorff space,
Hom(X) is the group of all homeomorphisms of X, and Emb(X) is the semigroup
of all continuous embeddings of X into itself. Among other results the conditions
when these systems are minimal were presented. In Example 3.4 (ii) we observe
that (X,Emb(X)) is not universal minimal for any infinite X. It is likely that the
same is true for the system (X,Hom(X)), but the problem is still unresolved.

Since the phase space, denoted M(S), of a universal minimal dynamical system
for a semigroup S is an extremally disconnected compact Hausdorff space, the
Boolean algebra of clopen subsets of M(S) is complete. We shall denote it by B(S).
Our aim is to investigate the structural properties of these algebras for various
classes of semigroups. Let us remark here that the universal minimal dynamical
system for a semigroup S is given not only by its phase space, but also by the way
S acts on it. Therefore, it is possible that for different semigroups the respective
phase spaces of their universal minimal dynamical systems are the same and the
systems only differ in the way the semigroups act on it.

It is known that a group acts effectively on the phase space of its universal
minimal dynamical system [E]. In general, though, a semigroup S may not act
effectively on M(S). The action of S on M(S) defines a congruence ρ(S) on S:
(s, t) ∈ ρ(S) iff s(x) = t(x) for all x ∈ M(S). That ρ(S) is well defined will be
shown later (see Remark 3.2).

In summary, through the universal minimal dynamical system we have associated
with each semigroup S

- a uniquely determined extremally disconnected compact Hausdorff space
M(S);

- a uniquely determined complete Boolean algebra B(S);
- a uniquely determined congruence ρ(S) on S which expresses how effectively
S acts on M(S);

- a uniquely determined group Aut(S) of automorphisms of the universal
minimal dynamical system for S.

Since we shall make frequent references to free, Cohen, and semi-Cohen Boolean
algebras, let us present related definitions and notions at this point.

For an infinite cardinal κ, C(κ) denotes one of the basic types of complete
Boolean algebras, namely the completion of the free algebra with κ generators.
A Boolean algebra B is a regular subalgebra of a Boolean algebra A if every subset
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of B that has a join in B has the same join in A, or, equivalently, if every maximal
antichain in B (i.e. a maximal pairwise disjoint family of non-zero elements of B) is
a maximal antichain in A. For a set X, [X]ω denotes the set of all countable subsets
of X. Y ⊆ [X]ω is closed unbounded (or club for short) if (a) for any x ∈ [X]ω there
is y ∈ Y such that x ⊆ y and (b) Y is closed under unions of chains of countable
length. The notion of semi-Cohen algebra is due to S. Fuchino and T. Jech. In
[Ko1] Cohen algebra is defined in a similar way.

Definition 1.7. An infinite complete Boolean algebra B of uniform density is called
semi-Cohen if the set S = {A ∈ [B]ω : A is a regular subalgebra of B} contains
a club. It is called a Cohen algebra if the set S contains a club C with the property
that if A1,A2 ∈ C, then the subalgebra of B generated by A1 ∪ A2 and denoted by
〈A1 ∪ A2〉 is also in C.

See Proposition 6.1 for the mutual relationship of free, semi-Cohen, and Cohen
algebras. For more on semi-Cohen and Cohen algebras see [BJZ].

Among other results concerning the structural properties of the Boolean algebra
B(S) associated with a discrete semigroup S we prove that:

- B(S) is isomorphic to B(I) for any left ideal I of S (Theorem 3.5);
- B(S) is weakly π-homogeneous (Proposition 5.1);
- B(S) is either atomic or atomless (Proposition 5.4);
- B(S) is weakly homogeneous if S has a minimal left ideal (Theorem 5.7);
- an infinite B(S) is homogeneous if S is left cancellative (Theorem 5.7);
- if a countable S is left cancellative, or has a minimal left ideal, or is com-

mutative, then B(S) is either atomic or a Cohen algebra (Theorem 6.2);
- if S is countable, then the algebra B(S) is either P(X) for some at most

countable set X or a semi-Cohen algebra completely embeddable in a Cohen
algebra (Theorem 6.6);

- if B(S) is atomic, then Aut(S) is finite (Proposition 8.3).

It is well known [HS] that semigroups have group reflections, i.e. that for any
semigroup S there are a group G(S) and a homomorphism ϕ : S → G(S) so that
if H is an arbitrary group and φ : S → H a homomorphism, then there exists
a unique homomorphism ξ : G(S) → H so that ξ◦ϕ = φ. It follows that G(S)
is generated by ϕ[S] and is also unique (up to isomorphism). In [L] an explicit
construction of the group reflection G(S) of a commutative monoid S is given
and is called the Grothendieck group for S. In general if G(S) is a reflection of
S, then the universal minimal dynamical system for S and the universal minimal
dynamical system for G(S) need not necessarily be the same; e.g. if S is a left
zero semigroup, then its reflection G(S) is a trivial group. On the other hand (see
Example 4.8), B(S) ∼= P(S). We shall show, though, that for the class of what we
call group-like semigroups (see section 7) that includes commutative semigroups,
inverse semigroups, and right groups, the group G(S) reflecting such an S can
be obtained via its universal minimal dynamical system and, moreover, that the
universal minimal dynamical system for S is the same as the universal minimal
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dynamical system for G(S).

We would like to turn the reader’s attention to a few basic open problems:

- It is known that if S is a group, then it acts effectively on its universal minimal
dynamical system (M,S, π), i.e. that the congruence ρ(S) = idS , or equivalently,
that π(s) 6= π(t) whenever s 6= t ∈ S. This is also true for instance for left zero
semigroups. Is there a relatively simple characterization of semigroups that act
effectively on their universal minimal dynamical systems?

- We show (see 5.7) that for several classes of semigroups, B(S) is weakly homo-
geneous for such an S. We conjecture that this is true for all semigroups.

- For a countable S, B(S) is a complete subalgebra of the Cohen algebra C(2ω).
Thus, under CH, B(S) is either isomorphic to a power set of a countable set,
or the Cohen algebra C(κ) for some κ 6 2ω (Corollary 6.7). We conjecture
that this holds true without any set-theoretical assumptions. Let us remark
that the problem whether a complete subalgebra of a Cohen algebra is again a
Cohen algebra had been open for years. Recently Koppelberg and Shelah [KS]
constructed a complete subalgebra of C(ω2) that is not Cohen.
We are indebted to the referee of this paper for bringing to our attention an

intersting paper [HiS] where a few somehow similar results stated for commutative
discrete semigroups are presented. In particular, the result of Proposition 8.1 can
be found there (Theorem 3 in [HiS]). Though stated for commutative semigroups,
the proof goes along the same lines as our proof using Froĺık’s theorem. The fact
(stated for general semigroups here in Theorem 3.3) that M(S) must be extremally
disconnected for a commutative semigroup S is also presented in [HiS].

2. Preliminaries

Let us recall basic notions and facts from the theory of semigroups, topological
spaces, and Boolean algebras.

(a) Semigroups.

For an overview of the theory of semigroups see [CP]. Let S = (S, ·) be a semi-
group.
An element x ∈ S is an idempotent if x·x = x. Id(S) denotes the set of all
idempotents of S. An element x ∈ S is a left (right) zero if x·y = x (y·x = x) for
every y ∈ S. Elements x, y ∈ S are said to be inverse if x = x·y·x and y = y·x·y.
S is called an inverse semigroup if every x ∈ S has a unique inverse element. S
is called a left (right) zero semigroup if each element of S is a left (right) zero.
S is called left (right) cancellative if a·x = a·y (x·a = y·a) implies x = y for any
a, x, y ∈ S. A non-empty subset I of S is a left (right) ideal of S if S·I ⊆ I (I·S ⊆ I).
S is called left (right) simple if it has no proper left (right) ideal. S is called a left
(right) group if it is left (right) simple and right (left) cancellative. For s ∈ S, the
mapping Ls : S → S defined by Ls(t) = s·t is called left translation of s (sometimes
denoted also as ls), and the mapping Rs : S → S defined by Rs(t) = t·s is called
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right translation of s (sometimes denoted also as rs).

The following structural theorem for semigroups can be found in [CP].

Theorem 2.1. For a semigroup S, the following are equivalent:

(1) S is left simple and has an idempotent;
(2) S is a left group, i.e. S is left simple and right cancellative;
(3) S is a direct product G× E of a group G and a left zero semigroup E.

Note that (3) in fact says the following: S is a disjoint union of mutually isomor-
phic groups {G(e) : e ∈ Id(S)}, where Id(S) is the set of all idempotents of S. For
each e ∈ Id(S), e is the identity of G(e). Let e1, e2 ∈ Id(S). Every y ∈ G(e2) has
a unique element y′ ∈ G(e1) ”corresponding” to y in the sense that if x ∈ G(e1),
then x·y = x·y′. In particular e1·e2 = e1. Thus, G(e1)·G(e2) = G(e1). We shall
call the groups G(e)’s the partition groups of S.

(b) One-sided topological semigroups.

A semigroup S = (S, ·) together with a topology τ on the set S is a right-
topological compact semigroup if τ is a compact Hausdorff topology on S and for
every t ∈ S, the right translation Rt is continuous.

A well-known and important fact (see [E], [G], [F], [A], [deV]) is

Theorem 2.2 (Numakura). A right-topological compact semigroup has an idem-
potent.

Consider a right-topological compact semigroup S and a left ideal I of S. For
any t ∈ I, S·t ⊆ I and, moreover, S·t is a topologically closed ideal of S. There-
fore, by Zorn’s principle, there is a minimal left ideal of S and every such ideal is
topologically closed.

Let M be a minimal left ideal of S. It follows that (M, ·) is a right-topological
compact semigroup, and therefore it has an idempotent. Consequently, it has the
algebraic structure as described in Theorem 2.1. Moreover, if M1 and M2 are two
distinct minimal left ideals of S, then they are necessarily disjoint and for every
idempotent e ∈ M1, Re�M2 : M2 → M1 is a homeomorphism. Furthermore, for
any e ∈ Id(M1) there exists a unique j ∈ M2 so that e·j = j and j·e = e.

(c) Topological spaces.

For an overview of general topology see [En], for the topology concerning Boolean
spaces see [BS]. A topological space for us is a Hausdorff space. Recall that a
space is extremally disconnected if the closure of every open set is again open, and
therefore clopen. It follows that every extremally disconnected compact space is
zero-dimensional as it hase a base that consists of clopen sets. In an extremally
disconnected compact space X regular open and clopen subsets of X are the same,
so the field of clopen subsets of X, CO(X), is a complete Boolean algebra as it is
equal to the complete Boolean algebra of all regular open subsets of X, RO(X).
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A mapping f from a space X into a space Y is open if f [U ] is open for any open
U ⊆ X, and is semiopen if f [U ] has a non-empty interior for a any non-empty open
U ⊆ X. A continuous mapping f : X → X is a retraction on X if f◦f = f . A
subspace Y of X is a retract of X if it is the range of some retraction on X.

The following proposition is well known.

Proposition 2.3. A retract of an extremally disconnected Hausdorff space X is a
closed extremally disconnected Hausdorff subspace of X.

(d) Boolean algebras and topological duality.

For an overview of the theory of Boolean algebras see [H]. A Boolean algebra
B is homogeneous if, given u, v ∈ B−{O, I}, there is an automorphism of B which
takes u to v. B is called weakly homogeneous if, given u, v ∈ B−{O}, there is an
automorphism h of B such that h(u) ∧ v 6= O. Let us remark that an infinite
Boolean algebra B is homogeneous iff B ∼= B�u for any u ∈ B−{O}, where
B�u = {u ∧ v : v ∈ B}.

The next one is a fundamental and deep result due to Koppelberg [Ko] and
Solovay (unpublished), independently. The proof following Solovay’s approach can
be found in [H], pp 687–693.

Theorem 2.4 (Koppelberg-Solovay). A complete Boolean algebra B is weakly
homogeneous iff there are a homogeneous complete Boolean algebra A and an

index set I such that B ∼=
∏

i∈I

A.

We shall call a zero-dimensional compact topological space a Boolean space,
because these spaces are exactly Stone spaces of Boolean algebras. It is well known
that a compact space is extremally disconnected iff it is the Stone space of a
complete Boolean algebra.

Proposition 2.5. Let X,Y be Boolean spaces, A = CO(X), B = CO(Y ),
f : X → Y a continuous mapping and h : B → A the homomorphism dual
to f . Then

(1) f is semiopen iff h is regular, i.e. whenever b =
∨

i∈I

bi in B, then h(b) =

∨

i∈I

h(bi) in A, and hence h[B] is a regular subalgebra of A.

(2) f is open iff h has the following property: for every a ∈ A there is the
least m(a) ∈ B such that h(m(a)) ≥ a.
In general m(a ∨ b) = m(a) ∨ m(b) and m(a ∧ b) 6 m(a) ∧ m(b) for any
a, b ∈ A.
If in additon f is one-to-one (or, equivalently, if h is onto), then m(a∧b) =
m(a) ∧m(b) for any a, b ∈ A.

(3) If f is semiopen and Y is extremally disconnected, then f is open.
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(4) If f is open and onto, then Y is extremally disconnected whenever X is
extremally disconnected.

Corollary 2.6. Let X be an extremally disconnected Boolean space and let A =
CO(X). Then a continuous f : X → X is open iff the dual homomorphism
h : A → A is a complete homomorphism.

If B is a Boolean algebra and {hs : s ∈ S} a system of autohomomorphisms of B
such that hs◦ht = ht·s, then (B, {hs : s ∈ S}) form a Boolean dynamical system.
The system is minimal iff for any u ∈ B−{OB} there are a positive integer n

and s0, ..., sn ∈ S so that IB =
∨

i6n

hsi
(u). It is a straightforward application of

topological duality of Boolean algebras to see that if (X,S) a minimal dynamical
system withX a Boolean space, then (CO(X), {hs : s ∈ S}), where hs(A) = s−1[A]
for every A ∈ CO(X), is a Boolean minimal dynamical system.

On the other hand if (B, {hs : s ∈ S}) is a Boolean minimal dynamical system,
then (Ul(B), {fs : s ∈ S}), where Ul(B) is the Stone space of B, i.e. the space of all
ultrafilters on B with the usual topology, and where fs(p) = {b ∈ B : hs(b) ∈ p} for
every p ∈ Ul(B), is a minimal dynamical system. It follows that if (B, {hs : s ∈ S})
is a Boolean version of a universal minimal dynamical system and (A, {gs : s ∈ S})
is a Boolean minimal dynamical system, then there exists an embedding φ : A → B
that commutes with the homomorphisms hs’s and gs’s.

3. The complete Boolean algebras associated with semigroups

We shall associate with every semigroup S a complete Boolean algebra B(S),
using the phase space M(S) of the universal minimal dynamical system for S. By
the definition B(S) is a Boolean algebra isomorphic to the algebra of clopen subsets
of M(S). First we present fundamental theorems concerning universal minimal
dynamical systems. Their proofs will be presented during the description of the
ultrafilter dynamical system later in this section.

Theorem 3.1. (Ellis) For every semigroup S, there is a unique (up to isomor-
phism) universal minimal dynamical system (M(S), S, πS).

Remark 3.2. Let (M,S, π) be a universal minimal dynamical system for S. In
section 1 we introduced the congruence ρ(S) on S defined by (s, t) ∈ ρ(S) if π(s) =
π(t), s, t ∈ S. The definition is sound, for if (M1, S, π1) is a universal minimal
dynamical system for S, by Theorem 3.1 there is an isomorphism φ : (M,S, π) →
(M1, S, π1). Then φ(π(s)(x)) = π1(s)(φ(x)) for any x ∈ M . Hence if π(s) = π(t),
then φ(π(s)(x)) = φ(π(t)(x)), and so π1(s)(φ(x)) = π1(t)(φ(x)). It follows that
π1(s) = π1(t).

Theorem 3.3. For any semigroup S, M(S) is an extremally disconnected compact
space, and for any s ∈ S, πS(s) : M(S) → M(S) is an open mapping.
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Let us remark, that when S is a group, then S acts in any dynamical system
via homeomorphisms, and hence open mappings. For semigroups this is no longer
true in general. We now present examples of semigroups and minimal dynamical
systems in which the semigroups act via mappings that are not open.

Example 3.4 (i) Consider I, the closed unit interval of real numbers, and let
{an : n ∈ ω} be a dense subset of I. For each n ∈ ω, let fn : I → {an}. This forms
a minimal dynamical system for any countable left zero semigroup.

(ii) Consider (X,Emb(X)) for an infinite extremally disconnected compact space
X, where Emb(X) is the semigroup of all continuous embeddings of X into itself.
On the one hand, it is shown in [BD] that (X,Emb(X)) is minimal iff X is
homogeneous in weight. On the other hand, it is proven in [BF] (can also be
found in [H]), that every infinite extremally disconnected compact space X can
be embedded onto a nowhere-dense subset of X, hence in light of Theorem 3.3,
(X,Emb(X)) can never be universal.

Theorem 3.5. For any semigroup S and left ideal I of S, M(S) = M(I). More
precisely

(1) If (M,S, π) is a universal minimal dynamical system for S, then (M, I, π�I)
is a universal minimal dynamical system for I.

(2) If (M, I, π) is a universal minimal dynamical system for I, then π : I →
C(M,M) can be extended to π̂ : S → C(M,M) so that (M,S, π̂) is a
universal minimal dynamical system for S.

In the proofs of Theorems 3.1 and 3.3 we follow Ellis’ way and use extensively
what we call ultrafilter dynamical system [E], [G], [Hi].

(a) Ultrafilter dynamical system.

Let S = (S, ·) be a semigroup. Let us recall that βS, the Stone-Čech compacti-
fication of the discrete set S, is the Stone space of the complete Boolean algebra of
all subsets of S, P(S). As usual we consider the elements of βS to be ultrafilters
over S and the topology is given by the base consisting of clopen sets of the form
A∗ = {p ∈ βS : A ∈ p}, A ⊆ S. We identify the principal ultrafilter determined by
an element s ∈ S with this element, therefore the discrete space S is a dense subset
of the space βS.
βS is a compact Hausdorff space and S = (S, ·) acts on βS in a natural way:

for a given s ∈ S, the left translation ls : S → S has a unique continuous extension
Ls : βS → βS. It follows that Ls·t = Ls◦Lt, for any s, t ∈ S, therefore (βS, S, πu),
where πu(s) = Ls for any s ∈ S, is a dynamical system for S. We call it the
ultrafilter dynamical system for S.

Since the action of S on βS is now fixed, according to our convention we use
(βS, S) to denote the system, and s(p) instead of πu(s)(p), for any s ∈ S and
p ∈ βS. Note that in combinatorial terms, s(p) = {A ⊆ S : l−1

s [A] ∈ p}, for s ∈ S
and p ∈ βS.
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Fact 3.6. (βS, S) is a dynamical system with an extremally disconnected phase
space and in which S acts via open mappings. For s[A∗] = (s·A)∗ for any A ⊆ S.

(b) The universal minimal dynamical system.

We know from Proposition 1.3 that there exists a minimal S-invariant closed
subsetM of βS, and thus, (M,S) is a minimal dynamical system that is a subsystem
of (βS, S).

Proposition 3.7. If (M,S) is a minimal dynamical subsystem of (βS, S), then
(M,S) is a universal minimal dynamical system for S.

Proof. Consider an arbitrary minimal dynamical system (X,S). It suffices to find
a homomorphism φ from (βS, S) into (X,S), because φ�M will be a homomorphism
from (M,S) onto (X,S) by Lemma 1.5.

Fix an x ∈ X and define ϕ : S → Orb(x) by ϕ(s) = s(x). There exists a
unique continuous extension φ : βS → X = cl(Orb(x)) of ϕ. It is the desired
homomorphism from (βS, S) onto (X,S). �

(c) Ultrafilter systems and right-topological semigroups.

As mentioned above, S is a dense subset of βS. The operation · on S can be
extended on the whole βS. Namely, for p, q ∈ βS we define p·q = p−lim〈s(q) : s ∈
S〉; it means that for any neighborhood V of the point p·q in βS, the set {s ∈ S :
s(q) ∈ V } is in the ultrafilter p. Given the fact that the topology of βS is given by
a base that consists of clopen sets A∗, A ⊆ S, it follows that in combinatorial terms
p·q = {A ⊆ S : {s ∈ S : s(q) ∈ A∗} ∈ p} = {A ⊆ S : {s ∈ S : l−1

s [A] ∈ q} ∈ p}.

It is easy to verify that · is an associative binary operation on βS extending the
operation · on S. The extension · has the property that for any r ∈ βS, Rr : βS →
βS is continuous, i.e. that (βS, ·) is a right-topological compact semigroup. As
far as the left translations are concerned, for any s ∈ S, Ls is also a continuous
function on βS, but generally for p ∈ βS, Lp need not be continuous. According
to paragraph (b), section 2, there is a minimal left ideal of (βS, ·) and as such it is
both topologically closed and an S-invariant subset of βS. It follows that minimal
left ideals of (βS, ·) are exactly minimal closed S-invariant subsets of βS. Thus,
minimal left ideals of (βS, ·) are exactly phase spaces of minimal ultrafilter systems
for S. Consequently, for every minimal ultrafilter system (M,S), (M, ·) is a right-
topological compact semigroup with an idempotent, and so M is a disjoint union
of partitions groups as described in paragraph (b), section 2.

Lemma 3.8. Let (M,S) be a minimal subsystem of the ultrafilter system for S.
Then

(1) for every e ∈ Id(M), Re is a retraction on βS and its range is M ;
(2) for every p ∈ M , Rp�M is an automorphism of (M,S);
(3) every autohomomorphism of (M,S) is of the form Rp�M for some p ∈ M ,

and hence an automorphism.
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Proof. (1) Fix e ∈ Id(M). Let p ∈ βS. Then (Re◦Re)(p) = Re(Re(p)) =
Re(p·e) = (p·e)·e = p·(e·e) = p·e = Re(p). Thus, Re is a retraction on βS. Since
M is a minimal left ideal of (βS, ·), M = βS·q for any q ∈ M , in particular
M = βS·e = Re[βS]. Therefore M is a retract and Re�M = idM .
(2) Fix p ∈ M . Rp is a homomorphism from (βS, S) into (M,S) because
Rp(s(q)) = (s·q)·p = s·(q·p) = s(Rp(q)). It follows that Rp�M is a homo-
morphism from M onto M by Lemma 1.5. That Rp is one-to-one follows from the
right cancellativness of M (by Theorem 2.1 (2)).
(3) Let φ : M → M be a homomorphism. Fix an e ∈ Id(M). We shall show that
φ = Rφ(e)�M . (φ◦Re) is a homomorphism from (βS, S) onto (M,S), and so for
any s ∈ S (φ◦Re)(s) = φ(s·e) = s·φ(e) = Rφ(e)(s). Since S is dense in βS,
φ◦Re = Rφ(e) on the whole βS. Consequently, (φ◦Re)�M = φ = Rφ(e)�M . �

Fact 3.9. For any e ∈ Id(M(S)), the partition group e·M(S) is isomorphic to
Aut(S), the group of automorphisms of (M(S), S). For by Lemma 3.8 (3), if φ is
an automorphism of (M(S), S), then there is p ∈ M(S) so that φ = Rp�M(S).
If p /∈ e·M(S), then there is p′ ∈ e·M “corresponding” to p (see the note after
Theorem 2.1) so that Rp = Rp′ .

At this point we can present proofs of Theorem 3.1, Theorem 3.3, and Theo-
rem 3.5.

Proof of Theorem 3.1 If (M1, S) and (M2, S) are two minimal dynamical sub-
systems of the ultrafilter dynamical system for S, then they are isomorphic. For
if e ∈ Id(M1), then Re�M2 is an isomorphism from (M2, S) onto (M1, S). There-
fore, it suffices to show that any universal minimal dynamical system (X,S, π) is
isomorphic to a minimal subsystems of the ultrafilter system for S.

Let (X,S, π) be a universal minimal dynamical system, and let (M,S, πu) be a
minimal subsystem of the ultrafilter system. Hence there is a homomorphism φ from
(X,S, π) onto (M,S, πu) and a homomorphism ξ : (M,S, πu) → (X,S, π). Thus,
φ◦ξ is an autohomomorphism of (M,S, πu) and by Lemma 3.8 it is an automorphism
of (M,S, πu). It follows that both φ and ξ are isomorphisms. �

Proof of Theorem 3.3. Consider a universal minimal dynamical system
(M,S) as a subsystem of the ultrafilter dynamical system. Choose an arbitrary
e ∈ Id(M) and consider Re. By Lemma 3.8 (1), Re is a retraction on βS with the
range M , i.e. M is a retract of an extremally disconnected compact Hausdorff space
βS. By Proposition 2.3, M is also an extremally disconnected compact Hausdorff
space.

To prove that s : M → M is open, we have to first prove the following claim.

Claim: Let R : X → X be a retraction of an extremally disconnected Hausdorff
space X, and let Y be its range. Let f : X → X be a continuous open mapping
so that R and f commute, i.e. R◦f = f◦R. Then f�Y is an open continuous
mapping from Y into Y .
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Proof of Claim. Let W be an open subset of Y . Then V = R−1[W ] is an open
subset of X, and V ∩ Y = W since R is a retraction on X with the range Y ,
which makes R�Y = idY . Since f [Y ] ⊆ Y we have f [W ] = f [V ∩Y ] ⊆ f [V ]∩Y .
On the other hand, f [V ]∩Y ⊆ f [W ], for if y ∈ f [V ]∩Y , then there is an x ∈ V
so that f(x) = y, and y = R(f(x)) = f(R(x)). As R(x) ∈ W , it follows that
y ∈ f [W ].
Thus, f [W ] = f [V ] ∩ Y . Since f is open, f [V ] is an open subset of X, making
f [W ] an open subset of Y . This completes the proof of Claim.

Due to associativity of the multiplication of ultrafilters, we have that for any s ∈ S,
Re◦s = s◦Re. By Fact 3.6, s is an open mapping from βS into βS, and thus, by
Claim, s�M is an open mapping from M into M . �

Example 3.10. Let S = (S, ·) be a semigroup with a left zero z. Let A = S·z.
Then S·A = A and therefore A is a left ideal of S. A is also the set of all left zeros
of S and (A, ·) a left zero semigroup. According to Theorem 3.5, B(S) ∼= B(A).
Nonetheless, for this example this fact can be observed directly:
Every S-invariant subset of βS includes A∗. Thus, βA is a minimal closed S-
invariant subset of βS, i.e. (βA, S) is a universal minimal dynamical system for S.
In particular:
Let A be a non-empty set, and let S = (AA, ◦) be the semigroup of all functions
from A into itself with the operation of composition. (βA, S) is a universal minimal
dynamical system for S, as the set of all constant functions on A is the set of all
left zeros of S.

Proof of Theorem 3.5. (1) If p ∈ βI, then p̂ = {A ⊆ S : (∃B ∈ p)(B ⊆ A)}
is a uniquely determined ultrafilter over S. As usual we identify p and p̂, and in
this sense βI ⊆ βS. Moreover, (βI, ·) is a subsemigroup of (βS, ·). Since S·I ⊆ I,
it follows that S·βI ⊆ βI, i.e. βI is a closed S-invariant subset of βS. Thus,
there is M1, a minimal non-empty closed S-invariant subset of βI. It follows from
Proposition 3.7 that (M1, S, πu) is a universal minimal dynamical system for S, and
so M1 = βS·p for any p ∈ M1. M1 = βS·p ⊇ βI·p ⊇ M1·p = M1 for any p ∈ M1.
Since M1 is S-invariant, it must also be I-invariant. Let M2 be a minimal non-
empty closed I-invariant subset of M1. Then (M2, I, πu�I) is a universal minimal
dynamical system for I by Proposition 3.7, and so M2 = βI·p for any p ∈ M2.
Thus, M2 = βI·p ⊇ M1·p = M1 for p ∈ M2 ⊆ M1, and so M1 = M2. It follows
that (M1, I, πu�I) is a universal minimal dynamical system for I.
(2) According to the proof of part (1), consider the universal minimal dynamical
system (M1, S, πu) for S so that M1 ⊆ βI. Then (M1, I, πu�I) is a universal
minimal dynamical system for I. Thus there is an isomorphism φ : (M, I, π) →
(M1, I, πu�I).
For s ∈ S and x ∈ M define π̂(s)(x) = φ−1(πu(s)(φ(x))). Then π̂(s) : M → M is
a continuous open mapping. It follows that π̂(s·t) = π̂(s)◦π̂(t) and so (M,S, π̂) is
a dynamical system. Since φ(π̂(s)(x)) = φ(φ−1(πu(s)(φ(x)))) = πu(s)(φ(x)) for
any s ∈ S and any x ∈ M , φ is an isomorphism from (M,S, π̂) onto (M1, S, πu).
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Thus (M,S, π̂) is a universal minimal dynamical system for S. �

Remark 3.11. Let S = (S, ·) be a semigroup without the identity. Define S1 =
S ∪{1} and define 1·s = s·1 = s for any s ∈ S. Then (S1, ·) is a monoid. S is a left
ideal of S1, and so by Theorem 3.5, if (M,S1, π) is a universal minimal dynamical
system for S1, then (M,S, π�S) is a universal minimal dynamical system for S.
Thus we can restrict our investigation to universal minimal dynamical systems for
monoids rather than semigroups.

4. Syndetic algebras of sets

In this section we shall deal with a certain family of Boolean algebras for a given
semigroup (S, ·). The family has the property that for any minimal dynamical
system (X,S) with a Boolean phase space the algebra CO(X) is isomorphic to a
member of this family, and vice versa. All algebras in the family are subalgebras
of P(S), i.e. they are fields of sets. Our aim is to characterize B(S) as such an
algebra to give us a more explicit description of B(S).

Definition 4.1. A set A is called S-syndetic if A ⊆ S and there are an integer

n ≥ 0 and s0, ..., sn ∈ S so that S =
⋃

i6n

l−1
si

[A].

Note that if S is a group, the syndetic property reduces to covering S by finitely

many translations, i.e.
⋃

i6n

si·A = S.

It is obvious that the class of all S-syndetic sets is closed under superset operation
(and hence under union), and also under left translations from S, i.e. for every s ∈ S
and every S-syndetic set A, ls[A] = s·A is again S-syndetic. However, this may not
be true for l−1

s [A].

Definiton 4.2. Let (X,S, π) be a dynamical system and let x ∈ X and U ⊆ X.
Then the set of returns of x to U is defined by Ret(x, U) = {s ∈ S : π(s)(x) ∈ U}.

Lemma 4.3. Let (X,S, π) be a dynamical system. Then

(1) For any open U ⊆ X and any x ∈ X, l−1
s [Ret(x, U)] = Ret(x, π(s)−1[U ]).

(2) (X,S, π) is minimal iff for any non-empty open U ⊆ X and any x ∈ X,
Ret(x, U) is an S-syndetic set.

Proof. (1) l−1
s [Ret(x, U)] = {t ∈ S : s·t ∈ Ret(x, U)} = {t ∈ S : π(s·t)(x) ∈

U} = {t ∈ S : π(s)(π(t)(x)) ∈ U} = {t ∈ S : π(t)(x) ∈ π(s)−1[U ]} =
Ret(x, π(s)−1[U ]).

(2) In accordance with our convention we shall drop the reference to π for this part
of the proof. Assume that (X,S) is minimal. Let U be a non-empty open subset of

X. Then
⋃

s∈S

s−1[U ] = X. Due to compactness of X there are finitely many s0, ...,
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sn ∈ S so that
⋃

i6n

s−1
i [U ] = X. So for any x ∈ X we have

⋃

i6n

l−1
si

[Ret(x, U)] = S,

i.e. Ret(x, U) is S-syndetic.
On the other hand fix an x ∈ X and an open non-empty U ⊆ X. As Ret(x, U)

is S-syndetic, there are s0, ..., sn ∈ S so that
⋃

i6n

l−1
si

[Ret(x, U)] = S, so S =

Ret(x,
⋃

i6n

s−1
i [U ]) = Ret(x,

⋃

s∈S

s−1[U ]). Thus, for any x ∈ X and any non-empty

open U ⊆ X,
⋃

x∈X

Orb(x) ⊆
⋃

s∈S

s−1[U ]. If X 6=
⋃

s∈S

s−1[U ], then Y = X−
⋃

s∈S

s−1[U ]

is a non-empty closed S-invariant subset of X and so Orb(y) ∩
⋃

s∈S

s−1[U ] = ∅ for

any y ∈ Y , a contradiction. Thus, X =
⋃

s∈S

s−1[U ] for any open non-empty U ⊆ X,

and so (X,S) is minimal. �

The above observations motivate the following definition.

Definition 4.4. An algebra A of subsets of S is called S-syndetic if every
A ∈ A−{∅} is S-syndetic, and if for every s ∈ S and every A ∈ A, l−1

s [A] ∈ A.

The set of all S-syndetic algebras is ordered by inclusion, therefore, by Zorn’s
principle, there always exist maximal ones. They play an important rôle in our
investigation of universal minimal dynamical systems.

Theorem 4.5. For a semigroup S, B(S) is isomorphic to a maximal S-syndetic
algebra. In particular, for any q ∈ M(S), B(S) ∼= {Ret(q, U) : U ∈ CO(M(S))}.
If S has an identity element, then every maximal S-syndetic algebra is isomorphic
to B(S) and thus a complete Boolean algebra.

Proof. Consider the universal minimal dynamical system (M,S) as a subsystem
of (βS, S).

Fix a q ∈ M . According to Lemma 3.8, Rq : (βS, S) → (M,S) is a homomor-
phism onto (M,S). Then ρq : CO(M) → P(S) defined by ρq(A

∗∩M) = {s ∈ S :
l−1
s [A] ∈ q} = Ret(βS,S)(q,A

∗) = Ret(M,S)(q,A
∗∩M) for any A ⊆ S is a Boolean

homomorphism dual to Rq, and thus an embedding. It follows that CO(M) ∼=
rng(ρq), where rng(ρq) denotes the range of ρq. From Lemma 4.3 it follows that
not only ρq(A

∗∩M) is an empty or S-syndetic set, but also l−1
s [ρq(A

∗∩M)] =
l−1
s [Ret(q,A∗∩M)] = Ret(q, s−1[A∗∩M)] = ρq(s

−1[A∗∩M ]) ∈ rng(ρq). Thus,
rng(ρq) is an S-syndetic algebra.

It remains to show that A = rng(ρq) is a maximal S-syndetic algebra. Consider
an S-syndetic algebra B ⊇ A. For any s ∈ S, let hs : P(S) → P(S) be the Boolean
homomorphism defined by hs(A) = l−1

s [A] for any A ⊆ S. The Boolean dynamical
system (B, {hs�B : s ∈ S}) is minimal and (A, {hs�A : s ∈ S}) is universal minimal,
and idA is a homomorphism from (A, {hs�A : s ∈ S}) into (B, {hs�B : s ∈ S}).
From Lemma 3.8 it follows that idA is an isomorphism, giving A = B.
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In summary, whenever q ∈ M , then B(S) ∼= rng(ρq) = {Ret(q, U) : U ∈
CO(M)} that is a maximal S-syndetic algebra.

For the second part of the proof we assume that S has the identity element
j. Consider a maximal S-syndetic algebra A. We shall find a q ∈ M so that
A = {Ret(q, U) : U ∈ CO(M)}.
(Ult(A), {fs : s ∈ S}) is a minimal dynamical system, where Ult(A) is the Stone
space of the Boolean algebra A and for each s ∈ S, fs is the mapping dual to
hs�A. As such it is a factor of (M,S), i.e. there is a homomorphism φ : (M,S) →
(Ult(A), S) that is onto. Consider the ultrafilter p ∈ Ult(A) defined by p =

{A ∈ A : j ∈ A}. There is some q ∈ M so that φ(q) = p. If A ∈ A, let Â denote
the set {p ∈ Ult(A) : A ∈ p}. Since φ(s(q)) = fs(φ(q)) = fs(p), it follows that

Ret(p, Â) = Ret(q, φ−1[Â]). Due to the selection of p we have for any A ∈ A

Ret(p, Â) = {s ∈ S : fs(p) ∈ Â} = {s ∈ S : A ∈ fs(p)} = {s ∈ S : l−1
s [A] ∈ p} =

{s ∈ S : j ∈ l−1
s [A]} = {s ∈ S : s·j ∈ A} = {s ∈ S : s ∈ A} = A. Thus, A =

{Ret(p, Â) : A ∈ A} = {Ret(q, φ−1[Â]) : A ∈ A} ⊆ {Ret(q, U) : U ∈ CO(M)},

as φ−1[Â] is a clopen subset of M . From maximality of A it follows that A =
{Ret(q, U) : U ∈ CO(M)}. �

Proposition 4.6. Let (M,S) be a universal minimal dynamical system for a
monoid S that is a subsystem of the ultrafilter dynamical system (βS, S). Then
there are at most as many distinct maximal S-syndetic algebras as there are idem-
potent ultrafilters in M .

Proof. We showed in section 3, paragraph (c) thatM =
⋃

e∈Id(M)

e·M , and each e·M

is a group and e is its identity. Consider p ∈ e·M for an e ∈ Id(M). Rp : M → M
is an automorphism of (M,S) and Rp(e) = p. Take any Ret(p, U) for some
U ∈ CO(M). Since e is an idempotent of M , Ret(e,R−1

p [U ]) = {s ∈ S : s(e) ∈

R−1
p [U ]} = {s ∈ S : Rp(s(e)) ∈ U} = {s ∈ S : s

(
Rp(e)

)
∈ U} = Ret(p, U).

By Theorem 4.5, for a given maximal S-syndetic algebra A there is q ∈ M so that
A = {Ret(q, U) : U ∈ CO(M)} = {Ret(e, U) : U ∈ CO(M)}, where e is the
unique idempotent of M so that q ∈ e·M . It follows that there are at most as many
distinct maximal S-syndetic algebras as there are idempotents in M . �

Remark 4.7. On the one hand, if A is an S-syndetic algebra, (Ult(A), S) is a
minimal dynamical system. On the other hand, if (X,S) is a minimal dynamical
system and X is a Boolean space, then CO(X) can be embedded into a maximal S-
syndetic algebra and hence CO(X) is isomorphic to an S-syndetic algebra. In this
sense, S-syndetic algebras represent all minimal dynamical systems with Boolean
phase spaces.

Example 4.8. Let S be a left zero semigroup. Then P(S) is the only maximal
S-syndetic algebra, and so B(S) ∼= P(S). Let S be in addition countable. Then,
as in Example 3.4 (i), we can obtain a minimal dynamical system (2ω, S) since
2ω has a dense countable subset. For any x ∈ 2ω, {Ret(x, U) : U ∈ CO(2ω)}
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is an S-syndetic algebra. Since it is isomorphic with CO(2ω), it is not a regular
subalgebra of P(S). This illustrates the fact that S-syndetic algebras do not have
to be ordered by regular inclusion.

For a description of structural properties of maximal S-syndetic algebras it is
important to know when an S-syndetic subalgebra of another S-syndetic algebra is
its regular subalgebra. The following lemma (known for groups - see [A]) describes
some of the conditions.

Lemma 4.9. Let (X,S) and (Y, S) be minimal dynamical systems for a semigroup
S. Let φ : (X,S) → (Y, S) be a homomorphism. If S acts on Y via semiopen
mappings, then φ itself must be semiopen.

Proof. Take a non-empty open U ⊆ X. Take a non-empty open V so that
cl(V ) ⊆ U , it is possible as X is regular. Due to minimality of (X,S), there are s0,

...,sn ∈ S so that X =
⋃

i6n

s−1[cl(V )]. By Lemma 1.5 (1) φ must be onto Y , and

so Y = φ[X] = φ

[⋃

i6n

s−1
i [cl(V )]

]
=

⋃

i6n

φ[s−1
i [cl(V )]] ⊆

⋃

i6n

s−1
i [φ[cl(V )]] ⊆ Y as φ

is a homomorphism. Since φ[cl(V )] is closed, s−1
i [φ[cl(V )]] must have a non-empty

interior for some i 6 n. Since si is semiopen, φ[cl(V )] must have a non-empty
interior, and, consequently, φ[U ] must have a non-empty interior. �

Corollary 4.10. Let S be a group, and let A and B be S-syndetic algebras. When-
ever A ⊆ B, then A is a regular subalgebra of B.

In the following we shall deal with the relation of the associated Boolean alge-
bras for distinct semigroups utilizing the fact that in universal minimal dynamical
systems semigroups act via open mappings.

Proposition 4.11. Let S = (S, ·) and T = (T, ·) be semigroups. Let φ : (S, ·) →
(T, ·) be a (semigroup) homomorphism onto (T, ·). Let (M(S), S) and (M(T ), T )
be universal minimal dynamical systems for respective semigroups. Then there is
ξ : M(S) → M(T ), a continuous open mapping onto M(T ) satisfying ξ(s(p)) =
φ(s)(ξ(p)) for any s ∈ S and any p ∈ M(S).

Proof. Let φ∗ : βS → βT be the continuous extension of φ. Then φ∗ satisfies
φ∗(s·p) = φ(s)·φ∗(p) for any s ∈ S and any p ∈ βS.

Consider a universal minimal dynamical system (M(S), S) as a subsystem of the
ultrafilter dynamical system. Set M(T ) = φ∗[M(S)].

M(T ) is an T -invariant subset of βT , for if t ∈ T and p ∈ M(T ), then for some
s ∈ S and q ∈ M(S), φ(s) = t and φ∗(q) = p. It follows that t·p = φ(s)·φ∗(q) =
φ∗(s·q) ∈ M(T ).

T acts minimally on M(T ), for if p ∈ M(T ), then for some q ∈ M(S), φ∗(q) = p.
Hence Orb(M(T ),T )(p) = {t·p : t ∈ T} = {φ(s)·φ∗(q) : s ∈ S} =
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{φ∗(s·q) : s ∈ S} = φ∗[Orb(M(S),S)(q)]. Since (M(S), S) is minimal, Orb(M(S),S)(q)
is dense in M(S), and, consequently, Orb(M(T ),T )(p) is dense in M(T ).

(M(T ), T ) as a minimal dynamical subsystem of (βT, T ) must be universal for
T and so by Theorem 3.3 T acts on M(T ) via open mappings. By Lemma 4.9 the
mapping ξ = φ∗�M(S) is semiopen. As M(T ) is extremally disconnected, ξ must
be open. �

Corollary 4.12. If S and T are monoids, then every maximal T -syndetic algebra
is completely embeddable into any maximal S-syndetic algebra.

Remark 4.13. Recall the congruence of effectivness ρ(S). For s ∈ S, let [s] denote
the class of all elements of S in congruence ρ(S) with s. Let (M,S, π) be a universal
minimal dynamical system. Let S = S/ρ(S) and let π : S → C(M,M) be defined
by π[s] = [π(s)] for any [s] ∈ S. It is clear that (M,S, π) is a minimal dynamical
system for S and as such a factor of (M(S), S). On the other hand the canonical
homomorphism φ : S → S is onto, and thus, by Proposition 4.11, (M(S), S) is
a factor of (M,S, π). It follows that (M,S, π) is a universal minimal dynamical
system for S.
Moreover, if A is a maximal S-syndetic algebra, then if A ∈ A and a ∈ A, it follows
that [a] ⊆ A. For A = {Ret(q, U) : U ∈ CO(M)} by Theorem 4.5 for some q ∈ M .
Hence A = Ret(q, U) for some U ∈ CO(M). If a ∈ A, then π(a)(q) ∈ U . If b ∈ [a],
then π(b) = π(a) and so π(b)(q) ∈ U as well. Hence b ∈ Ret(q, U), i.e. b ∈ A.
Since any S-syndetic algebra is included in a maximal one, the elements of all
S-syndetic algebras are ”saturated” with respect to ρ(S).

5. Structural properties of B(S)

For any semigroup S we have an extremally disconnected Hausdorff space M(S)
with a system of open continuous selfmaps of M(S), or dually, a complete Boolean
algebra B(S) and a system {hs : s ∈ S} of complete autohomomorphisms of B(S).

It is natural to ask how the size of B(S) depends on S. In fact there is no simple
relationship. We saw (Example 4.8) that for a left zero semigroup S, |B(S)| =
|P(S)| and an example (3.10) of S for which |B(S)| = |S|. Later in this section we
shall present properties of semigroups for which B(S) is trivial, i.e. B(S) = {O, I}.
We shall also discuss when B(S) is atomic or atomless. We shall conclude the
section by showing that a commutative semigroup S acts in the universal minimal
dynamical system via homeomorphisms and that B(S) satisfies the c.c.c. It is
known that if G is a commutative group, then |B(G)| = 2|G| ([T], [CvM]). We
are able to show that the Cohen algebra C(2|G|) can be completely embedded into
B(G), provided G is infinite. It is an open problem how much B(G) differs from
C(2|G|) for an uncountable G. For countable G see section 6.

If F is an order preserving cardinal function on a Boolean algebra B, then B is
said to be F-homogeneous if F (B) = F (B�u) for any u ∈ B−{OB}, and weakly
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F-homogeneous if there is a partition {ui : i ∈ I} of IB such that each B�ui is
F -homogeneous and F (B�ui) = F (B�uj) for i, j ∈ I. π(B) = min{|H| : H ⊆
B−{OB} & H is dense in B}, so-called density of B.

Proposition 5.1. Let S be an infinite semigroup. Then

(1) B(S) satisfies the |S|+-c.c.;
(2) B(S) is weakly π-homogeneous.

Proof. (1) Follows from the fact that for any x ∈ M , Orb(x) is dense in M and
|Orb(x)| 6 |S|.
(2) Let B denote the algebra B(S). Since the cardinal function π is order pre-
serving, there is a partition P of IB such that B�u is π-homogeneous for any
u ∈ P . We want to show that π(B�u) = π(B�v) for any u, v ∈ P . As (M,S)
is minimal, there is an s ∈ S so that hs(u) ∧ v 6= OB . Consider g defined by
g(x) = hs(x) ∧ v, x ∈ B. Then g : B → B�v is a complete homomorphism. Set

u1 = u −
∨
Ker(g). Then OB < u1 6 u and g(u1) = g(u). Set v1 = g(u1).

Then OB 6= v1 6 v and g : B�u1 → B�v1 is a complete embedding. It follows that
π(B�u) = π(B�u1) 6 π(B�v1) = π(B�v). From the symmetry of the argument
we can conclude that π(B�u) = π(B�v). �

Fact 5.2. If S is a finite semigroup, then B(S) is finite and therefore atomic.

We will show that for an infinite S only two cases are possible; either B(S) is
atomic, i.e. M(S) has a dense set of isolated points, or B(S) is atomless, i.e. M(S)
has no isolated points. For s ∈ S we shall denote as Fix(s) the set of fixed-points
of the left translation ls, i.e. Fix(s) = {x ∈ S : s·x = x}. For an infinite group
G, Proposition 5.4 implies immediately that B(G) is atomless as Fix(g) = ∅ for
any g ∈ G− {1G}.

The next lemma is well known (see e.g. [CN],Theorem 9.2).

Lemma 5.3. Consider the ultrafilter dynamical system (βS, S). Let p ∈ βS. Then
s(p) = p iff Fix(s) ∈ p.

Proposition 5.4. Let S be a semigroup. Then the following are equivalent:

(1) M(S) has an isolated point;
(2) M(S) has a dense subset X of isolated points, and so M(S) is homeomor-

phic to βX;
(3) FA = {Fix(s) : s ∈ A} is centred for some S-syndetic A (i.e. every finite

set of elements of FA has a non-empty intersection).

Proof. (1) → (2). Let p be an isolated point of M(S). Then {p} is an open subset
of M(S). Since for every s ∈ S, s : M(S) → M(S) is open, then every point of the
orbit of p is isolated, and Orb(p) is dense in M(S) due to minimality of M(S).



UNIVERSAL MINIMAL DYNAMICAL SYSTEMS FOR SEMIGROUPS 19

(2) → (3). Consider (M(S), S) as a subsystem of (βS, S). Let p ∈ M(S) be an
isolated point. Set A = Ret(p, {p}) = {s ∈ S : s(p) = p}. If s ∈ A, then s(p) = p,
and so by Lemma 5.3, Fix(s) ∈ p. Thus, {Fix(s) : s ∈ A} is centred and A is
S-syndetic.

(3) → (1). Take an ultrafilter p ∈ βS that extends the centred family {Fix(s) : s ∈
A}. Let U be an open subset of βS containing p. Since A ⊆ Ret(p, U), Ret(p, U)
is S-syndetic, and thus p is an almost-periodic point in (βS, S). It follows that
M = cl(Orb(p)) is a minimal S-invariant closed subset of βS and p ∈ M (see [F]).

As A is S-syndetic, there are s0, ..., sn ∈ S so that S =
⋃

i6n

l−1
si

[A]. If s ∈ S, then

for some i 6 n, si·s ∈ A. It follows that (si·s)(p) = p, yielding s(p) ∈ s−1
i [{p}].

Consequently, Orb(p) ⊆
⋃

i6n

s−1
i [{p}], yielding M = cl(Orb(p)) ⊆

⋃

i6n

s−1
i [{p}]. For

some i 6 n, s−1
i [{p}] must have a non-empty interior. Since si is an open mapping,

{p} must be open, i.e. p is isolated. �

The following lemma deals with the problem when B(S) is trivial, i.e. when
|M(S)| = 1.

Lemma 5.5. |M(S)| = 1 iff {Fix(s) : s ∈ S} is centred.

Proof. First assume that M(S) = {p}. Then for every s ∈ S, s(p) = p and by
Lemma 5.3 {Fix(s) : s ∈ S} ⊆ p, and hence centred.

On the other hand if {Fix(s) : s ∈ S} is centered, then there is an ultrafilter p ∈ βS
extending {Fix(s) : s ∈ S}. As in the proof of Proposition 5.4, part (3)→(1), we
can assume that p ∈ M(S). Since for every s ∈ S, Fix(s) ∈ p, by Lemma 5.3,
s(p) = p. Thus Orb(p) = {p}, and, consequently, M(S) = {p}. �

Example 5.6. Here we present some simple applications of Proposition 5.4 and
Lemma 5.5.

(i) Consider a semigroup S that has a right zero z, i.e. s·z = z for every s ∈ S.
Then z ∈ Fix(s) for every s ∈ S and so {Fix(s) : s ∈ S} is centred. By Lemma
5.5, B(S) = {O, I}.

(ii) In this example we discuss idempotent semigroups (also called bands). A semi-
group S is idempotent if all its elements are idempotents. We can define a partial
order on S by a 6 b iff a = ab = ba. Since aba 6 a for any a, b ∈ S, if a is
6-minimal, then aba = a for any b ∈ S. We shall deal with two extreme cases of
idempotent semigroups, totally noncommutative and commutative ones.

(a) Consider a nowhere commutative semigroup S, i.e. a semigroup so that
for any a, b ∈ S, ab = ba implies a = b. S is an idempotent semigroup,
for aa2 = a2a and so a = a2. Moreover every two elements are inverse ,
i.e. for any a, b ∈ S, a = aba and b = bab. For aaba = a2ba = aba and
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abaa = aba2 = aba, so aaba = abaa, giving a = aba.

We show that B(S) is atomic. Fix an arbitrary a ∈ S. Since a ∈ Fix(b) for any
b ∈ aS, {Fix(b) : b ∈ aS} is centred. Since aS is S-syndetic, by Proposition 5.4
(3), B(S) is atomic.

(b) Consider a commutative band S. For an a ∈ S and x ∈ S, ax = x
iff x 6 a. Hence Fix(a) = {x ∈ S : x 6 a}. Since ab 6 a and ab 6 b
for any a, b ∈ S, Fix(ab) ⊆ Fix(a) and Fix(ab) ⊆ Fix(b). Consequently,
{Fix(a) : a ∈ S} is centered, and thus by Lemma 5.5, |M(S)| = 1.

(c) Consider an arbitrary idempotent semigroup S. We show that if S has a
6-minimal element, then B(S) must be atomic, by reducing the problem to the
case (a). I = {a ∈ S : a is minimal} is a left ideal of S, for if a ∈ I and s ∈ S,
sa must again be minimal: if c 6 sa, then c = csa = sac, so ac = acsa = a.
Hence c = sac = sa. Then B(S) ∼= B(I) by Theorem 3.5. Since I is nowhere
commutative, by (a), B(I) is atomic, and so B(S) is atomic as well.

We still cannot resolve the general problem whether B(S) is atomic for any idem-
potent semigroup.

In the following part of this section we shall deal with the problem of homo-
geneity and weak homogeneity of B(S). For an infinite group G, B(G) is always
homogeneous (see Theorem 5.7). B(S) is weakly homogeneous, provided S is a
semigroup with a minimal left ideal. We were not able to prove our conjecture that
B(S) is weakly homogeneous for an arbitrary semigroup. Let us remark that in
general B(S) cannot be homogeneous (see Example 5.11).

Theorem 5.7. (i) If S has a minimal left ideal, then B(S) is weakly homogeneous.

(ii) If S is a left cancellative semigroup so that B(S) is infinite, then B(S) is
homogeneous.

The proof of Theorem 5.7 will be done using the following lemmas.

Lemma 5.8. Let (M,S) be a universal minimal dynamical system for S. If there
exists a partition {Mi : i ∈ I} of M so that (∀x, y ∈ M)(∀i ∈ I)(∀s ∈ S)(x, y ∈
Mi ⇐⇒ s(x) = s(y)), then B(S) is weakly homogeneous. If moreover |Mi| = 1
for every i ∈ I and B(S) is infinite, then B(S) is homogeneous.

Proof. The condition about the partition of M says that for any s, t ∈ S, partitions
{s−1[{x}] : x ∈ M} and {t−1[{y}] : y ∈ M} are the same.

Our aim is to show that for any two distinct clopen non-empty subsets U, V ⊆ M
there is a homeomorphism φ : M → M so that φ[U ] ∩ V 6= ∅. We can assume that
U and V are in fact disjoint.

We shall use the fact that for any clopen non-empty W ⊆ M ,
⋃

s∈S

s[W ] is dense in

M , as due to minimality of (M,S) orbit of each x ∈ W is dense in M .
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There is s ∈ S so that U ′ = s[M ] ∩ U 6= ∅. It follows that U ′ is clopen. Denote
s−1[U ′] asW . ThenW is a non-empty clopen subset of S. MoreoverW is saturated,
i.e. if Mi ∩W 6= ∅, then Mi ⊆ W , for any i ∈ I.
There is t ∈ S so that V ′ = t[W ] ∩ V 6= ∅. It follows that V ′ is clopen. Set
W ′ = t−1[V ′]. Then W ′ is a non-empty clopen subset of W that is also saturated.
The last step is to set U ′′ = s[W ′]. U ′′ is a non-empty clopen subset of U ′.
Since s : M → s[M ] is a continuous map onto an extremally disconnected space
s[M ], there exists a closed non-empty M ′ ⊆ M and an irreducible homeomorphism
ŝ : M ′ → s[M ] so that ŝ = s�M ′ (see [En], 6.3.19 (c)). M ′ must be a selector with
respect to the partition {s−1[{x}] : x ∈ M}, and hence a selector with respect to
the partition {Mi : i ∈ I}. Then t◦ŝ−1�U ′′ is a continuous one-to-one map from U ′′

onto V ′. This can easily be extended to the desired homeomorphism φ : M → M .

If all Mi’s are singletons, i.e. if S acts via one-to-one mappings, and CO(M) is
infinite, then M has no isolated points (if M had an isolated point, then by 5.4
it would have a dense subset of isolated points and, consequently, all points of M
would be isolated, which contradicts the compactness of M). According to the first
part of this proof and Theorem 2.4, there is a clopen non-empty V ⊆ M with the
property that every clopen non-empty subset of V is homeomorphic to V . From

minimality of (M,S) we have finitely many s0, ..., sn ∈ S so that
⋃

j6n

s−1
j [V ] = M .

As every sj is one-to-one, each s−1
j [V ] has the property that every clopen non-

empty subset of s−1
j [V ] is homeomorphic to s−1

j [V ], and thus M has the property

as well, i.e. CO(M) is homogeneous. �

Lemma 5.9. Let S be a left cancellative semigroup so that B(S) is infinite. Then
B(S) is homogeneous.

Proof. Since S is left cancellative, for any s ∈ S, left translation on S is one-to-one.
It follows that for any s ∈ S, left translation on βS is one-to-one. Consider the
universal minimal dynamical system (M(S), S) as a subsystem of (βS, S). Then
for every s ∈ S, s : M(S) → M(S) is one-to-one. According to Lemma 5.8, B(S)
is homogeneous. �

Lemma 5.10. Let S be a left simple semigroup. Then B(S) is weakly homoge-
neous.

Proof. Let s ∈ S and x, y ∈ S. Assume ls(x) = ls(y). Let A = {t ∈ S : lt(x) =
lt(y)}. Then A ⊇ S·s. Since S is left simple, we get S·s ⊆ A ⊆ S = S·s. Thus,
we have ls(x) = ls(y) ⇐⇒ lt(x) = lt(y), for any s, t ∈ S and any x, y ∈ S. We
show that for any p, q ∈ βS and any s, t ∈ S, s·p = s·q iff t·p = t·q. Assume
s·p = s·q. It suffices to prove that t·p ⊆ t·q. Take B ⊆ S so that B ∈ t·p. Then
l−1
t [B] ∈ p, therefore ls[l

−1
t [B]] ∈ s·p = s·q. From this we have l−1

s [ls[l
−1
t [B]]] ∈ q.

Since both s and t define the same partition of S, l−1
s [ls[l

−1
t [B]]] = l−1

t [B], and so
l−1
t [B] ∈ q, giving B ∈ t·q. The same holds true for p, q ∈ M(S). According to
Lemma 5.8, B(S) is weakly homogeneous. �
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Example 5.11. To illustrate Lemma 5.10, consider a left group S that is a special
case of a left simple semigroup. Then S ∼= G×E for some left zero semigroup E

and a group G (Theorem 2.1). By Proposition 7.4, B(S) ∼=
∏

e∈E

B(G). Since G is

a group, B(G) is finite or homogeneous (by Lemma 5.9), and so B(S) is weakly
homogenous. Note that if E is sufficiently big, then B(S) cannot be homogeneous.

Proof of Theorem 5.7. (i) If I is a minimal left ideal of S, then I is a left simple
semigroup. According to Lemma 5.10, B(I) is weakly homogeneous, and according
to Theorem 3.5 B(I) ∼= B(S), hence B(S) is weakly homogeneous.
(ii) follows from Lemma 5.9. �

In the conclusion of this section we turn our attention to commutative semi-
groups. As it turns out, commutative semigroups act in their universal minimal
dynamical systems via homeomorphisms, which does not have to be the case for
minimal systems. Consider, for example, the symbolic dynamical system (2ω, σ)
where σ is the shift to the left. It is a dynamical system for the semigroup (ω,+).
Now, if X ⊆ 2ω is an infinite minimal closed invariant subset, then σ is not one-to-
one on X (see [F], page 158).

Proposition 5.12. Let S be a commutative semigroup and let (M,S, π) be a uni-
versal minimal dynamical system. Then for any s ∈ S, π(s) : M → M is a
homeomorphism.

Proof. Consider (M,S, π) as a subsystem of the ultrafilter dynamical system. Let
s, t ∈ S and x ∈ M . Since S is commutative, we get π(s)(π(t)(x)) = s·(t·x) =
(s·t)·x = (t·s)·x = t·(s·x) = π(t)(π(s)(x)). Hence π(s) : M → M is an auto-
homomorphism of (M,S, π) and by Lemma 3.8 an automorphism of (M,S, π). It
follows that πs is a homeomorphism of M. �

In the following we show that for a commutative semigroup S, B(S) satisfies the
c.c.c. The actual proof is presented for left amenable semigroups, for it greatly sim-
plifies it, using the well-known fact that commutative semigroups are left amenable
([P],[W]). We start with the definition of left amenable semigroups.

Definition 5.13. A semigroup S is said to be left amenable if there is a finitely
additive normed measure µ on P(S) so that for any A ⊆ S and any s ∈ S,
µ(l−1

s [A]) = µ(A).

Lemma 5.14. If a semigroup S is left amenable, then B(S) satisfies the c.c.c.

Proof. We know that B(S) is isomorphic to a maximal S-syndetic algebra A (see
Theorem 4.5). It suffices to show that there is a strictly positive finitely additive
finite measure on A. Consider the measure µ as guaranteed by left amenability
of S. We shall show that µ(A) > 0 for any S-syndetic set A: there are finitely

many s0, ..., sn ∈ S so that S =
⋃

i6n

l−1
si

[A]. Since µ(A) = µ(l−1
si

[A]) for any i 6 n,
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µ(S) 6 (n+1)µ(A). It follows that µ(A) > 0. Thus, µ�A is a strictly positive
finitely additive finite measure on A. �

Let us remark that it is also known that a semigroup S is left amenable iff for
every minimal dynamical system (X,S) there exists a Borel probability measure
on X that is S-invariant ([G]).

6. Structural properties of B(S) for countable S.

For a countable semigroup we can often provide a more detailed description of
the structure of B(S).

Proposition 6.1. [Ko1]

(1) A Cohen algebra B is isomorphic to C(π(B)).
(2) A semi-Cohen algebra B so that π(B) 6 ℵ1 is Cohen.
(3) A complete π-homogeneus subalgebra of a Cohen algebra is semi-Cohen.

The next theorem summarizes the main cases when B(S) is Cohen.

Theorem 6.2. Let S be a countable semigroup so that B(S) is atomless. Then
B(S) is Cohen, provided that S is either left cancellative, or has a minimal left
ideal, or is commutative.

We shall prove the theorem using several lemmas.

Lemma 6.3. Let (B, {hs : s ∈ S}) be a Boolean minimal dynamical system for a
countable semigroup S so that B is an atomless complete Boolean algebra and each
hs is a complete homomorphism from B onto B. Then B is a Cohen algebra.

Proof. Since each hs is a complete homomorphism, for each s ∈ S, and each a ∈ B
there is the least m(s, a) ∈ B so that hs(m(s, a)) ≥ a. Moreover, m(s, a ∨ b) =
m(s, a) ∨ m(s, b) and m(s, a ∧ b) = m(s, a) ∧ m(s, b), since each hs is onto (see
2.5.(2)).

Define S by
A ∈ S iff A is a countable subalgebra of B such that hs[A] ⊆ A and m(s, a) ∈ A
for any s ∈ S and any a ∈ A.

(a) It is easy to see that S is closed.
(b) S is unbounded, for ifX ∈ [B]ℵ0 , then set A0 = 〈X〉, An+1 = 〈An∪{hs(a) :

a ∈ An, s ∈ S} ∪ {m(s, a) : a ∈ An, s ∈ S}〉. Then A =
⋃

n∈ω

An ∈ S and

X ⊆ A.
(c) If A ∈ S, then A is a regular subalgebra of B. Since A contains m(s, a) for

every a ∈ A and every s ∈ S, hs�A : A → A is a regular homomorphism,
so its dual is a semiopen mapping (in fact its dual is an open mapping, see
2.5 (2)). By Lemma 4.7 (in Boolean form) A is a regular subalgebra of B.

(d) If A1,A2 ∈ S, then 〈A1 ∪ A2〉 ∈ S. This follows directly from the fact
m(s, a∨ b) = m(s, a) ∨m(s, b) and m(s, a∧ b) = m(s, a) ∧m(s, b), for any
a, b ∈ A1 ∪ A2, and any s ∈ S.
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The fact that B is c.c.c. and weakly π-homogeneous follows from the proof of
Proposition 5.1. Since B is atomless, it must be π-homogeneous. Thus B is a Cohen
algebra. �

Lemma 6.4. Let S be a countable semigroup and let (M,S) be a universal minimal
dynamical system for S. If there exists a partition {Mi : i ∈ I} of M so that
(∀x, y ∈ M)(∀i ∈ I)(∀s ∈ S)(x, y ∈ Mi ⇐⇒ s(x) = s(y)) and if B(S) is atomless,
then B(S) is a Cohen algebra.

Proof. We know that CO(M) is an atomless, weakly π-homogeneous, c.c.c. com-
plete Boolean algebra (see 5.1), hence π-homogeneous.
For each s ∈ S, set Vs = s[M ]. Define SatCO(M) = {U ∈ CO(M) : (∀i ∈
I)(Mi ∩ U 6= ∅ → Mi ⊆ U}. It is straightforward to verify that

(i) for every s ∈ S, SatCO(M) ∼= CO(Vs), and so SatCO(M) is an atomless,
π-homogeneous, c.c.c. complete Boolean algebra.

(ii) if U ∈ CO(M), then Û =
⋃

Mi∩U 6=∅

Mi ∈ SatCO(M), for Û = s−1[s[U ]].

(iii) for each s ∈ S, consider the complete homomorphism hs : CO(M) →
CO(M) defined by hs(A) = s−1[A], A ∈ CO(M). Then hs�SatCO(M) :
SatCO(M) → SatCO(M) is a complete homomorphism onto SatCO(M),
since SatCO(M) is a complete subalgebra of CO(M), and since if U ∈

SatCO(M), then s[U ] ∈ CO(M) and ŝ[U ] ∈ SatCO(M) and hs(ŝ[U ]) =

s−1[ŝ[U ]] = U .
(iv) (SatCO(M), {hs : s ∈ S}) is a minimal dynamical system for S.

According to Lemma 6.3, SatCO(M) is Cohen. Thus, each CO(Vs) is Cohen as

well. Since ICO(M) =
∨

s∈S

Vs and CO(M) satisfies the c.c.c., CO(M) is Cohen as

well. �

Lemma 6.5. Let S be a left simple countable semigroup so that B(S) is atomless.
Then B(S) is Cohen.

Proof. As in the proof of Lemma 5.10, s(x) = s(y) ⇐⇒ t(x) = t(y), for any
s, t ∈ S and any x, y ∈ M(S). According to Lemma 6.4, B(S) is Cohen. �

Proof of Theorem 6.2. (1) Let S be left cancellative. As in the proof of Lemma
5.9, for every s ∈ S, s : M(S) → M(S) is one-to-one. According to Lemma 6.4,
B(S) is Cohen.
(2) Let S have a minimal left ideal I. Then I is a left simple countable semigroup,
so by Lemma 6.5, B(I) is Cohen. By Theorem 3.5, B(S) ∼= B(I).
(3) Let S be a countable commutative semigroup. By Proposition 5.12, S acts via
homeomorphisms in the universal minimal dynamical system. Hence Lemma 6.4
applies. �

We can summarize the structural properties of associated Boolean algebras for
countable semigroups into the following theorem.
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Theorem 6.6.

(1) For every countable semigroup S, B(S) can be completely embedded into
C(2ω), and thus it is an atomic or a semi-Cohen algebra.

(2) [BB] For every countable group G, B(G) ∼= C(π(B(G))).
(3) [T] For every countable commutative group G, B(G) ∼= C(2ω);

Proof. (1) Let (F, ·) be a free semigroup with countably generators. F is left
cancellative, therefore B(F ) ∼= C(π(B(F ))), by Theorem 6.2. Since π(B(F )) = 2ω

(see [BB]), B(F ) ∼= C(2ω). There is a semigroup homomorphism φ from F onto S,
so by Proposition 4.11, B(S) can be completely embedded into B(F ).

(2) Follows from the fact that groups are left cancellative and thatB(G) is atomless,
as G is infinite.

(3) In [T] Turek showed that π(B(G)) = 2|G| for any infinite commutative group
G. �

Corollay 6.7. Assuming CH, for every countable semigroup S, either B(S) ∼=
P(X) for some |X| 6 ω, or B(S) ∼= C(π(B(S))).

Proof. Under CH, π(B(S)) 6 |B(S)| 6 ω1. By Theorem 6.6 together with 6.1 (3),
B(S) is semi-Cohen, and so by 6.1 (2) Cohen. �

As a concluding remark we present the following problem: is it possible for
a countable semigroup S such that B(S) is atomless that π(B(S)) is less than
continuum?

7. Group reflections of semigroups.

The category of groups is an algebraic and a reflective subcategory of the category
of semigroups (see [HS]). It means that every semigroup S has a group reflection,
i.e. a unique (up to isomorphism) group G(S) together with a homomorphism
ϕ : S → G(S) so that if H is an arbitrary group and φ : S → H a homomorphism,
then there exists a unique group homomorphism ξ : G(S) → H so that ξ◦ϕ = φ.
It follows that G(S) is generated by ϕ[S]. In [L] an explicit construction of the
group reflection G(S) of a commutative monoid S is given (so-called Grothendieck
group of S). In the introduction of this paper an example was given showing that
in general the universal minimal dynamical system for S and the universal minimal
dynamical system for G(S) need not necessarily be the same.

Why are we interested in group reflections of semigroups in the context of dy-
namical systems? We are going to present a class of semigroups having the property
that the universal minimal dynamical system for S and the universal minimal dy-
namical system for G(S) are the same (we shall define later what we mean by this
imprecise term ‘same’), provided S is from that class. For the lack of a better
term we call it the class of group-like semigroups. The important aspect of this
class is that it includes the important class of all commutative semigroups as well
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as the class of inverse semigroups, and the class of right groups. There may be
other classes of semigroups that are included in the class of group-like semigroups
as well. We conclude this section with a discussion of left groups even though they
do not belong to the class of group-like semigroups, for if S is a left group, then

B(S) ∼=
∏

e∈E

B(G) for some set E and some group G.

We say that a semigroup S is group-like if

(i) it acts via homeomorphisms in its universal minimal dynamical system, and
(ii) for an arbitrary group H and an arbitrary homomorphism ξ : S → H so

that ξ[S] generates H, whenever a dynamical system (X,H, ρ) is minimal
for H, then (X,S, ρ◦ξ) is a minimal dynamical system for S.

Consider a group-like semigroup S. Let (M,S, π) be a universal minimal dy-
namical system for S, then π[S] ⊆ Hom(M). Denote as G(S) the subgroup of
Hom(M) generated by π[S]. It is clear that G(S) is unique up to isomorphism and
so we are justified in denoting it by G(S). The next lemma says that G(S) is the
group reflection of a group-like semigroup S.

Lemma 7.1. Let S be a group-like semigroup. Let (M,S, π) be a universal minimal
dynamical system for S. Let ξ : S → H, H a group, be a homomorphism so that
ξ[S] generates H. Then there is a unique homomorphism ψ from G(S) onto H so
that ψ◦π = ξ.

Proof. Consider a universal minimal dynamical system (X,H, ρ). Since S is group-
like, (X,S, ρ◦ξ) is minimal. Thus, there is a homomorphism σ from (M,S, π) onto
(X,S, ρ◦ξ). It follows that if π(s) = π(t), then ξ(s) = ξ(t) for any s, t ∈ S,
since ρ is one-to-one as H, being a group, acts effectively. Thus, if we define
ψ(π(s)) = ξ(s) for all s ∈ S, then ψ is a well defined unique homomorphism from
π[S] onto ξ[S] such that ψ◦π = ξ. Since π[S] generates G(S) and H is generated
by ψ[S], ψ : π[S] → ψ[S] has a unique extension ψ : G(S) → H. �

The next lemma shows how the universal minimal dynamical systems for a group-
like S and its group reflection G(S) are related. That is a precise formulation of the
statement in the introduction of this section, that they have ‘the same’ universal
minimal dynamical systems. Note, that it implies that B(S) and B(G(S)) are
isomorphic.

Lemma 7.2. Let S be a group-like semigroup. Let (M,S, π) be a universal minimal
dynamical system for S. Let (X,G(S), ρ) be a universal minimal dynamical system
for G(S). Then (X,S, ρ◦π) is a universal minimal dynamical system for S.

Proof. Since (M,S, π) is a universal minimal dynamical system for S, (M,G(S), id)
is a minimal dynamical system for G(S), where id is the identity function on G(S).
There is a homomorphism χ : (X,G(S), ρ) → (M,G(S), id) as (X,G(S), ρ) is uni-
versal. Then χ : (X,π[S], ρ�π[S]) → (M,π[S], id�π[S]) is a homomorphism. It
follows that χ : (X,S, ρ◦π) → (M,S, π) is a homomorphism. Since S is group-like,
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(X,S, ρ◦π) is minimal. Thus, (X,S, ρ◦π) is a universal minimal dynamical system
for S. �

(a) Commutative semigroups.

Lemma 7.3. Let S be a commutative semigroup, then S is group-like.

Proof. First a litle remark: consider a dynamical system (X,S). For any s ∈ S, s
is a homomorphism of (X,S), for s(t(x)) = (st)(x) = (ts)(x) = t(s(x)) (as S is
commutative) for any t ∈ S and any x ∈ X. It follows that if A is a minimal closed
non-empty S-invariant subset of X, then s[A] = A.

We proved that S acts via homeomorphisms in its universal minimal dynamical
system in Proposition 5.12. Consider a group H and a homomorphism ξ : S → H
so that ξ[S] generates H. Let (X,H, ρ) be a minimal dynamical system for H. Our
aim so to show that (X,S, ρ◦ξ) is minimal. Let A be a minimal closed non-empty
S-invariant subset of X. Denote by φ the mapping ρ◦ξ. Then φ(s)[A] = A for
any s ∈ S (according to the remark at the beginning of this proof). Since φ(s) is a
homeomorphism, φ(s)−1[A] = A for any s ∈ S. Let h ∈ H. Since ξ[S] generates
H and S is commutative, there are s, t ∈ S so that h = ξ(s)·ξ(t)−1, where ξ(t)−1

denotes the inverse of ξ(t) in H. Then ρ(h) = ρ(ξ(s))◦ρ(ξ(t))−1. Hence ρ(h)[A] =
A. Thus, A is a closed non-empty H-invariant subset of X. By the minimality of
(X,H, ρ), A = X. So (X,S, ρ◦ξ) is minimal. �

If S is a commutative semigroup, then G(S) is a commutative group (as it is
generated by π[S]), and by Lemma 7.1, G(S) is the Grothendieck group of S as it
is the group reflection of S. By Lemma 7.2, B(S) and B(G(S)) are isomorphic.

We can illustrate the above on the minimal dynamical system (X, f) for the
additive group of integers (Z,+), where f : X → X is a single homeomorphism.
Then (X, f) is a minimal dynamical system for (ω,+). So for any x ∈ X, the
positive orbit of x = {fn(x) : n ∈ ω} is dense in X. Moreover B(ω,+) =
B(Z,+) = C(2ω).

(b) Inverse semigroups.

Let S be an inverse semigroup (for definition see 2 (a)). We shall denote by a
the unique inverse of a ∈ S, i.e. a = aaa and a = aaa.

If S is an inverse semigroup, then S can be represented by {ρa : a ∈ S} where
each ρa is a partial left translation of S and a bijection from aS onto Sa. For
a, b ∈ S, ρa·b = ρa◦ρb and ρa = ρ−1

a . (see [CP], Theorem 1.20) Several properties
of S can be observed directly from this representation:

(i) for any a ∈ S, aa and aa are idempotents;
(ii) for any a ∈ S, a = a iff a is an idempotent;
(iii) if a, b are idempotents, so is ab and ab = ba;
(iv) ab = ba and a = a;
(v) the set of right ideals {aS : a ∈ S} is centred.



28 B. BALCAR AND F. FRANEK

Now consider the ultrafilter dynamical system (βS, S). The set U =
⋂

a∈S

(aS)∗

is a non-empty closed S-invariant subset of βS. Take M , a minimal S-invariant
closed subset of U . Then (M,S) is a universal minimal dynamical system for S. We
shall show that S is group-like using this representation of the universal minimal
dynamical system for S.

(vi) It is straightforward to show that U =
⋂

e∈Id(S)

(eS)∗ =
⋂

b∈S

(abS)∗, for any

a ∈ S.
(vii) Let Ta = La�U , a ∈ S, La the left translation on βS. Then Ta : U → U is

a homeomorphism.
Given q ∈ U . Set C = {l−1

a [A] : A ∈ q} ∪ {bS : b ∈ S}. Then C is centered,
for l−1

a [abS] ⊇ bS for any b ∈ S. Let p ∈ βS extend C. Since bS ∈ p for any
b ∈ S, p ∈ U . Furthemore, A ∈ q ⇒ l−1

a [A] ∈ C ⇒ l−1
a [A] ∈ p ⇒ A ∈ La(p).

Hence q ⊆ La(p), but since both are ultrafilters, q = La(p). Hence Ta is
onto.
Consider p 6= q ∈ U . p, q ∈ (aS)∗, so there are disjoint sets X,Y ⊆ aS so
that X ∈ p and Y ∈ q. l−1

a [X] = ρa[X] and l−1
a [Y ] = ρa[Y ], and so l−1

a [X]
and l−1

a [Y ] are disjoint as well as ρa−1 is a bijection. l−1
a [X] ∈ La(p) and

l−1
a [Y ] ∈ La(q), so La(p) 6= La(q). Thus, Ta is one-to-one.

Now we are ready to show that S is group-like. S acts on U via homeomorphisms
(vii), and hence on M as well. Let H be a group and let ξ : S → H be a homomor-
phism so that ξ[S] generates H. Let (X,H, ρ) be a minimal dynamical system for
H. Consider the dynamical system (X,S, ρ◦ξ). We are to prove that it is minimal.
Let A be an S-invariant (with respect to (X,S, ρ◦ξ)) closed non-empty subset of
X. Since for any s ∈ S, s = sss, ξ(s) = ξ(s)·ξ(s)·ξ(s), hence 1H = ξ(s)·ξ(s), and
so ξ(s)−1 = ξ(s), where ξ(s)−1 denotes the inverse element of ξ(s) in the group H.
Thus, ρ(ξ(s))−1[A] = ρ(ξ(s))[A] ⊆ A and ρ(ξ(s))[A] ⊆ A for any s ∈ S. Since ξ[S]
generates H, A is H-invariant (with respect to (X,H, ρ)) and so A = X. Thus,
(X,S, ρ◦ξ) is minimal.

For an inverse semigroup S, G(S) is its group reflection (by Lemma 7.1), and
B(S) and B(G(S)) are isomorphic (by Lemma 7.2).

(c) Right groups.

Let S be a right group, i.e. a right simple and left cancellative semigroup. Then
by Theorem 2.1 (in dual form) there are a group G and a right zero semigroup E
so that S ∼= G× E. Observe that S is group-like and that G(S) = G:

(1) S acts via homeomorphisms in its universal minimal dynamical system.
Let (M,S, π) be a universal minimal dynamical system for S. Let e ∈ E.
Since G× {e} is a left ideal of S, by Theorem 3.5, (M,G× {e}, π�G×{e})
is a universal minimal dynamical system for G × {e}. Since G × {e} is a
group, each π(g, e) for any g ∈ G is a homeomorphism from M onto M .
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(2) Let H be a group, and let ξ : S → H be a homomorphism so that ξ[S]
generates H. Let (X,H, ρ) be a minimal dynamical system for H. Then
(X,S, ρ◦ξ) is a minimal dynamical system for S.
Let A be an S-invariant closed non-empty subset of X. Let φ = ρ◦ξ. Then
(φ(g1, e1)◦φ(g−1

1 g2, e2))[A] = φ(g2, e2)[A] for any (g1, e1),
(g2, e2) ∈ G×E, where g−1

1 denotes the inverse of g1 in the group G. At the
same time, (φ(g1, e1)◦φ(g−1

1 g2, e2))[A] ⊆ φ(g1, e1)[A]. Hence
(φ(g1, e1)◦φ(g−1

1 g2, e2))[A] ⊆ φ(g1, e1)[A] ∩ φ(g2, e2)[A]. It follows that
{φ(s)[A] : s ∈ S} satisfies the finite intersection property. Since X is

compact, B =
⋂

s∈S

φ(s)[A] is a non-empty closed subset of A. φ(g1, e1)[B] =

⋂

g∈G,e∈E

(φ(g1, e1)◦φ(g, e))[A] =
⋂

g∈G,e∈E

φ(g1g, e)[A] = B. Thus B is H-

invariant (with respect to (X,H, ρ)), and by the minimality of (X,H, ρ),
B = X. It follows that A = X.

According to Lemma 7.1, G is the group reflection of S, and by Lemma 7.2,
B(S) and B(G) are isomorphic.

(d) Left groups.

Although left groups do not belong to the class of group-like semigroups, we
present them here since B(S) for a left group S is determined by a certain group.
Recall that, by Themorem 2.1, there are a group G and a left zero semigroup E so
that S ∼= G×E. B(E) ∼= P(E) by Example 3.10. According to the next proposition,

B(S) ∼= B(G)⊗B(E) ∼=
∏

e∈E

B(G), where ⊗ denotes the free product in the category

of complete Boolean algebras, i.e. it is the completion of
(
B(G)−{OB(G)}

)
×(

B(E)−{OB(E)}
)
.

Proposition 7.4. Let S be a monoid and E a left zero semigroup. Then
B(S×E) ∼= B(S)⊗B(E).

Proof. We can assume that B(S) is a maximal S-syndetic algebra and B(E) =
P(E). Some notation first.
If A ⊆ S×E, then prE(A) and prS(A) denote the projection of A on E or on S
respectively. Ae denotes prS(A ∩ S×{e}).
Note that if ∅ 6= B ⊆ E, then B is E-syndetic, and A×B is S×E-syndetic iff A
is S-syndetic.

Define A = ∅ ∪ {
⋃

i6n

Ai×Bi : n ≥ 1, Ai 6= ∅, Bi 6= ∅, Ai ∈ B(S), Bi ⊆ E}. Then A is

an S×E-syndetic algebra.
Let C be a maximal S×E-syndetic algebra extending A. Define B = {A : A×E ∈
C}. Then B is an S-syndetic alegbra and B(S) ⊆ B. By maximality of B(S),
B(S) = B.
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Now take any non-empty X ∈ C. Let e ∈ prE(X), and let s ∈ S. Since
l−1
(s,e)[X] = l−1

s [Xe]×E, so l−1
s [Xe] ∈ B(S). In particular, if s = 1S , thenXe ∈ B(S),

so Xe×{e} ∈ A. Since Xe×{e} ⊆ X, A is dense in C. Thus, C ∼= B(S)⊗B(E). �

Remark 7.5. Let us remark that generally for two semigroups S1, S2, the univer-
sal minimal dynamical system for the product S1×S2, i.e. (M(S1×S2), S1×S2, π),
is not isomorphic to the Gleason resolvent of the product
(M(S1), S1, π1)×(M(S2), S2, π2).

8. Miscellaneous results

Let S be a semigroup. Consider (M(S), S) as a subsystem of the ultrafilter
dynamical system. M(S) is a left simple right cancellative subsemigroup of (βS, ·)
and has the structure of G×Id(M(S)) for some group G. Natural questions about
this structure include questions when the structure is ”extreme” in some way, in
particular when |Id(M(S))| = 1 or |G| = 1.

It is possible that |M(S)| = 1 (see Lemma 5.5). The next proposition shows
that if M(S) is infinite, then the answer to the first question is negative, i.e.
|Id(M(S))| > 1. The proposition follows from deep results concerning non-
homogeneity of F -spaces by Froĺık (see e.g. [BS]).

Proposition 8.1. Let S be a semigroup. Let (M(S), S) be a subsystem of the
ultrafilter dynamical system. If M(S) is infinite, then |Id(M(S))| ≥ 22ω

.

Proof. As M(S) is an infinite Hausdorff space it does include a countable discrete
subset X. Since M(S) is extremally disconnected, βX can be embedded in M(S)
(for details see [BS]). From the proof of Froĺık’s theorem that F -spaces are not
homogeneous it follows that βX has at least 22ω

classes of non-homogeneity. Thus,
there are at least 22ω

points in M(S) that cannot be mapped onto each other by
a homeomorphism from M(S) onto M(S). Since for any e ∈ Id(M(S)), every
two elements of e·M(S) can be mapped onto each other by an automorphism,
Id(M(S))| ≥ 22ω

. �

The other ”extreme” is the case when |G| = 1. The following proposition shows
that it is intimately tied to the notion of proximality. If (X,S) is a dynamical
system, two points x, y ∈ X are said to be proximal if for every open cover of X
there are an open set U from the cover and an s ∈ S so that both s(x) and s(y) fall
in U . The system (X,S) is called proximal if all pairs of points of X are proximal.

Proposition 8.2. Let S be a semigroup. Then the following are equivalent:

(1) (M(S), S) is rigid, i.e. |e·M(S)| = 1 for every e ∈ Id(M(S));
(2) (M(S), S) is proximal;
(3) every minimal dynamical system for S is proximal;
(4) for any open susbet U of M(S), and any finite collection {x0, ..., xn} of

points of M(S), there is s ∈ S so that s(xi) ∈ U for all i 6 n.
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Proof. (1)→(2) (1) says thatM(S) consists of idempotents only. Fix x, y ∈ M(S).
Then x·x = x·y = x. Let C be an open cover of M(S). There are U ∈ C and A ⊆ S
so that x ∈ A∗ ⊆ U . Since x·y = x, {s ∈ S : s(y) ∈ A∗} ∈ x, and since x·x = x,
{s ∈ S : s(x) ∈ A∗} ∈ x. It follows that there is s ∈ S so that s(x), s(y) ∈ A∗ ⊆ U .
(2)→(1) Take an e ∈ Id(M(S)) and x, y ∈ e·M(S). Let F be the family of all
open covers of M(S). For P ∈ F let XP = {s ∈ S : (∃U ∈ P )(s(x), s(y) ∈ U)}. If
P1 ∧ P2 denotes the common refinement of P1 and P2, then XP1∧P2

⊆ XP1
∩XP2

,
and thus {XP : P ∈ F} is centred. Let p ∈ βS be an ultrafilter extending {XP :
P ∈ F}. Then p·x = p·y. Consider the continuous mappings Rx, Ry : βS → βS.
Y = {q ∈ βS : Rx(q) = Ry(q)} is non-empty, as p ∈ Y , and closed in βS. If r ∈ βS
and q ∈ Y , then Rx(r·q) = (r·q)·x = r·(q·x) = r·(q·y) = (r·q)·y = Ry(r·q), thus,
Y is a left ideal of (βS, ·). Let M1 ⊆ Y be a minimal left ideal. Either M1 = M(S)
and then Rx(e) = Ry(e), giving x = y, or M1 ∩M(S) = ∅ and there is a unique
idempotent e1 ∈ M1 so that e·e1 = e1 and e1·e = e. Then Rx(e1) = Ry(e1),
hence e1·x = e1·y. Since x = e·x and y = e·y as both are from e·M(S), it follows
that e1·e·x = e1·e·y, giving e·x = e·y, and so x = y.
(2)↔(3) Follows from the fact that a factor of a proximal dynamical system is
again proximal.
(1)→(4) Let V be an open subset of M(S). Let {x0, ..., xn} be an arbitrary finite
collection of points of M(S). Pick y ∈ V . Since all elements of M(S) are idempo-
tents, it follows that y·xi = y for any i 6 n. Then {s ∈ S : s(xi) ∈ V } ∈ y for all
i 6 n. Thus, there is s ∈ S so that s(x0), ..., s(xn) ∈ V .
(4)→(2) Take two arbitrary points x1 and x2 of M(S). Let C be an open cover of
M(S). For some U ∈ C, there is s ∈ S so that s(x1), s(x2) ∈ U . �

Proposition 8.3. Let S be a semigroup so that M(S) has an isolated point. Then
the group of automorphisms of M(S) is finite.

Proof. Assume that the group of automorphisms is infinite. Let p be an isolated
point of M(S). There is an idempotent e ∈ M(S), so that p ∈ e·M(S). Then e

is isolated in M(S). It follows that M(S) =
⋃

i6n

s−1
i [{e}] for some s0, ..., sn ∈ S.

Define Pi = e·M(S)∩ s−1
i [{e}], for i 6 n. By Fact 3.9 e·M(S) is isomorphic to the

group of automorphisms of (M(S), S), and hence infinite. We can apply Hindman’s
theorem (see [Hi1]) and so there are i 6 n and a, b ∈ Pi so that a 6= b, a 6= e, b 6= e,
and a·b ∈ Pi. Thus a, b, a·b ∈ s−1

i [{e}], so si(a) = si(b) = si(a·b) = e. It follows
that e = si(a·b) = si·(a·b) = (si·a)·b = e·b = b, a contradiction. �
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