Ramsey problem on Multiplicities of Complete Subgraphs in Nearly Quasirandom Graphs.

F. Franek ${ }^{1 *}$ and V. Rödl ${ }^{2 * *}$
${ }^{1}$ Department of Compter Science and Systems, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
${ }^{2}$ Department of Mathematcis and Computer Science, Emory University, Atlanta, Georgia, 30322 U.S.A.

Abstract

Let $k_{t}(G)$ be the number of cliques of order t in the graph G. For a graph G with n vertices let $c_{t}(G)=\frac{k_{t}(G)+k_{t}(\bar{G})}{\binom{n}{t}}$. Let $c_{t}(n)=$ $\operatorname{Min}\left\{c_{t}(G):|G|=n\right\}$ and let $c_{t}=\lim _{n \rightarrow \infty} c_{t}(n)$. An old conjecture of Erdös [2] related to Ramsey's theorem states that $c_{t}=2^{1-\binom{t}{2}}$. Recently it was shown to be false by A. Thomason [12]. It is known that $c_{t}(G) \sim 2^{1-\binom{t}{2}}$ whenever G is a pseudorandom graph. Pseudorandom graphs - the graphs "which behave like random graphs" were introduced and studied in [1] and [13]. The aim of this paper is to show that for $t=4, c_{t}(G) \geq 2^{1-\binom{t}{2}}$ if G is a graph arising from pseudorandom by a small perturbation.

1 Introduction.

Denote by $k_{t}(G)$ the number of cliques of order t in the graph G. For a graph G with n vertices let $c_{t}(G)=\frac{k_{t}(G)+k_{t}(\bar{G})}{\binom{n}{t}}$. Let $c_{t}(n)=\operatorname{Min}\left\{c_{t}(G):|G|=n\right\}$, and let $c_{t}=\lim _{n \rightarrow \infty} c_{t}(n)$. Thus $c_{t}(n)$ denotes the minimum proportion of monochromatic K_{t} 's in a coloring of the edges of K_{n} with two colors. An old conjecture of Erdös [2], related to Ramsey's theorem, states that $c_{t}=2^{1-\binom{t}{2}}$. It follows from [6], that the conjecture is true for $t=3$. For a graph H let $k_{H}(G)$ denote the number of (not necessarily induced) subgraphs of G which are isomorphic to H. Set $c_{H}(G)=\frac{k_{H}(G)+k_{H}(\bar{G})}{\binom{n}{t}}$ where t is the order of H, and $c_{H}(n)=\operatorname{Min}\left\{c_{H}(G):|G|=n\right\}$. Finally let e denote the number of edges of

[^0]H. One may ask in general for which graphs $H \lim _{n \rightarrow \infty} c_{H}(n)=\frac{t!}{|\operatorname{Aut}(H)|} 2^{1-e}$, i.e. for which graphs H the asymptotic minimum of $c_{H}(G)$ over all graphs G is the same as $c_{H}(G)$ when G is a random graph. This has been shown to be true for H complete bipartite by Erdös and Moon [3]. Sidorenko [11] showed that it is also true whenever H is a cycle and not true for certain incomplete graph (K_{4} less two incident edges). Thomason proved [12] it false for H a complete graph $K_{t}, t \geq 4$ (i.e. disproved Erdös's conjecture) by constructing for every t an infinite sequence from a single underlying graph, leading to a limit smaller than what the conjecture stipulates. As far as the lower bound, Giraud [7] showed that $c_{4}>\frac{1}{46}$.

We shall write $g_{1}(n) \sim g_{2}(n)$ in place of $\frac{g_{1}(n)}{g_{2}(n)}=1+o(1)$. If G is a graph, then $V(G)$ denotes its vertex set, while $E(G)$ denotes the set of its edges. A neighborhood $N(u)$ of a vertex $u \in V(G)$ is the set of all vertices of G adjacent to u. The degree $d(u)$ of u is the size of its neighborhood.

In [13] and [1] pseudorandom graphs are defined as graphs with the property that $|N(v)| \sim \frac{1}{2}|V|$, and $|N(u) \cap N(v)| \sim \frac{1}{4}|V|$ for almost all $v \in V$ and almost all pairs $u, v \in V$. It was established in [13] and [1] (see also [5], and [8]) that for any fixed $t, k_{t}(R)+k_{t}(\bar{R}) \sim 2^{1-\binom{t}{2}}\binom{|V|}{t}$ for any sufficiently large pseudorandom graph R with vertex set V.

Definition 1. A sequence of graphs $\mathcal{R}=\left\{R_{n}\right\}_{n=0}^{\infty}$ is a pseudorandom sequence iff for all but $o\left(\left|V\left(R_{n}\right)\right|\right.$ vertices $u \in V\left(R_{n}\right), d(u)=|N(u)|$ satisfies $\left|d(u)-\frac{\left|V\left(R_{n}\right)\right|}{2}\right|<o\left(\left|V\left(R_{n}\right)\right|\right)$, and for all but o $\left(\binom{\left|V\left(R_{n}\right)\right|}{2}\right)$ pairs of vertices $u, v \in V\left(R_{n}\right)$, the size $d(u, v)$ of their common neighborhood $N(u) \cap N(v)$ satisfies $\left|d(u, v)-\frac{\left|V\left(R_{n}\right)\right|}{4}\right|<o\left(\left|V\left(R_{n}\right)\right|\right)$.

Pseudorandom graphs have the following property (cf. [5], [13], [8],[1]):
Theorem 2. Let $\mathcal{R}=\left\{R_{n}\right\}$ be a pseudorandom sequence of graphs, then there exists a sequence of positive reals $\left\{\varepsilon_{n}\right\}$ so that $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and so that for every $V \subset V\left(R_{n}\right),|V| \geq \varepsilon_{n}\left|V\left(R_{n}\right)\right|,\left(\frac{1}{2}-\varepsilon_{n}\right)\binom{|V|}{2}<e<$ $\left(\frac{1}{2}+\varepsilon_{n}\right)\binom{|V|}{2}$, where the e is the number of edges of R_{n} induced on a set V.

For a graph $D=(V, E)$ and $U \subset V$ let $\delta_{D}(U)=\frac{E \cap[U]^{2}}{\binom{(U)}{2}}$ denote the edge density of the subgraph induced on U. For a sequence $\mathcal{D}=\left\{D_{n}\right\}$ and $0<p \leq 1$ let $p \mathcal{D}=\left\{p D_{n}\right\}$ be any sequence with the following property: $V_{n}=$ $V\left(p D_{n}\right)=V\left(D_{n}\right)$, and there exists $\varepsilon_{n} \rightarrow 0$ such that $\left|\delta_{p D_{n}}(U)-p \delta_{D_{n}}(U)\right|<$ ε_{n} as $n \rightarrow \infty$ for any $U \subset V_{n},|U|>\varepsilon_{n}\left|V_{n}\right|$. We can think of $p D$ as a graph obtained from the graph D by flipping a p-biased coin (i.e. the probability of the heads coming up is p, while the probability of the tails coming up is $1-p$) for each edge of D, if the heads shows up the edge is left there, otherwise the edge is removed.

Let G be a graph and let H be a graph on 4 vertices and 5 edges (i.e. K_{4} less one edge), then $d(G)$ denotes $c_{H}(G)$.

For a sequence $\mathcal{G}=\left\{G_{n}\right\}$ of graphs with $\left|V\left(G_{n}\right)\right| \rightarrow \infty$ as $n \rightarrow \infty$, let $d(\mathcal{G})=\liminf d\left(G_{n}\right)$.

Answering a question of Erdös (private communication) we proved that (see Theorem 12) $d(\mathcal{G}) \geq \frac{3}{8}$ for any sequence \mathcal{G} of graphs, and the equality holds if and only if \mathcal{G} is a pseudorandom sequence.

We shall employ the following notation: if G and H are graphs such that $V=V(G)=V(H)$ then $G \cap H$ denotes the graph with vertex set V and edge set $E(G) \cap E(H)$, while $G-H$ denotes the graph with vertex set V and edge set $E(G)-E(H)$.

As mentioned above, disproving the conjecture of Erdös, Thomason [12] constructed sequences of graphs $\mathcal{H}=\left\{H_{n}\right\}$ with $c_{4}(\mathcal{H})=\lim _{n \rightarrow \infty} c_{4}\left(H_{n}\right)<$ $\frac{1}{32}$. The main puprose of this note is to establish a result which goes in some sense in the opposite direction and prove that for sequences arising from pseudorandom ones by certain small perturbations Erdös's conjecture is valid:
Let $\mathcal{H}=\left\{H_{n}\right\}$ be an arbitrary sequence of graphs and let $\mathcal{R}=\left\{R_{n}\right\}$ be a pseudorandom sequence with $V\left(R_{n}\right)=V\left(H_{n}\right)=V_{n}$ for all n. Let $D_{n}=$ $R_{n} \div H_{n}$ be a graph whose edges are formed by all pairs one needs to change to obtain H_{n} from R_{n} (i.e. $E\left(D_{n}\right)$ is formed by symmetric difference $E\left(H_{n}\right) \div$ $\left.E\left(R_{n}\right)\right)$. It follows that $H_{n}=R_{n} \div D_{n}$ as well. Suppose that we will not carry all the "changes" corresponding to D_{n} to obtain H_{n} from R_{n} but only "changes" on a "random" subgraph $p D_{n}$ of D_{n}. This way we obtain a graph sequence $\left\{p\left(R_{n}, D_{n}\right)\right\}=\left\{R_{n} \div p D_{n}\right\}$. More formally $p\left(R_{n}, D_{n}\right)$ is a graph sequence that satisfies:

- there exists a sequence $\left\{\varepsilon_{n}\right\}$ of positive reals such that $\varepsilon_{n} \rightarrow 0$ and for

$$
\begin{aligned}
& \text { every } U \subset V_{n},|U|>\varepsilon_{n}\left|V_{n}\right| \\
& \left|\delta_{p\left(R_{n}, D_{n}\right)}(U)-\delta_{R_{n}-D_{n}}(U)-(1-p) \delta_{R_{n} \cap D_{n}}(U)-p \delta_{D_{n}-R_{n}}(U)\right|<\varepsilon_{n} .
\end{aligned}
$$

Figure 1 shows the relative position of edge sets of $R, D, p D$, and $p(R, D)$ respectively.

Figure 1:
Now we are ready to formulate our main result (see Theorem 16):
For every $\lambda>\frac{3}{8}$ there exists $p_{\lambda}, 0<p_{\lambda} \leq 1$, such that for every pseudorandom sequence of graphs $\mathcal{R}=\left\{R_{n}\right\}$, and for every sequence of graphs $\mathcal{D}=\left\{D_{n}\right\}$ with $d(\mathcal{R} \div \mathcal{D}) \geq \lambda$, if $c_{4}(p(\mathcal{R}, \mathcal{D}))$ exists, then $c_{4}(p(\mathcal{R}, \mathcal{D})) \geq \frac{1}{32}+$ $\frac{1}{8}\left(\lambda-\frac{3}{8}\right) p^{4}$ whenever $0<p \leq p_{\lambda}$.
Loosely speaking this means that counterexamples to Erdös's conjecture have to differ essentially from pseudorandom graphs.

2 Further Definitions.

Definition 3. If V, W are disjoint sets of vertices of G, then $e(V, W)$ denotes the number of edges of G with one endpoint in V and the other in $W . \delta(V, W)$ $=\frac{e(V, W)}{|V| \cdot|W|}$ is the edge-density between V and W. If $\varepsilon>0$, we say that V, W is an ε-uniform pair if $\left|\delta(V, W)-\delta\left(V^{\prime}, W^{\prime}\right)\right|<\varepsilon$ whenever $V^{\prime} \subset V$ and $\left|V^{\prime}\right| \geq \varepsilon \cdot|V|$, and $W^{\prime} \subset W$ and $\left|W^{\prime}\right| \geq \varepsilon \cdot|W|$.

Definition 4. Let t be a positive integer. \vec{x} is at-vector if it is a vector with t^{2} real valued entries $x_{i, j}, 1 \leq i, j \leq t$ and so that $x_{i, j}=x_{j, i} . B_{t}=\left\{\vec{x} \in R^{t^{2}}\right.$: \vec{x} is a t-vector $\mathfrak{B}\left|x_{i, j}\right| \leq 1$ for all $\left.1 \leq i, j \leq t\right\}$.

Definition 5. Let G be a graph. Let $\varepsilon>0$, and let t be a positive integer. We say that a t-vector $\vec{x} \varepsilon$-represents graph G iff the vertex set of G can be partitioned into t disjoint classes A_{1}, \ldots, A_{t} so that $\left|\left|A_{i}\right|-\left|A_{j}\right|\right| \leq 1$ for all $1 \leq i, j \leq t$, and all but $t^{2} \varepsilon$ pairs $\left\{A_{i}, A_{j}\right\}$, are ε-uniform, and where $\delta\left(A_{i}, A_{j}\right)=\frac{1}{2}\left(1+x_{i, j}\right)$ for all $1 \leq i, j \leq t, i \neq j$, and $\delta\left(A_{i}, A_{i}\right)=\delta\left(A_{i}\right)$ for all $1 \leq i \leq t$. If \mathcal{G} is an infinite sequence of graphs and \vec{x} is a t-vector, we say that \vec{x} represents sequence \mathcal{G} iff there is a sequence of positive reals $\left\{\varepsilon_{n}\right\}$ so that $\varepsilon_{n} \rightarrow 0$ and $\vec{x} \varepsilon_{n}$-represents G_{n}, for every n.
(We use t-vectors as representatives of sequences of graphs. For technical reasons the coordinates of t-vectors are not edge-densities directly, but edgedensities transformed by $p_{i, j}=\frac{1}{2}\left(1+x_{i, j}\right)$. Henceforth B_{t} defined above is the part of $R^{t^{2}}$ which is meaningful for us. Note also that the origin then represents pseudorandom graphs as $p_{i, j}=\frac{1}{2}$ corresponds to $x_{i, j}=0$.)

Now we can reformulate Theorem 2 in our language as follows:
Theorem 5. A t-vector \vec{x} represents a pseudorandom sequence iff $\vec{x}=\vec{o}$.
At this point we introduce a few polynomials in t^{2} variables.
Definition 7.: Let \vec{x} be t-vector.

$$
\begin{align*}
C_{4}(\vec{x})= & \frac{1}{2^{6} \cdot t^{4}} \sum_{1 \leq i, j, k, l \leq t}\left[\left(1+x_{i, j}\right)\left(1+x_{i, k}\right)\left(1+x_{i, l}\right)\left(1+x_{j, k}\right)\left(1+x_{j, l}\right)\left(1+x_{k, l}\right)\right. \\
& \left.+\left(1-x_{i, j}\right)\left(1-x_{i, k}\right)\left(1-x_{i, l}\right)\left(1-x_{j, k}\right)\left(1-x_{j, l}\right)\left(1-x_{k, l}\right)\right] \tag{7.1}\\
D(\vec{x})= & \frac{6}{2^{5} \cdot t^{4}} \sum_{1 \leq i, j, k, l \leq t}\left[\left(1+x_{i, j}\right)\left(1+x_{i, k}\right)\left(1+x_{i, l}\right)\left(1+x_{j, k}\right)\left(1+x_{j, l}\right)\right. \\
& \left.+\left(1-x_{i, j}\right)\left(1-x_{i, k}\right)\left(1-x_{i, l}\right)\left(1-x_{j, k}\right)\left(1-x_{j, l}\right)\right] \tag{7.2}\\
c(\vec{x})= & \frac{3}{2^{5} \cdot t^{4}}\left(4 t \sum_{1 \leq i, j, k \leq t} x_{i, j} x_{j, k}+\sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{k, l}\right) \tag{7.3}\\
b(\vec{x})= & \frac{3}{2^{5} \cdot t^{4}}\left(\sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{i, l} x_{j, k} x_{k, l}+4 \sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{i, l} x_{j, l} x_{k, l}\right) \tag{7.4}\\
a(\vec{x})= & \frac{1}{2^{5} \cdot t^{4}} \sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{i, k} x_{i, l} x_{j, k} x_{j, l} x_{k, l} \tag{7.5}
\end{align*}
$$

Lemma 8.

(a) Let $\left\{\varepsilon_{n}\right\}$ be an infinite sequence of positive reals so that $\varepsilon_{n} \rightarrow 0$.

Let $\left\{t_{n}\right\}$ be an infinite sequence of positive integers so that $t_{n} \rightarrow \infty$.
Let $\left\{G_{n}\right\}$ be an infinite sequence of graphs. Let for each n, \vec{x}_{n} be a t_{n}-vector such that it ε_{n}-represents graph G_{n}. Then $\lim _{n \rightarrow \infty} c_{4}\left(G_{n}\right)=$ $\lim _{n \rightarrow \infty} C_{4}\left(\vec{x}_{n}\right)$, and $\lim _{n \rightarrow \infty} d\left(G_{n}\right)=\lim _{n \rightarrow \infty} D\left(\vec{x}_{n}\right)$.
(b) Let a t-vector \vec{x} represent a graph sequence \mathcal{G}. Then $d(\mathcal{G})=D(\vec{x})$.

Proof We omit the somehow tedious but not difficult proof. For the method see [9].

3 Methods and Results.

Lemma 9. For any t-vector \vec{x},

$$
\begin{gather*}
C_{4}(\vec{x})=\frac{1}{32}+c(\vec{x})+b(\vec{x})+a(\vec{x}) \tag{9.1}\\
D(\vec{x})=\frac{3}{8}+4(2 c(\vec{x})+b(\vec{x})) \tag{9.2}
\end{gather*}
$$

Proof The tedious although straightforward calculations to prove the claim are left to the reader.

Lemma 10. For any t-vector $\vec{x} \in B_{t},|a(\vec{x})| \leq \frac{1}{32}$.
Proof By Eq. 7.5

$$
\begin{aligned}
& |a(\vec{x})|=\frac{1}{2^{5} \cdot t^{4}}\left|\sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{i, k} x_{i, k} x_{j, k} x_{j, l} x_{k, l}\right| \leq \\
& \quad \frac{1}{2^{5} \cdot t^{4}} \sum_{1 \leq i, j, k, l \leq t}\left|x_{i, j}\right|\left|x_{i, k}\right|\left|x_{i, k}\right|\left|x_{j, k}\right|\left|x_{j, l}\right|\left|x_{k, l}\right| \leq \frac{1}{2^{5} \cdot t^{4}} \sum_{1 \leq i, j, k, l \leq t} 1= \\
& \quad \frac{1}{2^{5} \cdot t^{4}}{ }^{4} \stackrel{\frac{1}{2^{5}}}{2^{5}}=\frac{1}{32} .
\end{aligned}
$$

Lemma 11. For any t-vector $\vec{x}, c(\vec{x}) \geq 0$.

Proof $c(\vec{x})=\frac{3}{32 \cdot t^{4}}\left(4 t \sum_{1 \leq i, j, k \leq t} x_{i, j} x_{i, k}+\sum_{1 \leq i, j, k, k, l \leq t} x_{i, j} x_{k, l}\right)$. First observe that $\sum_{1 \leq j, k \leq t} x_{i, j} x_{i, k}=\left(\sum_{1 \leq j \leq t} x_{i, j}\right)^{2}$ for any fixed i. Hence $\sum_{1 \leq i \leq t}\left(\sum_{1 \leq j \leq t} x_{i, j}\right)^{2}=$ $\sum_{1 \leq i, j, k \leq t} x_{i, j} x_{i, k}$. Then observe that $\left(\sum_{1 \leq i, j \leq t} x_{i, j}\right)^{2}=\sum_{1 \leq i, j \leq t} \sum_{1 \leq k, l \leq t} x_{i, j} x_{k, l}=$ $\sum_{1 \leq i, j, k, l \leq t} x_{i, j} x_{k, l}$. Therefore $c(\vec{x})=$
$\frac{3}{32 \cdot t^{4}}\left(4 t \sum_{1 \leq i \leq t}\left(\sum_{1 \leq j \leq t} x_{i, j}\right)^{2}+\left(\sum_{1 \leq i \leq t} \sum_{1 \leq j \leq t} x_{i, j}\right)^{2}\right) \geq 0$.
Theorem 12. Let \mathcal{G} be a sequence of graphs. Then $d(\mathcal{G}) \geq \frac{3}{8}$ and equality holds if and only if \mathcal{G} is a pseudorandom sequence.
Proof Fix a graph $G \in \mathcal{G}$ of order m. For a pair of vertices $\{v, w\} \in[V(G)]^{2}$ define $b(v, w)$ as the number of vertices $u \in V(G)$ such that $\{v, u\},\{w, u\} \in$ $E(G)$ provided $\{v, w\} \in V(G)$, or the number of vertices $u \in V(G)$ such that neither $\{v, u\} \in V(G)$, nor $\{w, u\} \in V(G)$ provided $\{v, w\} \notin V(G)$.
Let $q(G)=k_{3}(G)+k_{3}(\bar{G})$ and set $q=q(G)$. Then $\sum_{\{v, w\} \in[V(G)]^{2}} b(v, w)=$ $3 q$. Set

$$
\begin{equation*}
b(v, w)=\frac{3 q}{\binom{(2)}{2}}+\Delta(v, w) \tag{12.0}
\end{equation*}
$$

Then
$3 q=\sum_{\{v, w\} \in[V(G)]^{2}} b(v, w)=\sum_{\{v, w\} \in[V(G)]^{2}}\left(\frac{3 q}{\binom{m}{2}}+\Delta(v, w)\right)=3 q+$
$\sum_{\{v, w\} \in[V(G)]^{2}} \Delta(v, w)$
and hence $\sum_{\{v, w\} \in[V(G)]^{2}} \Delta(v, w)=0$. On the other hand the number of non-
induced subgraphs on 4 vertices and 5 edges in G and its complement \bar{G}
equals $\sum_{\{v, w\} \in[V(G)]^{2}}\left(\frac{b(v, w)}{2}\right)=\frac{1}{2} \sum_{\{v, w\} \in[V(G)]^{2}}\left(b^{2}(v, w)-b(v, w)\right) \geq$
$\frac{1}{2}\left[\frac{9 q^{2}}{\binom{m}{2}}-3 q+\sum_{\{v, w\} \in[V(G)]^{2}} \Delta^{2}(v, w)\right]$.

Set $\left.q_{0}(G)=\left(\frac{\lfloor V(G) \mid}{2}\right\rfloor\right)+\left(\left\lceil\frac{|V(G)|\rceil}{2}\right\rceil\right)$ and set $q_{0}=q_{0}(G)$. As $q \geq q_{0}$ (cf. [6]) and
 we can conclude that $d(G) \geq \frac{f\left(q_{0}\right)}{\binom{m}{4}}$. Since $f\left(q_{0}\right) \sim \frac{1}{64} m^{4}$, we can infer that $\lim _{n \rightarrow \infty} d\left(G_{n}\right) \geq \frac{3}{8}$, and hence $d(\mathcal{G}) \geq \frac{3}{8}$.
Conversely, let $d(\mathcal{G})=\frac{3}{8}$. This means that for $G_{n} \in \mathcal{G}$ both $f\left(q\left(G_{n}\right)\right)$ (and hence also $\left.q\left(G_{n}\right)\right)$ and $\sum_{\{v, w\} \in\left[V\left(G_{n}\right)\right]^{2}} \Delta^{2}(v, w)$ have to be asymptotically minimal. More precisely

$$
\begin{equation*}
q\left(G_{n}\right) \sim q_{0}\left(G_{n}\right) \tag{12.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\left(\mid G_{4}\right) \mid} \sum_{\{v, w\} \in\left[V\left(G_{n}\right)\right]^{2}} \Delta^{2}(v, w)=0 \tag{12.2}
\end{equation*}
$$

Fix a graph $G \in \mathcal{G}$ of order m, and let d_{1}, \ldots, d_{m} be the degree sequence of G. Using the argument of [6] one can show that Eq. 12.1 implies that

$$
\begin{equation*}
\text { for all but } o(m) \text { vertices of } G\left|d_{i}-\frac{m}{2}\right|<o(m) \tag{12.3}
\end{equation*}
$$

Indeed, the number of induced subgraphs of G which have 3 vertices and one or two edges equals to

$$
\binom{m}{3}-q(G)=\frac{1}{2} \sum_{i=1}^{m} d_{i}\left(m-1-d_{i}\right)=\frac{1}{4} \sum_{i=1}^{m}\left((m-1)^{2}-d_{i}^{2}-\left(m-1-d_{i}\right)^{2}\right)
$$

and thus is asymptotically maximized when (12.3) holds.
It follows from Eq. 12.0 that

$$
\begin{equation*}
\frac{1}{\binom{m}{2}} \sum_{\{v, w\} \in[V(G)]^{2}} b(v, w)=\frac{3 q_{0}(G)}{\binom{m}{2}} \sim \frac{m}{4} \tag{12.4}
\end{equation*}
$$

On the other hand $\sum_{\{v, w\} \in[V(G)]^{2}} b^{2}(v, w)=\frac{9 q_{0}^{2}(G)}{\binom{m}{2}}+\sum_{\{v, w\} \in[V(G)]^{2}} \Delta^{2}(v, w)$ and hence

$$
\begin{equation*}
\frac{1}{\binom{m}{2}} \sum_{\{v, w\} \in[V(G)]^{2}} b^{2}(v, w) \sim \frac{m^{2}}{16} \tag{12.5}
\end{equation*}
$$

Combining Eqs. 12.4 and 12.5 we conclude that $b(v, w) \sim \frac{m}{4}$ for all but $o\left(\binom{m}{2}\right)$ pairs $v, w \in V(G)$. Whence \mathcal{G} is a pseudorandom sequence.

Lemma 13. $D(\vec{x})$ is strictly minimal for $\vec{x}=\vec{o}$.

Proof Follows from Lemma 8 (b), Theorem 5, and Theorem 12.

Corollary 14. For any t-vector $\vec{x}, 2 c(\vec{x})+b(\vec{x}) \geq 0$. The equality is attained if and only if $\vec{x}=\vec{o}$.

Proof Follows directly from Lemma 13 using Eq. 9.2.

Lemma 15. For any $\lambda>\frac{3}{8}$ there is $\mu_{\lambda}, 0<\mu_{\lambda} \leq 1$, so that for any positive integer t and for any $\vec{u} \in B_{t}$ with $D(\vec{u}) \geq \lambda, f_{\vec{u}}(\mu)=a(\vec{u}) \mu^{6}+b(\vec{u}) \mu^{4}+$ $c(\vec{u}) \mu^{2} \geq \frac{1}{8}\left(\lambda-\frac{3}{8}\right) \mu^{4}$ for any $\mu \in\left[0, \mu_{\lambda}\right]$.

Proof We have in view of Eq. 9.2 and abbreviating $a(\vec{u})$ as $a, b(\vec{u})$ as b, and $c(\vec{u})$ as $c D(\vec{u})=\frac{3}{8}+4(2 c+b) \geq \lambda$ which means that $2 c+b \geq \lambda_{0}=\frac{1}{4}\left(\lambda-\frac{3}{8}\right)>$ 0 , and so $b \geq \lambda_{0}-2 c$. Set $\mu_{\lambda}=\min \left\{4 \sqrt{\lambda_{0}}, \frac{1}{\sqrt{2}}\right\}$, and let $\mu \in\left[0, \mu_{\lambda}\right]$.

$$
f_{\vec{u}}(\mu)=a \mu^{6}+b \mu^{4}+c \mu^{2}=\mu^{2}\left(a \mu^{4}+b \mu^{2}+c\right) .
$$

Since $|a| \leq \frac{1}{32}$, and since $b \geq \lambda_{0}-2 c, a \mu^{4}+b \mu^{2}+c \geq-\frac{1}{32} \mu^{4}+\left(\lambda_{0}-2 c\right) \mu^{2}+$ $c=\left(-\frac{1}{32} \mu^{4}+\lambda_{0} \mu^{2}\right)+\left(c-2 c \mu^{2}\right)=\left({ }^{*}\right)$
Since $\mu \leq 4 \sqrt{\lambda_{0}},\left(-\frac{1}{32} \mu^{4}+\lambda_{0} \mu^{2}\right) \geq\left(-\frac{1}{32} \mu^{2} 16 \lambda_{0}+\lambda_{0} \mu^{2}\right)=\left(-\frac{1}{2} \lambda_{0} \mu^{2}+\lambda_{0} \mu^{2}\right)=$ $\frac{1}{2} \lambda_{0} \mu^{2}$.
Since $\mu \leq \frac{1}{\sqrt{2}},\left(c-2 c \mu^{2}\right) \geq\left(c-2 c \frac{1}{2}\right)=0$.
Thus $\left({ }^{*}\right) \geq \frac{1}{2} \lambda_{0} \mu^{2}=\frac{1}{8}\left(\lambda-\frac{3}{8}\right) \mu^{2}$. It follows that $f_{\vec{u}}(\mu)=\mu^{2}\left(a \mu^{4}+b \mu^{2}+c\right) \geq$ $\frac{1}{8}\left(\lambda-\frac{3}{8}\right) \mu^{4}$.

Theorem 16. For every $\lambda>\frac{3}{8}$ there exists $p_{\lambda}, 0<p_{\lambda} \leq 1$, such that for every pseudorandom sequence of graphs $\mathcal{R}=\left\{R_{n}\right\}$, and for every sequence of graphs $\mathcal{D}=\left\{D_{n}\right\}$ with $d(\mathcal{R} \div \mathcal{D}) \geq \lambda$, if $c_{4}(p(\mathcal{R}, \mathcal{D}))$ exists, then $c_{4}(p(\mathcal{R}, \mathcal{D})) \geq \frac{1}{32}+\frac{1}{8}\left(\lambda-\frac{3}{8}\right) p^{4}$ whenever $0<p \leq p_{\lambda}$.

In the proof of this theorem we shall need the following very powerful theorem:

Szemerédi's Uniformity Lemma. [10] Given $\varepsilon>0$, and a positive integer l. Then there exist positive integers $m=m(\varepsilon, l)$ and $n=n(\varepsilon, l)$ with the property that the vertex set of every graph G of order $\geq n$ can be partitioned
into t disjoint classes A_{1}, \ldots, A_{t} such that
(a) $l \leq t \leq m$,
(b) $\left|\left|A_{i}\right|-\left|A_{j}\right|\right| \leq 1$ for all $1 \leq i, j \leq t$,
(c) All but at most $t^{2} \varepsilon$ pairs $A_{i}, A_{j}, 1 \leq i, j \leq t$, are ε-uniform.

Note that if we set $\frac{1}{2}\left(1+u_{i, j}\right)=\delta\left(A_{i}, A_{j}\right)$ for all $1 \leq i, j \leq t$, then the t-vector \vec{u} with the entries $u_{i, j} \varepsilon$-represents the graph G.

Proof of Theorem 16. Let $V_{n}=V\left(R_{n}\right)=V\left(D_{n}\right)$ for every n. Since $\left\{R_{n}\right\}$ is a pseudorandom sequence, there exists a sequence $\left\{\varepsilon_{n}^{(0)}\right\}$ of positive reals so that $\varepsilon_{n}^{(0)} \rightarrow 0$ as $n \rightarrow \infty$ and such that $\left|\delta_{R_{n}}(U)-\frac{1}{2}\right|<\varepsilon_{n}^{(0)}$ whenever $U \subset V_{n}$, $|U|>\varepsilon_{n}^{(0)}\left|V_{n}\right|$. It follows that there must exist a sequence $\left\{\varepsilon_{n}^{(1)}\right\}$ of positive reals so that $\varepsilon_{n}^{(1)} \rightarrow 0$ as $n \rightarrow \infty$ and such that:
(1) $\left|\delta_{R_{n}}\left(U, U^{\prime}\right)-\frac{1}{2}\right|<\varepsilon_{n}^{(1)}$ whenever $U, U^{\prime} \subset V_{n}, U \cap U^{\prime}=\emptyset,|U|,\left|U^{\prime}\right|>\varepsilon_{n}^{(1)}\left|V_{n}\right|$. By the definition of $p\left(R_{n}, D_{n}\right)$, there exists a sequence $\left\{\varepsilon_{n}^{(2)}\right\}$ of positive reals so that $\varepsilon_{n}^{(2)} \rightarrow 0$ as $n \rightarrow \infty$ and such that $\mid \delta_{p\left(R_{n}, D_{n}\right)}(U)-\delta_{R_{n}-D_{n}}(U)-$ $(1-p) \delta_{R_{n} \cap D_{n}}(U)-p \delta_{D_{n}-R_{n}}(U) \mid<\varepsilon_{n}^{(2)}$ whenever $U \subset V_{n},|U|>\varepsilon_{n}^{(2)}\left|V_{n}\right|$. It follows that there must exist a sequence $\left\{\varepsilon_{n}^{(3)}\right\}$ of positive reals so that $\varepsilon_{n}^{(3)} \rightarrow 0$ as $n \rightarrow \infty$ and such that
(2) $\left|\delta_{p\left(R_{n}, D_{n}\right)}\left(U, U^{\prime}\right)-\delta_{R_{n}-D_{n}}\left(U, U^{\prime}\right)-(1-p) \delta_{R_{n} \cap D_{n}}\left(U, U^{\prime}\right)-p \delta_{D_{n}-R_{n}}\left(U, U^{\prime}\right)\right|<$ $\varepsilon_{n}^{(3)}$ whenever $U, U^{\prime} \subset V_{n}, U \cap U^{\prime}=\emptyset,|U|,\left|U^{\prime}\right|>\varepsilon_{n}^{(3)}\left|V_{n}\right|$.
Take an arbitray sequence of positive reals $\left\{\varepsilon_{s}^{(4)}\right\}$ so that $\varepsilon_{s}^{(4)} \rightarrow 0$ as $s \rightarrow$ ∞. Let $\left\{l_{s}\right\}$ be an arbitrary increasing sequence of positive integers. Let $n\left(\varepsilon_{s}^{(4)}, l_{s}\right)$ and $m\left(\varepsilon_{s}^{(4)}, l_{s}\right)$ are from Szemerédi's Uniformity Lemma. Choose an increasing sequence $\left\{n_{s}\right\}_{s=0}^{\infty}$ so that
(a) $\left|V_{n_{s}}\right| \geq n\left(\varepsilon_{s}^{(4)}, l_{s}\right)$,
(b) $\varepsilon_{n_{s}}^{(1)} \leq \frac{\varepsilon_{s}^{(4)}}{m\left(\varepsilon_{s}^{(4)}, l_{s}\right)}$,
(c) $\varepsilon_{n_{s}}^{(3)} \leq \frac{\varepsilon_{s}^{(4)}}{m\left(\varepsilon_{s}^{(4)}, l_{s}\right)}$.

Fix an s, and set $n=n_{s}$. For $\varepsilon=\varepsilon_{s}^{(4)}$ and $l=l_{s}$ apply Szemerédi's Uniformity Lemma to the graph $R_{n} \div D_{n}$ to obtain a partition of V_{n} into almost equal classes $A_{1}, \ldots, A_{t_{s}}$, where t_{s} satisfies $l_{s} \leq t_{s} \leq m\left(\varepsilon_{s}^{(4)}, l_{s}\right)$ and so that
(3) $\frac{1}{2}\left(1+u_{i, j}\right)-\varepsilon_{s}^{(4)}<\delta_{R_{n} \div D_{n}}\left(U_{i}, U_{j}\right)<\frac{1}{2}\left(1+u_{i, j}\right)+\varepsilon_{s}^{(4)}$ whenever $U_{i} \subset A_{i}$, $\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right|, U_{j} \subset A_{j},\left|U_{j}\right|>\varepsilon_{s}^{(4)}\left|A_{j}\right|$, for all but $t_{s}^{2} \varepsilon_{s}^{(4)}$ pairs A_{i}, A_{j}, and where $\frac{1}{2}\left(1+u_{i, j}\right)=\delta_{R_{n} \div D_{n}}\left(A_{i}, A_{j}\right)$ for all $1 \leq i, j \leq t_{s}$.
(a) Note that $\left|A_{i}\right| \geq \frac{\left|V_{n}\right|}{m\left(\varepsilon_{s}^{(4)}, l_{s}\right)}$ for every $1 \leq i \leq t_{s}$.

Also note that (3) means that \vec{u}_{s} (the t_{s}-vector with entries $u_{i, j}, 1 \leq i, j \leq$ $\left.t_{s}\right) \varepsilon_{s}^{(4)}$-represents the graph $R_{n} \div D_{n}$.
It follows from (1) and (3a) that
(4) $\left|\delta_{R_{n}}\left(U_{i}, U_{j}\right)-\frac{1}{2}\right|<\varepsilon_{n}^{(1)}$ whenever $U_{i} \subset A_{i},\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right|, U_{j} \subset A_{j},\left|U_{j}\right|>$ $\varepsilon_{s}^{(4)}\left|A_{j}\right|$,
as according to (b) $\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right| \geq \frac{\varepsilon_{s}^{(4)}\left|V_{n}\right|}{m\left(\varepsilon_{s}^{(4)}, l_{s}\right)} \geq \varepsilon_{n}^{(1)}\left|V_{n}\right|$, and similarly $\left|U_{j}\right|>$ $\varepsilon_{s}^{(4)}\left|A_{j}\right| \geq \varepsilon_{n}^{(1)}\left|V_{n}\right|$.
It follows from (2) and (3a) that
(5) $\mid \delta_{p\left(R_{n}, D_{n}\right)}\left(U_{i}, U_{j}\right)-\delta_{R_{n}-D_{n}}\left(U_{i}, U_{j}\right)-(1-p) \delta_{R_{n} \cap D_{n}}\left(U_{i}, U_{j}\right)-$ $p \delta_{D_{n}-R_{n}}\left(U_{i}, U_{j}\right) \mid<\varepsilon_{n}^{(3)}$ whenever $U_{i} \subset A_{i},\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right|, U_{j} \subset A_{j},\left|U_{j}\right|>$ $\varepsilon_{s}^{(4)}\left|A_{j}\right|$,
as according to (c) $\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right| \geq \frac{\varepsilon_{s}^{(4)}\left|V_{n}\right|}{m\left(\varepsilon_{s}^{(4)}, l_{s}\right)} \geq \varepsilon_{n}^{(3)}\left|V_{n}\right|$, and similarly $\left|U_{j}\right|>$ $\varepsilon_{s}^{(4)}\left|A_{j}\right| \geq \varepsilon_{n}^{(3)}\left|V_{n}\right|$.
Multiplying (4) by (1-p) and using the fact that $R_{n}=\left(R_{n}-D_{n}\right) \cup\left(D_{n} \cap R_{n}\right)$, we obtain
(6) $\left|(1-p) \delta_{R_{n}-D_{n}}\left(U_{i}, U_{j}\right)+(1-p) \delta_{D_{n} \cap R_{n}}\left(U_{i}, U_{j}\right)-(1-p) \frac{1}{2}\right|<(1-p) \varepsilon_{n}^{(1)}$ whenever $U_{i} \subset A_{i},\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right|, U_{j} \subset A_{j},\left|U_{j}\right|>\varepsilon_{s}^{(4)}\left|A_{j}\right|$.
Multiplying (3) by p and using the fact that $R_{n} \div D_{n}=\left(R_{n}-D_{n}\right) \cup\left(D_{n}-R_{n}\right)$, we obtain
(7) $\frac{p}{2}\left(1+u_{i, j}\right)-p \varepsilon_{s}^{(4)}<p \delta_{R_{n}-D_{n}}\left(U_{i}, U_{j}\right)+p \delta_{D_{n}-R_{n}}\left(U_{i}, U_{j}\right)<\frac{p}{2}\left(1+u_{i, j}\right)+p \varepsilon_{s}^{(4)}$ whenever $U_{i} \subset A_{i},\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right|, U_{j} \subset A_{j},\left|U_{j}\right|>\varepsilon_{s}^{(4)}\left|A_{j}\right|$, for all but $t_{s}^{2} \varepsilon_{s}^{(4)}$ pairs A_{i}, A_{j}.
Adding (6) and (7) we get
(8) $\frac{1}{2}\left(1+p u_{i, j}\right)-p \varepsilon_{s}^{(4)}-(1-p) \varepsilon_{n}^{(1)}<\delta_{R_{n}-D_{n}}\left(U_{i}, U_{j}\right)+(1-p) \delta_{R_{n} \cap D_{n}}\left(U_{i}, U_{j}\right)+$ $p \delta_{D_{n}-R_{n}}\left(U_{i}, U_{j}\right)<\frac{1}{2}\left(1+p u_{i, j}\right)+p \varepsilon_{s}^{(4)}+(1-p) \varepsilon_{n}^{(1)}$ whenever $U_{i} \subset A_{i},\left|U_{i}\right|>$ $\varepsilon_{s}^{(4)}\left|A_{i}\right|, U_{j} \subset A_{j},\left|U_{j}\right|>\varepsilon_{s}^{(4)}\left|A_{j}\right|$, for all but $t_{s}^{2} \varepsilon_{s}^{(4)}$ pairs A_{i}, A_{j}.
Similarly, adding (5) and (8) we get
(9) $\frac{1}{2}\left(1+p u_{i, j}\right)-p \varepsilon_{s}^{(4)}-(1-p) \varepsilon_{n}^{(1)}-\varepsilon_{n}^{(3)}<\delta_{p\left(R_{n}, D_{n}\right)}<\frac{1}{2}\left(1+p u_{i, j}\right)+p \varepsilon_{s}^{(4)}+$ $(1-p) \varepsilon_{n}^{(1)}+\varepsilon_{n}^{(3)}$, whenever $U_{i} \subset A_{i},\left|U_{i}\right|>\varepsilon_{s}^{(4)}\left|A_{i}\right|, U_{j} \subset A_{j},\left|U_{j}\right|>\varepsilon_{s}^{(4)}\left|A_{j}\right|$, for all but $t_{s}^{2} \varepsilon_{s}^{(4)}$ pairs A_{i}, A_{j}.
Let $p \vec{u}_{s}$ be the t_{s}-vector with entries $p u_{i, j}$, and set $\varepsilon_{s}^{(5)}=p \varepsilon_{s}^{(4)}+(1-p) \varepsilon_{n}^{(1)}+$ $\varepsilon_{n}^{(3)}$. Then $\varepsilon_{s}^{(5)} \rightarrow 0$ as $s \rightarrow \infty$, and thus for each s, the t_{s}-vector $p \vec{u}_{s} p \varepsilon_{s}^{(5)}$ -
represents the graph $p\left(R_{n_{s}}, D_{n_{s}}\right)$. Since $l_{s} \rightarrow \infty$, also $t_{s} \rightarrow \infty$.
Let $p_{\lambda}=\mu_{\lambda}$ from Lemma 15. Fix a p such that $0<p \leq p_{\lambda}$. If $c_{4}(p(\mathcal{R}, \mathcal{D}))$ exists, then $c_{4}(p(\mathcal{R}, \mathcal{D}))=\lim _{n \rightarrow \infty} c_{4}\left(p\left(R_{n}, D_{n}\right)\right)=\lim _{s \rightarrow \infty} c_{4}\left(p\left(R_{n_{s}}, D_{n_{s}}\right)\right)$. By Lemma 8 (a), $\lim _{s \rightarrow \infty} c_{4}\left(p\left(R_{n_{s}}, D_{n_{s}}\right)\right)=$ $\lim _{s \rightarrow \infty} C_{4}\left(p \vec{u}_{s}\right)$. By the assumption of the theorem, $d(\mathcal{R} \div \mathcal{D}) \geq \lambda$, and so (as each $\vec{u}_{s} \varepsilon_{s}^{(4)}$-represents the graph $R_{n_{s}} \div D_{n_{s}}$), for some s_{0} big enough, $D\left(\vec{u}_{s}\right) \geq \lambda$ for every $s \geq s_{0} . C_{4}\left(p \vec{u}_{s}\right)=\frac{1}{32}+a\left(\vec{u}_{s}\right) p^{6}+b\left(\vec{u}_{s}\right) p^{4}+c\left(\vec{u}_{s}\right) p^{2} \geq \frac{1}{32}+$ $\frac{1}{8}\left(\lambda-\frac{3}{8}\right) p^{4}$ by Lemma 15. It follows that $\lim _{s \rightarrow \infty} C_{4}\left(p \vec{u}_{s}\right) \geq \frac{1}{32}+\frac{1}{8}\left(\lambda-\frac{3}{8}\right) p^{4}$, and so $c_{4}(p(\mathcal{R}, \mathcal{D})) \geq \frac{1}{32}+\frac{1}{8}\left(\lambda-\frac{3}{8}\right) p^{4}$.

Acknowledgement. The authors would like to express their thanks to Peter Frankl for his helpful ideas and discussions concerning the topic of this paper.

References

[1] F.R.K. Chung, R.L. Graham, R.M. Wilson, Quasi-random Graphs, Combinatorica 9 (1989), no.4, 345-362.
[2] P. Erdös, On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hung. Acad. Sci., VII, ser. A 3 (1962), 459464.
[3] P. Erdös and J.W. Moon, On subgraphs on the complete bipartite graph, Canad.Math.Bull. 7 (1964), 35-39.
[4] F. Franek and V. Rödl, 2-colorings of complete graphs with small number of monochromatic K_{4} subgraphs, to appear in Discr. Math.
[5] R.L. Graham, J.H. Spencer, A constructive solution to a tournament problem, Canad.Math.Bull. 14 (1971), 45-48.
[6] A.W. Goodman, On sets of acquaintances and strangers at any party, Amer.Math.Monthly, 66 (1959), 778-783.
[7] G. Giraud, Sur le probleme de Goodman pour les quadrangles et la majoration des nombres de Ramsey, J.Combin. Theory Ser. B 30 (1979), 237-253.
[8] P. Frankl, V. Rödl, R.M. Wilson, The number of submatrices of given type in a Hadamard matrix and related results, J.Comb.Theory, 44 (1988), 317-328.
[9] V. Rödl, On universality of graphs with uniformly distributed edges, Discr. Math. 59 (1986), no. 1-2, 125-134.
[10] E. Szemerédi, Regular partitions of graphs, in Proc. Colloque Internat. CNRS (J.-C. Bermond et. al., eds.), Paris, 1978, 399-401.
[11] A.F. Sidorenko, Tsikly v grafakh i funktsional'nye neravenstva, Matematicheskie Zametki, 46 (1989), no. 5, 72-79 (in Russian).
[12] A. Thomason, A disproof of a conjecture of Erdös in Ramsey theory, J. London Math. Soc. (2), 39 (1898), no. 2, 246-255.
[13] A. Thomason, Pseudo-random graphs, in "Proceedings of Random Graphs, Poznan, '85", (M. Karonski, ed.), North-Holland Math. Stud., 144, North-Holland, Amsterdam, 1987.

Received: September 13, 1989
Revised: October 1, 1991

[^0]: *Research supported by NSERC grant OGP0025112
 ${ }^{* *}$ Research supported by NSF grant DMS 9011850

