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Abstract

Let k¢(G) be the number of cliques of order ¢ in the graph G. For
7kt(G)(':;€t(G). Let ¢i(n) =
Min{c,(G) : |G| = n} and let ¢; = limy_y00 c:(n) An old conjec-
ture of Erdos [2] related to Ramsey’s theorem states that ¢; = 21=(2).
Recently it was shown to be false by A. Thomason [12]. It is known

t

that ¢;(G) ~ 921-(2) whenever G is a pseudorandom graph. Pseu-
dorandom graphs - the graphs ”which behave like random graphs” -
were introduced and studied in [1] and [13]. The aim of this paper is

t

to show that for t = 4, ¢;(G) > 21-(2) if G is a graph arising from
pseudorandom by a small perturbation.

a graph G with n vertices let ¢(G) =

1 Introduction.

Denote by k;(G) the number of cliques of order ¢ in the graph G. For a graph

G with n vertices let ¢,(G) = W Let c:(n) = Min{c(G) : |G| = n},

and let ¢; = lim,, . ¢;(n). Thus ét(n) denotes the minimum proportion of
monochromatic K;’s in a coloring of the edges of K, with two colors. An old
conjecture of Erdos [2], related to Ramsey’s theorem, states that ¢; = 91-(2),
It follows from [6], that the conjecture is true for ¢ = 3. For a graph H let
ki (G) denote the number of (not necessarily induced) subgraphs of G which

are isomorphic to H. Set cy(G) = %;CH(G) where ¢ is the order of H, and
cu(n) = Min{cg(G) : |G| = n}. Finally let e denote the number of edges of
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i.e. for which graphs H the asymptotic minimum of ¢y (G) over all graphs G
is the same as ¢y (G) when G is a random graph. This has been shown to be
true for H complete bipartite by Erdos and Moon [3]. Sidorenko [11] showed
that it is also true whenever H is a cycle and not true for certain incomplete
graph (K less two incident edges). Thomason proved [12] it false for H a
complete graph Ky, t > 4 (i.e. disproved Erdés’s conjecture) by constructing
for every t an infinite sequence from a single underlying graph, leading to a
limit smaller than what the conjecture stipulates. As far as the lower bound,
Giraud [7] showed that ¢ > 4.

We shall write g1(n) ~ go(n) in place of i;gzg = 14o0(1). If G is a graph,
then V(G) denotes its vertex set, while E(G) denotes the set of its edges. A
neighborhood N (u) of a vertex u€V (G) is the set of all vertices of G adjacent
to u. The degree d(u) of u is the size of its neighborhood.

In [13] and [1] pseudorandom graphs are defined as graphs with the prop-
erty that |[N(v)| ~ 1|V|, and [N (u) N N(v)| ~ ;|V| for almost all v € V and
almost all pairs u,v € V. It was established in [13] and [1] (see also [5], and
[8]) that for any fixed ¢, k;(R) + k;(R) ~ 91-(2) (l‘t/‘) for any sufficiently large
pseudorandom graph R with vertex set V.

H. One may ask in general for which graphs H lim,, ., cg(n) ,

Definition 1. A sequence of graphs R = {R,},_, is a pseudorandom se-
quence iff for all but o(|V(R,,)| vertices u€V (R,,), d(u) = |N(u)| satisfies

d(u) — W < o(|[V(R,)|), and for all but 0((|V(§"))) pairs of vertices

u,vEV (R,,), the size d(u,v)of their common neighborhood N(u) N N(v) sat-

isfies

4

d(u,v) — 'V<Rn>" < o([V(R)]).

Pseudorandom graphs have the following property (cf. [5], [13], [8],[1]):

Theorem 2. Let R = {R,} be a pseudorandom sequence of graphs, then
there exists a sequence of positive reals {e,} so that e, — 0 as n — oo

and so that for every V. C V(R,), |V| > e.|V(R.)|, (; - 5n) (WI) <e<

2

(; + 5n) ('g'), where the e is the number of edges of R,, induced on a set V.



For a graph D = (V,E) and U C V let dp(U) = E(T([,({)]Q denote the

edge density of the subgraph induced on U. For a sequence D = {D, } and
0 <p<1lletpD = {pD,} be any sequence with the following property: V,, =

V(pD,) = V(D,), and there exists ¢, — 0 such that ‘(5pDn(U) —p(SDn(U)’ <

en as n — oo for any U C V,,, |U| > &,|V,,|. We can think of pD as a graph
obtained from the graph D by flipping a p-biased coin (i.e. the probability of
the heads coming up is p, while the probability of the tails coming up is 1—p)
for each edge of D, if the heads shows up the edge is left there, otherwise the
edge is removed.

Let G be a graph and let H be a graph on 4 vertices and 5 edges (i.e. K,
less one edge), then d(G) denotes cy(G).

For a sequence G = {G,} of graphs with |V (G,,)| — 0o as n — oo, let
d(G) = liminf d(G,).

Answering a question of Erdés (private communication) we proved that
(see Theorem 12) d(G) > % for any sequence G of graphs, and the equality
holds if and only if G is a pseudorandom sequence.

We shall employ the following notation: if G and H are graphs such that
V = V(G) = V(H) then G N H denotes the graph with vertex set V' and
edge set E(G)NE(H), while G — H denotes the graph with vertex set V' and
edge set E(G) — E(H).

As mentioned above, disproving the conjecture of Erdds, Thomason [12]

constructed sequences of graphs H = {H,} with c4(H) = lim,, o c4(H,) <
3—12. The main puprose of this note is to establish a result which goes in
some sense in the opposite direction and prove that for sequences arising
from pseudorandom ones by certain small perturbations Erdés’s conjecture
is valid:
Let H = {H,} be an arbitrary sequence of graphs and let R = {R,} be
a pseudorandom sequence with V(R,) = V(H,) = V,, for all n. Let D,, =
R, + H, be a graph whose edges are formed by all pairs one needs to change
to obtain H,, from R,, (i.e. E(D,,) is formed by symmetric difference F(H,,)~+
E(R,)). It follows that H, = R, =+ D, as well. Suppose that we will not
carry all the ”changes” corresponding to D,, to obtain H,, from R, but only
”changes” on a "random” subgraph pD,, of D,,. This way we obtain a graph
sequence {p(R,, D)} = {R, + pD,}. More formally p(R,, D,) is a graph
sequence that satisfies:

e there exists a sequence {g,} of positive reals such that ¢, — 0 and for
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every U C V,,, |U| > e,|Vil,

|0p(Ra,0)(U)— OR,—D,(U)— (1 = p)dr,ap,(U)— pip,-r,(U)| < én.
Figure 1 shows the relative position of edge sets of R, D, pD, and p(R, D)
respectively.

(1-p)(® NR)

Figure 1:

Now we are ready to formulate our main result (see Theorem 16):
For every A\ > g there exists py, 0 < py < 1, such that for every pseu-
dorandom sequence of graphs R = {R,}, and for every sequence of graphs

D = {D,} with d(R+D) > X, if c4s(p(R, D)) exists, then cs(p(R, D)) > 55+
(A= 2)p* whenever 0 < p < py.
Loosely speaking this means that counterexamples to Erdos’s conjecture have

to differ essentially from pseudorandom graphs.

2 Further Definitions.

Definition 3. If V, W are disjoint sets of vertices of G, then e(V, W) denotes
the number of edges of G with one endpoint in' V' and the other in W. o(V, W)
= f‘(/‘ﬁvgf)l 1s the edge-density between V and W. If ¢ > 0, we say that V,W
is an e-uniform pair if [0(V,W) — o(V',W')| < ¢ whenever V' C V and
V| > e|V|], and W' C W and |W'| > e-|W]|.

Definition 4. Let t be a positive integer. T is a t-vector if it is a vector with
t2 real valued entries xij, 1 <1,j <t and so that x;; = xj;. By = {fGRt2 :
T is a t-vector & |z, ;| <1 for all 1 <i,j <t}.
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Definition 5. Let G be a graph. Let € > 0, and let t be a positive integer.
We say that a t-vector T e-represents graph G iff the vertex set of G can
be partitioned into t disjoint classes Ay, ..., Ay so that ||A;| — |A;|| < 1 for
all 1 < 4,5 < t, and all but t*c pairs {A;, A;}, are e-uniform, and where
0(Ai, Aj) = 2(1+myy) forall1 <id,j <t,i#j, and 6(4;, A;) = 6(A;) for all
1 <<t If G is an infinite sequence of graphs and ¥ is a t-vector, we say
that T represents sequence G iff there is a sequence of positive reals {e,}
so that €, — 0 and ¥ €,-represents G,,, for every n.

(We use t-vectors as representatives of sequences of graphs. For technical
reasons the coordinates of t-vectors are not edge-densities directly, but edge-
densities transformed by p;; = %(1 + x; ;). Henceforth B, defined above is

the part of R which is meaningful for us. Note also that the origin then

represents pseudorandom graphs as p; ; = % corresponds to z;; = 0.)

Now we can reformulate Theorem 2 in our language as follows:
Theorem 5. A t-vector ¥ represents a pseudorandom sequence iff T = 0.

At this point we introduce a few polynomials in t? variables.
Definition 7.: Let & be t-vector.

O4(f) = ﬁ Z [(1+xi,j)(1+J7i,k)(1+J7i,l)(1+xj,k:>(1+xj,l)(1+xk,l)

1<i,5,k,1<t
+ (I=2i5) (=2 0) (V=20 0) (1=28) (1—251) (1—78)] (7.1)
D@ =gm Y, [(4wy) () () (1) (14+2,)
1<4,5,k,1<t
+ (T= ) (M=) (L=250) (1 =258) (1—25,)] (7.2)
C(f) = 25:14 <4t Z xi,jxj,k + Z xi,jmk,l> (73)
1<i,5,k<t 1<d,5,k, 1<t
b(Z) = 25?}4 ( Z TijTi T kTh + 4 Z fl‘i,jﬂﬁi,ﬂj,lxm) (7.4)
1<4,5,k, 1<t 1<4,5,k, 1<t
a(?) = ﬁ Z TijTikTilTj kT 1Tk (7.5)
1<i,j k1<t



Lemma 8.

(a) Let {e,} be an infinite sequence of positive reals so that &, — 0.
Let {t,} be an infinite sequence of positive integers so that t, — 0.
Let {G,} be an infinite sequence of graphs. Let for each n, T, be a
tn-vector such that it €,-represents graph G,. Then lim, . c4(G,) =
lim,, oo Cy4(Zy), and lim,,_, d(G,) = lim,,_,o D(Z,).

(b) Let a t-vector T represent a graph sequence G. Then d(G) = D(Z).

Proof We omit the somehow tedious but not difficult proof. For the method
see [9]. O

3 Methods and Results.

Lemma 9. For any t-vector T,
Cy(T) = 55 + c(&) + b(Z) + a(Z) (9.1)
D) =%+ 4(20(5:’) + b(f)) (9.2)

Proof The tedious although straightforward calculations to prove the claim
are left to the reader. O

Lemma 10. For any t-vector & € By, |a(Z)] < 5.

Proof By Eq. 7.5

(@) = 58| D Timiatistiazime| <
1<i j, k1<t
o Y |migllmillziellzell ez < s> pel =
1<4,5,k,1<t
1 t4 1 _ 1
25.¢4 25 32°

O

Lemma 11. For any t-vector Z, ¢(Z¥) > 0.



Proof ¢(7) = 323.’754 (4t Z Ty ;T + Z :cl-7jxk7l>. First observe that

1<i,j k<t 1<i,jik,I<t
2 2

E TijTip = ( E :U”> for any fixed i. Hence E ( E x”> =

1<j,k<t 1<j<t 1<i<t M<j<t
2

E x;;%;,. Then observe that ( E a:”> = E E T Ty =
1<i,j,k<t 1<i,j<t 1<i,j<t 1<kI<t

g x; jTi . Therefore ¢(Z) =
1<, 5.k, 1<t

3;4<4tz (zxi,j)2+<z Z)) 0 o

1<i<t M 1<<t 1<i<t 1<5<t

Theorem 12. Let G be a sequence of graphs. Then d(G) > % and equality
holds if and only if G is a pseudorandom sequence.

Proof Fix a graph G € G of order m. For a pair of vertices {v,w} € [V(G)]?

define b(v, w) as the number of vertices u € V(G) such that {v,u}, {w,u} €
E(G) provided {v,w} € V(G), or the number of vertices u € V(G) such that
neither {v,u} € V(G), nor {w,u} € V(G) provided {v,w} ¢ V(G).

Let ¢(G) = ks3(G)+ ks3(G) and set ¢ = ¢(G). Then 3, 1cpvioye b(v,w) =
3q. Set

b(v,w) = %—l— A(v,w) (12.0)
Then
3q = b(v,w) = ?23+Av,w):3+
= X = (@A) =3
{vweV(@)? {vwleV(G)?
Z A(v,w)
{v,w}e[V(@)]?

and hence Z A(v,w) = 0. On the other hand the number of non-

{vwe[V(G))? -
induced subgraphs on 4 vertices and 5 edges in G and its complement G

cauts S ()= Y (Rew-sew) 2

{vwkelV(G)]? {vwlelV(G))?
L9 3¢+ Z A?(v,w)|.
(5)
{v,w}e[V(Q)]?



LIWG)\J

Set qo(G) = (L 2 ) and set go = qo(G). As q > qo (cf. [6]) and

the function f(q) = = QT 3q] is increasing for g > qo( as qo > }5(75)),
( ) 1,4

we can conclude that d(G
lim,, o0 d(Gr) > 3 3 and hence d(g) > 3 3,
Conversely, let d(G) = 3. This means that for G,, € G both f(q(Gy)) (and

. Since f(qo) ~ gym*, we can infer that

hence also q(Gn)) and 30 ez A?%(v,w) have to be asymptotically

minimal. More precisely
4(Gn) ~ qo(Gn) (12.1)

lim,, o0 W Z A%(v,w) =0 (12.2)
{vw}elV(Gn))?
Fix a graph G € G of order m, and let dy, ... ,d,, be the degree sequence of
G. Using the argument of [6] one can show that Eq. 12.1 implies that
for all but o(m) vertices of G' |d; — | < o(m) (12.3)
Indeed, the number of induced subgraphs of G which have 3 vertices and one
or two edges equals to

(M) —a(G) = %Zdi(m— 1—d;) = iZ((m_ 1)2—d2— (m—l—di)2>

and thus is asymptotically maximized when (12.3) holds.
It follows from Eq. 12.0 that

1 _ 3a0(G)
m b U? w) = m ~
w2 Mew) =
{vwleV(@)? ,
On the other hand E b2 (v, w) = gq(%;(l;;)%— > twwteaye A% (v, w) and
{vwleV(@)?

LY Rew~ (125)
Y owlelvor
Combining Egs. 12.4 and 12.5 we conclude that b(v,w) ~ 7 for all but

and

E

(12.4)

hence

0((’;)) pairs v, w € V(G). Whence G is a pseudorandom sequence. O

Lemma 13. D(Z) is strictly minimal for & = 0.



Proof Follows from Lemma 8 (b), Theorem 5, and Theorem 12. O

Corollary 14. For any t-vector &, 2¢(Z)+b(Z) > 0. The equality is attained
if and only if ¥ = 0.

Proof Follows directly from Lemma 13 using Eq. 9.2. O

Lemma 15. For any \ > % there is py, 0 < py < 1, so that for any positive
integer t and for any @ € B; with D(@) > A, fa(p) = a(@)p® + b(@)u* +
c(@)p? > (A = Zu* for any p € [0, ).

Proof We have in view of Eq. 9.2 and abbreviating a(%) as a, b(@) as b, and
c(t) as ¢ D(@) = 3+4(2c+b) > X which means that 2c+b > Mg = ;(A—32) >

0, and so b > \g — 2¢c. Set puy) = min{éh/ 05 \/i}’ and let p € [0, wy].
fa(p) = ap® + bp* + ep® = (P (ap* + b + ¢).
Since ]a1| §4 =, an2d since b > g\o— 2¢, ap’+ b+ ¢ > —5pt+ (Ao— 20) P+
¢ = (—gh'+ dop’)+ (c= 2cp”) = (¥)
Since 1 < 4v/%o, (=5t Aop®) > (—351216 X0+ Aopt?) = (—3Aop+ Aop?) =
)\ON

Smce < 7, (c— 2cu ) > (c— 2¢3) =0.

Thus (*) > SAop?® = (A — 2)p?. Tt follows that fz(p) = p*(ap® +bp? +c¢) >
IN=3t O

8 g/H

Theorem 16. For every \ > % there exists py, 0 < px < 1, such that

for every pseudorandom sequence of graphs R = {R,}, and for every se-
quence of graphs D = {D,,} with d(R = D) > A, if ca(p(R,D)) ewists, then
cs(p(R, D)) > 3%—1- %()\ — %)p‘L whenever 0 < p < py.

In the proof of this theorem we shall need the following very powerful
theorem:

Szemerédi’s Uniformity Lemma. [10] Given € > 0, and a positive inte-
gerl. Then there exist positive integers m = m(e,l) and n = n(e,l) with the
property that the vertex set of every graph G of order > n can be partitioned



into t disjoint classes Ay, ..., Ay such that

(a)l <t <m,

(b) [JAil = |Aj]| <1 forall1 < i,j <t,

(c) All but at most t*c pairs A;, A;, 1 < i,j <t, are e-uniform.

Note that if we set 3(1 4 u;;) = 0(A;, A;) for all 1 < 4,5 < t, then the
t-vector @ with the entries w; ; e-represents the graph G.

Proof of Theorem 16. Let V,, = V(R,,) = V(D,,) for every n. Since {R,,} is
) (0) o

a pseudorandom sequence, there exists a sequence {ey } of positive reals so

that e’ — 0 as n — oo and such that 0R, (U) — 1] < el whenever U C V,

\U| > 67(10)|Vn|. It follows that there must exist a sequence {5%1)} of positive

reals so that 59) — 0 as n — oo and such that:

(1) |05, (U, U") =] < i) whenever U, U’ € V,,, UNU’ = 0, [U], U] > | V,,].
By the definition of p(R,, D,), there exists a sequence {57(12)} of positive
reals so that £ — 0 as n — oo and such that 10p(8,00)(U)— ORp—p, (U)—
(1 = p)br,np, (U)— pép,—r, (U)| < e whenever U C Vi, [U| > e |Val.
It follows that there must exist a sequence {5513)} of positive reals so that
¥ 5 0 as n — oo and such that
(2) [0p(r0.0) (U, U") = 0r, -0, (U, U') = (1=p)0 R, (U, U') = pop, —r, (U, U")] <
e whenever U,U’' C V,,, UNU’" = 0, |U|,|U'| > 2|V,
Take an arbitray sequence of positive reals {5(54)} so that e — 0 as s —
oo. Let {ls} be an arbitrary increasing sequence of positive integers. Let
n(5§4), ls) and m(5§4), ls) are from Szemerédi’s Uniformity Lemma. Choose
an increasing sequence {n}., so that

(a) V| > (et 1),

(1) e
(b) gns S m(8g4)7ls) )
(c) en) <

Eg4>
m(€g4),ls) )

Fix an s, and set n = n,. Fore = e andl = ls apply Szemerédi’s Uniformity
Lemma to the graph R, =+ D, to obtain a partition of V,, into almost equal
classes A1,...,A;,, where t, satisfies [, < t, < m(5g4), ls) and so that

(3) L(1+uiy)— e < dpoep, (U, Uy) < L(14u,)+ el whenever U; C A,
U| > e&|A, U, C A;, |U;| > 5§4)|Aj|, for all but t§€g4) pairs A;,A;, and
where %(1—{—%]-) = Op,=p, (A;, A;) for all 1 <4, j <t,.

10



(a) Note that |A;| > ("(/4”) for every 1 <1 < t,.
Also note that (3) means that us (the ts-vector with entries w;;, 1 < i,7 <
ts) €£4)-represents the graph R, + D,,.
It follows from (1) and (3a) that
(4) |6, (U, U;) = 1| < & whenever U; € A;, [Uj] > eV |A,], U; € A, |U;] >
e Ajl,
as according to (b) |U;| > e{!|A;| > %‘;"') > eM|V,|, and similarly \U;| >
M4, > D [Val.
It follows from (2) and (3a) that
(5) [0p(R.. Dn>(Ui,U) 5Rn . (Ui, Uj)— (1 - )5anDn(UnU)
p5Dn r, (Ui, Uj)| < e whenever U; C 4;, |Ui| > | Ayl U; C A, |U;| >
el! ’AJ‘a
as according to (c) |U;| > 524)|Ai\ > 5g4ziv”‘ > 87(13)‘Vn|, and similarly |U;| >

m(eg >,ls)
el 4] > D).
Multiplying (4) by (1—p) and using the fact that R,, = (R,—D,)U(D,NR,),
we obtain
(6) [(1=p)0r,—p, (Ui, Up) + (1=p)0D, i, (Us, Uy) = (1=p)g| < (1=p)es” when-
ever U; C Ay, [U;] > eI A, Uy € A;, [U;| > |4,
Multiplying (3) by p and using the fact that R, +D,, = (R,—D,,)U(D,—R,,),
we obtain
(7) §(1tuig)— pe? < PO (Ui Us) + PO (Ui Uy) < B (1 i) + pes”
whenever U; C Ay, [U;] > eV A, U; € A;, |U;] > €| Ay, for all but 261
pairs A;,A;.
Adding (6) and (7) we get
(8) 2(1+pui;)— pet’— (1—p)ett) < op,— Dn(UuU) (1=p)dRr,np, (Ui, Uj)+
p5Dn re (Ui, Uj) < 5(14pug )+ petly (1—p)5n whenever U; C A;, |U;| >
eMNA], U; € Ay U] > 2|4, for all but 122 pairs A;,A;.
Slmllarly, addmg (5) and (8) we get
(9) 5(14pu;;)— pett— (1—p)&?,(11)— e < 5 (Ru,Dw) < 3(14pusj)+ petly
(1 p)gS)Jr e whenever U; € Ay, |U;] > eV A, Uy € A, U] > e8] 4),
for all but tzeg ) pairs A A;
Let pis be the ts;-vector with entries pu; ;, and set egS) = pa(f)—i- (l—p)eg)—F

e, Then e — 0 as s — 0o, and thus for each s, the t,-vector pu, pgg‘r’)—

11



represents the graph p(R,,, D,,). Since [y — 0o, also t; — oo.

Let py = py from Lemma 15. Fix a p such that 0 < p < py. If c4s(p(R, D))
exists, then c4(p(R, D)) = lim, o0 c4(p(Rn, Dy)) = limgyoo ca(p(Ry, D.))-
By Lemma 8 (a), lims e c4a(p(Rn,, Dp,)) =
lim, 0o Cy(piis). By the assumption of the theorem, d(R + D) > A, and
so (as each i 524)—represents the graph R,,, + D,,), for some sy big enough,
D(is) > X for every s > so. Cy(pii) = 35+ a(is)p®+ b(us)p*+ c(is)p* > 55+
(A= 2)p* by Lemma 15. It follows that lim,_, Cy(piis) > 55+ 5(A — 2)p?,

and so ¢;(p(R, D)) > 5+ (A= 2)p*. O
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