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Abstract

Let kt(G) be the number of cliques of order t in the graph G. For

a graph G with n vertices let ct(G) = kt(G)+kt(Ḡ)

(n

t
)

. Let ct(n) =

Min{ct(G) : |G| = n} and let ct = limn→∞ ct(n). An old conjec-

ture of Erdös [2] related to Ramsey’s theorem states that ct = 21−(t

2).
Recently it was shown to be false by A. Thomason [12]. It is known

that ct(G) ∼ 21−(t

2) whenever G is a pseudorandom graph. Pseu-
dorandom graphs - the graphs ”which behave like random graphs” -
were introduced and studied in [1] and [13]. The aim of this paper is

to show that for t = 4, ct(G) ≥ 21−(t

2) if G is a graph arising from
pseudorandom by a small perturbation.

1 Introduction.

Denote by kt(G) the number of cliques of order t in the graph G. For a graph

G with n vertices let ct(G) = kt(G)+kt(Ḡ)

(n

t)
. Let ct(n) = Min{ct(G) : |G| = n},

and let ct = limn→∞ ct(n). Thus ct(n) denotes the minimum proportion of
monochromatic Kt’s in a coloring of the edges of Kn with two colors. An old

conjecture of Erdös [2], related to Ramsey’s theorem, states that ct = 21−(t

2).
It follows from [6], that the conjecture is true for t = 3. For a graph H let
kH(G) denote the number of (not necessarily induced) subgraphs of G which

are isomorphic to H. Set cH(G) = kH(G)+kH(Ḡ)

(n

t)
where t is the order of H, and

cH(n) = Min{cH(G) : |G| = n}. Finally let e denote the number of edges of
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H. One may ask in general for which graphs H limn→∞ cH(n) = t!
|Aut(H)|2

1−e,

i.e. for which graphs H the asymptotic minimum of cH(G) over all graphs G
is the same as cH(G) when G is a random graph. This has been shown to be
true for H complete bipartite by Erdös and Moon [3]. Sidorenko [11] showed
that it is also true whenever H is a cycle and not true for certain incomplete
graph (K4 less two incident edges). Thomason proved [12] it false for H a
complete graph Kt, t ≥ 4 (i.e. disproved Erdös’s conjecture) by constructing
for every t an infinite sequence from a single underlying graph, leading to a
limit smaller than what the conjecture stipulates. As far as the lower bound,
Giraud [7] showed that c4 > 1

46
.

We shall write g1(n) ∼ g2(n) in place of g1(n)
g2(n)

= 1 + o(1). If G is a graph,

then V (G) denotes its vertex set, while E(G) denotes the set of its edges. A
neighborhood N(u) of a vertex u∈V (G) is the set of all vertices of G adjacent
to u. The degree d(u) of u is the size of its neighborhood.

In [13] and [1] pseudorandom graphs are defined as graphs with the prop-
erty that |N(v)| ∼ 1

2
|V |, and |N(u) ∩ N(v)| ∼ 1

4
|V | for almost all v ∈ V and

almost all pairs u, v ∈ V . It was established in [13] and [1] (see also [5], and

[8]) that for any fixed t, kt(R) + kt(R̄) ∼ 21−(t

2)
(|V |

t

)

for any sufficiently large
pseudorandom graph R with vertex set V .

Definition 1. A sequence of graphs R = {Rn}∞
n=0 is a pseudorandom se-

quence iff for all but o(|V (Rn)| vertices u∈V (Rn), d(u) = |N(u)| satisfies
∣

∣

∣

∣

∣

d(u) − |V (Rn)|
2

∣

∣

∣

∣

∣

< o(|V (Rn)|), and for all but o

(

(|V (Rn)|
2

)

)

pairs of vertices

u, v∈V (Rn), the size d(u, v)of their common neighborhood N(u) ∩ N(v) sat-

isfies

∣

∣

∣

∣

∣

d(u, v) − |V (Rn)|
4

∣

∣

∣

∣

∣

< o(|V (Rn)|).

Pseudorandom graphs have the following property (cf. [5], [13], [8],[1]):

Theorem 2. Let R = {Rn} be a pseudorandom sequence of graphs, then
there exists a sequence of positive reals {εn} so that εn → 0 as n → ∞
and so that for every V ⊂ V (Rn), |V | ≥ εn|V (Rn)|,

(

1
2

− εn

)

(|V |
2

)

< e <
(

1
2
+ εn

)

(|V |
2

)

, where the e is the number of edges of Rn induced on a set V .
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For a graph D = (V, E) and U ⊂ V let δD(U) = E∩[U ]2

(|U|
2 )

denote the

edge density of the subgraph induced on U . For a sequence D = {Dn} and
0 < p ≤ 1 let pD = {pDn} be any sequence with the following property: Vn =

V (pDn) = V (Dn), and there exists εn → 0 such that

∣

∣

∣

∣

δpDn
(U) − pδDn

(U)

∣

∣

∣

∣

<

εn as n → ∞ for any U ⊂ Vn, |U | > εn|Vn|. We can think of pD as a graph
obtained from the graph D by flipping a p-biased coin (i.e. the probability of
the heads coming up is p, while the probability of the tails coming up is 1−p)
for each edge of D, if the heads shows up the edge is left there, otherwise the
edge is removed.

Let G be a graph and let H be a graph on 4 vertices and 5 edges (i.e. K4

less one edge), then d(G) denotes cH(G).
For a sequence G = {Gn} of graphs with |V (Gn)| → ∞ as n → ∞, let

d(G) = lim inf d(Gn).
Answering a question of Erdös (private communication) we proved that

(see Theorem 12) d(G) ≥ 3
8

for any sequence G of graphs, and the equality
holds if and only if G is a pseudorandom sequence.

We shall employ the following notation: if G and H are graphs such that
V = V (G) = V (H) then G ∩ H denotes the graph with vertex set V and
edge set E(G)∩E(H), while G−H denotes the graph with vertex set V and
edge set E(G) − E(H).

As mentioned above, disproving the conjecture of Erdös, Thomason [12]
constructed sequences of graphs H = {Hn} with c4(H) = limn→∞ c4(Hn) <
1
32

. The main puprose of this note is to establish a result which goes in
some sense in the opposite direction and prove that for sequences arising
from pseudorandom ones by certain small perturbations Erdös’s conjecture
is valid:
Let H = {Hn} be an arbitrary sequence of graphs and let R = {Rn} be
a pseudorandom sequence with V (Rn) = V (Hn) = Vn for all n. Let Dn =
Rn ÷Hn be a graph whose edges are formed by all pairs one needs to change
to obtain Hn from Rn (i.e. E(Dn) is formed by symmetric difference E(Hn)÷
E(Rn)). It follows that Hn = Rn ÷ Dn as well. Suppose that we will not
carry all the ”changes” corresponding to Dn to obtain Hn from Rn but only
”changes” on a ”random” subgraph pDn of Dn. This way we obtain a graph
sequence {p(Rn, Dn)} = {Rn ÷ pDn}. More formally p(Rn, Dn) is a graph
sequence that satisfies:

• there exists a sequence {εn} of positive reals such that εn → 0 and for
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every U ⊂ Vn, |U | > εn|Vn|,
|δp(Rn,Dn)(U)− δRn−Dn

(U)− (1 − p)δRn∩Dn
(U)− pδDn−Rn

(U)| < εn.

Figure 1 shows the relative position of edge sets of R, D, pD, and p(R, D)
respectively.

pD p(D - R)

R - D

R D

p(D    R)

U

(1-p)(D    R)

U

Figure 1:

Now we are ready to formulate our main result (see Theorem 16):
For every λ > 3

8
there exists pλ, 0 < pλ ≤ 1, such that for every pseu-

dorandom sequence of graphs R = {Rn}, and for every sequence of graphs
D = {Dn} with d(R÷D) ≥ λ, if c4(p(R, D)) exists, then c4(p(R, D)) ≥ 1

32
+

1
8
(λ − 3

8
)p4 whenever 0 < p ≤ pλ.

Loosely speaking this means that counterexamples to Erdös’s conjecture have
to differ essentially from pseudorandom graphs.

2 Further Definitions.

Definition 3. If V, W are disjoint sets of vertices of G, then e(V, W ) denotes
the number of edges of G with one endpoint in V and the other in W . δ(V, W )

= e(V,W )
|V |·|W | is the edge-density between V and W . If ε > 0, we say that V ,W

is an ε-uniform pair if |δ(V, W ) − δ(V ′, W ′)| < ε whenever V ′ ⊂ V and
|V ′| ≥ ε·|V |, and W ′ ⊂ W and |W ′| ≥ ε·|W |.

Definition 4. Let t be a positive integer. ~x is a t-vector if it is a vector with
t2 real valued entries xi,j, 1 ≤ i, j ≤ t and so that xi,j = xj,i. Bt = {~x∈Rt2 :
~x is a t-vector & |xi,j| ≤ 1 for all 1 ≤ i, j ≤ t}.
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Definition 5. Let G be a graph. Let ε > 0, and let t be a positive integer.
We say that a t-vector ~x ε-represents graph G iff the vertex set of G can
be partitioned into t disjoint classes A1, ..., At so that

∣

∣|Ai| − |Aj|
∣

∣ ≤ 1 for
all 1 ≤ i, j ≤ t, and all but t2ε pairs {Ai, Aj}, are ε-uniform, and where
δ(Ai, Aj) = 1

2
(1+xi,j) for all 1 ≤ i, j ≤ t, i 6= j, and δ(Ai, Ai) = δ(Ai) for all

1 ≤ i ≤ t. If G is an infinite sequence of graphs and ~x is a t-vector, we say
that ~x represents sequence G iff there is a sequence of positive reals {εn}
so that εn → 0 and ~x εn-represents Gn, for every n.

(We use t-vectors as representatives of sequences of graphs. For technical
reasons the coordinates of t-vectors are not edge-densities directly, but edge-
densities transformed by pi,j = 1

2
(1 + xi,j). Henceforth Bt defined above is

the part of Rt2 which is meaningful for us. Note also that the origin then
represents pseudorandom graphs as pi,j = 1

2
corresponds to xi,j = 0.)

Now we can reformulate Theorem 2 in our language as follows:

Theorem 5. A t-vector ~x represents a pseudorandom sequence iff ~x = ~o.

At this point we introduce a few polynomials in t2 variables.

Definition 7.: Let ~x be t-vector.

C4(~x) = 1
26·t4

∑

1≤i,j,k,l≤t

[(1+xi,j)(1+xi,k)(1+xi,l)(1+xj,k)(1+xj,l)(1+xk,l)

+ (1−xi,j)(1−xi,k)(1−xi,l)(1−xj,k)(1−xj,l)(1−xk,l)] (7.1)

D(~x) = 6
25·t4

∑

1≤i,j,k,l≤t

[(1+xi,j)(1+xi,k)(1+xi,l)(1+xj,k)(1+xj,l)

+ (1−xi,j)(1−xi,k)(1−xi,l)(1−xj,k)(1−xj,l)] (7.2)

c(~x) = 3
25·t4

(

4t
∑

1≤i,j,k≤t

xi,jxj,k +
∑

1≤i,j,k,l≤t

xi,jxk,l

)

(7.3)

b(~x) = 3
25·t4

(

∑

1≤i,j,k,l≤t

xi,jxi,lxj,kxk,l + 4
∑

1≤i,j,k,l≤t

xi,jxi,lxj,lxk,l

)

(7.4)

a(~x) = 1
25·t4

∑

1≤i,j,k,l≤t

xi,jxi,kxi,lxj,kxj,lxk,l (7.5)
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Lemma 8.

(a) Let {εn} be an infinite sequence of positive reals so that εn → 0.
Let {tn} be an infinite sequence of positive integers so that tn → ∞.
Let {Gn} be an infinite sequence of graphs. Let for each n, ~xn be a
tn-vector such that it εn-represents graph Gn. Then limn→∞ c4(Gn) =
limn→∞ C4(~xn), and limn→∞ d(Gn) = limn→∞ D(~xn).

(b) Let a t-vector ~x represent a graph sequence G. Then d(G) = D(~x).

Proof We omit the somehow tedious but not difficult proof. For the method
see [9]. 2

3 Methods and Results.

Lemma 9. For any t-vector ~x,
C4(~x) = 1

32
+ c(~x) + b(~x) + a(~x) (9.1)

D(~x) = 3
8

+ 4
(

2c(~x) + b(~x)
)

(9.2)

Proof The tedious although straightforward calculations to prove the claim
are left to the reader. 2

Lemma 10. For any t-vector ~x ∈ Bt, |a(~x)| ≤ 1
32

.

Proof By Eq. 7.5

|a(~x)| = 1
25·t4

∣

∣

∣

∣

∣

∑

1≤i,j,k,l≤t

xi,jxi,kxi,kxj,kxj,lxk,l

∣

∣

∣

∣

∣

≤

1
25·t4

∑

1≤i,j,k,l≤t

|xi,j||xi,k||xi,k||xj,k||xj,l||xk,l| ≤ 1
25·t4

∑

1≤i,j,k,l≤t1 =

1
25·t4 t

4 = 1
25 = 1

32
.

2

Lemma 11. For any t-vector ~x, c(~x) ≥ 0.
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Proof c(~x) = 3
32·t4

(

4t
∑

1≤i,j,k≤t

xi,jxi,k +
∑

1≤i,j,k,l≤t

xi,jxk,l

)

. First observe that

∑

1≤j,k≤t

xi,jxi,k =

(

∑

1≤j≤t

xi,j

)2

for any fixed i. Hence
∑

1≤i≤t

(

∑

1≤j≤t

xi,j

)2

=

∑

1≤i,j,k≤t

xi,jxi,k. Then observe that

(

∑

1≤i,j≤t

xi,j

)2

=
∑

1≤i,j≤t

∑

1≤k,l≤t

xi,jxk,l =

∑

1≤i,j,k,l≤t

xi,jxk,l. Therefore c(~x) =

3
32·t4

(

4t
∑

1≤i≤t

(

∑

1≤j≤t

xi,j

)2

+

(

∑

1≤i≤t

∑

1≤j≤t

xi,j

)2
)

≥ 0. 2

Theorem 12. Let G be a sequence of graphs. Then d(G) ≥ 3
8

and equality
holds if and only if G is a pseudorandom sequence.

Proof Fix a graph G ∈ G of order m. For a pair of vertices {v, w} ∈ [V (G)]2

define b(v, w) as the number of vertices u ∈ V (G) such that {v, u}, {w, u} ∈
E(G) provided {v, w} ∈ V (G), or the number of vertices u ∈ V (G) such that
neither {v, u} ∈ V (G), nor {w, u} ∈ V (G) provided {v, w} /∈ V (G).
Let q(G) = k3(G)+ k3(Ḡ) and set q = q(G). Then

∑

{v,w}∈[V (G)]2 b(v, w) =
3q. Set

b(v, w) = 3q

(m

2 )
+ ∆(v, w) (12.0)

Then

3q =
∑

{v,w}∈[V (G)]2

b(v, w) =
∑

{v,w}∈[V (G)]2

(

3q

(m

2 )
+ ∆(v, w)

)

= 3q +

∑

{v,w}∈[V (G)]2

∆(v, w)

and hence
∑

{v,w}∈[V (G)]2

∆(v, w) = 0. On the other hand the number of non-

induced subgraphs on 4 vertices and 5 edges in G and its complement Ḡ

equals
∑

{v,w}∈[V (G)]2

(

b(v,w)
2

)

= 1
2

∑

{v,w}∈[V (G)]2

(

b2(v, w) − b(v, w)

)

≥

1
2

[

9q2

(m

2 )
− 3q+

∑

{v,w}∈[V (G)]2

∆2(v, w)

]

.
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Set q0(G) =
(

⌊

|V (G)|
2

⌋

3

)

+
(

⌈

|V (G)|
2

⌉

3

)

and set q0 = q0(G). As q ≥ q0 (cf. [6]) and

the function f(q) = 1
2

[

9q2

(m

2 )
− 3q

]

is increasing for q ≥ q0

(

as q0 ≥ 1
6

(

m

2

)

)

,

we can conclude that d(G) ≥ f(q0)

(m

4 )
. Since f(q0) ∼ 1

64
m4, we can infer that

limn→∞ d(Gn) ≥ 3
8
, and hence d(G) ≥ 3

8
.

Conversely, let d(G) = 3
8
. This means that for Gn ∈ G both f(q(Gn))

(

and

hence also q(Gn)

)

and
∑

{v,w}∈[V (Gn)]2 ∆2(v, w) have to be asymptotically

minimal. More precisely
q(Gn) ∼ q0(Gn) (12.1)

and
limn→∞

1

(|V (Gn)|
4 )

∑

{v,w}∈[V (Gn)]2

∆2(v, w) = 0 (12.2)

Fix a graph G ∈ G of order m, and let d1, ... ,dm be the degree sequence of
G. Using the argument of [6] one can show that Eq. 12.1 implies that

for all but o(m) vertices of G |di − m
2
| < o(m) (12.3)

Indeed, the number of induced subgraphs of G which have 3 vertices and one
or two edges equals to
(

m

3

)

− q(G) = 1
2

m
∑

i=1

di(m− 1− di) = 1
4

m
∑

i=1

(

(m− 1)2 − d2
i − (m− 1− di)

2

)

and thus is asymptotically maximized when (12.3) holds.
It follows from Eq. 12.0 that

1

(m

2 )

∑

{v,w}∈[V (G)]2

b(v, w) = 3q0(G)

(m

2 )
∼ m

4
(12.4)

On the other hand
∑

{v,w}∈[V (G)]2

b2(v, w) =
9q2

0(G)

(m

2 )
+
∑

{v,w}∈[V (G)]2 ∆2(v, w) and

hence
1

(m

2 )

∑

{v,w}∈[V (G)]2

b2(v, w) ∼ m2

16
(12.5)

Combining Eqs. 12.4 and 12.5 we conclude that b(v, w) ∼ m
4

for all but

o

(

(

m

2

)

)

pairs v, w ∈ V (G). Whence G is a pseudorandom sequence. 2

Lemma 13. D(~x) is strictly minimal for ~x = ~o.
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Proof Follows from Lemma 8 (b), Theorem 5, and Theorem 12. 2

Corollary 14. For any t-vector ~x, 2c(~x)+b(~x) ≥ 0. The equality is attained
if and only if ~x = ~o.

Proof Follows directly from Lemma 13 using Eq. 9.2. 2

Lemma 15. For any λ > 3
8

there is µλ, 0 < µλ ≤ 1, so that for any positive
integer t and for any ~u ∈ Bt with D(~u) ≥ λ, f~u(µ) = a(~u)µ6 + b(~u)µ4 +
c(~u)µ2 ≥ 1

8
(λ − 3

8
)µ4 for any µ ∈ [0, µλ].

Proof We have in view of Eq. 9.2 and abbreviating a(~u) as a, b(~u) as b, and
c(~u) as c D(~u) = 3

8
+4(2c+b) ≥ λ which means that 2c+b ≥ λ0 = 1

4
(λ− 3

8
) >

0, and so b ≥ λ0 − 2c. Set µλ = min

{

4
√

λ0,
1√
2

}

, and let µ ∈ [0, µλ].

f~u(µ) = aµ6 + bµ4 + cµ2 = µ2(aµ4 + bµ2 + c).
Since |a| ≤ 1

32
, and since b ≥ λ0− 2c, aµ4+ bµ2+ c ≥ − 1

32
µ4+ (λ0− 2c)µ2+

c = (− 1
32

µ4+ λ0µ
2)+ (c− 2cµ2) = (*)

Since µ ≤ 4
√

λ0, (− 1
32

µ4+ λ0µ
2) ≥ (− 1

32
µ216λ0+ λ0µ

2) = (−1
2
λ0µ

2+ λ0µ
2) =

1
2
λ0µ

2.
Since µ ≤ 1√

2
, (c− 2cµ2) ≥ (c− 2c1

2
) = 0.

Thus (*) ≥ 1
2
λ0µ

2 = 1
8
(λ − 3

8
)µ2. It follows that f~u(µ) = µ2(aµ4 + bµ2 + c) ≥

1
8
(λ − 3

8
)µ4. 2

Theorem 16. For every λ > 3
8

there exists pλ, 0 < pλ ≤ 1, such that
for every pseudorandom sequence of graphs R = {Rn}, and for every se-
quence of graphs D = {Dn} with d(R ÷ D) ≥ λ, if c4(p(R, D)) exists, then
c4(p(R, D)) ≥ 1

32
+ 1

8
(λ − 3

8
)p4 whenever 0 < p ≤ pλ.

In the proof of this theorem we shall need the following very powerful
theorem:

Szemerédi’s Uniformity Lemma. [10] Given ε > 0, and a positive inte-
ger l. Then there exist positive integers m = m(ε, l) and n = n(ε, l) with the
property that the vertex set of every graph G of order ≥ n can be partitioned
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into t disjoint classes A1, ..., At such that
(a) l ≤ t ≤ m,
(b)

∣

∣|Ai| − |Aj|
∣

∣ ≤ 1 for all 1 ≤ i, j ≤ t,
(c) All but at most t2ε pairs Ai, Aj, 1 ≤ i, j ≤ t, are ε-uniform.

Note that if we set 1
2
(1 + ui,j) = δ(Ai, Aj) for all 1 ≤ i, j ≤ t, then the

t-vector ~u with the entries ui,j ε-represents the graph G.

Proof of Theorem 16. Let Vn = V (Rn) = V (Dn) for every n. Since {Rn} is

a pseudorandom sequence, there exists a sequence {ε
(0)
n } of positive reals so

that ε
(0)
n → 0 as n → ∞ and such that |δRn

(U)− 1
2
| < ε

(0)
n whenever U ⊂ Vn,

|U | > ε
(0)
n |Vn|. It follows that there must exist a sequence {ε

(1)
n } of positive

reals so that ε
(1)
n → 0 as n → ∞ and such that:

(1) |δRn
(U, U ′)− 1

2
| < ε

(1)
n whenever U, U ′ ⊂ Vn, U∩U ′ = ∅, |U |, |U ′| > ε

(1)
n |Vn|.

By the definition of p(Rn, Dn), there exists a sequence {ε
(2)
n } of positive

reals so that ε
(2)
n → 0 as n → ∞ and such that |δp(Rn,Dn)(U)− δRn−Dn

(U)−
(1 − p)δRn∩Dn

(U)− pδDn−Rn
(U)| < ε

(2)
n whenever U ⊂ Vn, |U | > ε

(2)
n |Vn|.

It follows that there must exist a sequence {ε
(3)
n } of positive reals so that

ε
(3)
n → 0 as n → ∞ and such that

(2) |δp(Rn,Dn)(U, U ′)− δRn−Dn
(U, U ′)− (1−p)δRn∩Dn

(U, U ′)− pδDn−Rn
(U, U ′)| <

ε
(3)
n whenever U, U ′ ⊂ Vn, U ∩ U ′ = ∅, |U |, |U ′| > ε

(3)
n |Vn|.

Take an arbitray sequence of positive reals {ε
(4)
s } so that ε

(4)
s → 0 as s →

∞. Let {ls} be an arbitrary increasing sequence of positive integers. Let

n(ε
(4)
s , ls) and m(ε

(4)
s , ls) are from Szemerédi’s Uniformity Lemma. Choose

an increasing sequence {ns}∞
s=0 so that

(a) |Vns
| ≥ n(ε

(4)
s , ls),

(b) ε
(1)
ns

≤ ε
(4)
s

m(ε
(4)
s ,ls)

,

(c) ε
(3)
ns

≤ ε
(4)
s

m(ε
(4)
s ,ls)

.

Fix an s, and set n = ns. For ε = ε
(4)
s and l = ls apply Szemerédi’s Uniformity

Lemma to the graph Rn ÷ Dn to obtain a partition of Vn into almost equal
classes A1,...,Ats , where ts satisfies ls ≤ ts ≤ m(ε

(4)
s , ls) and so that

(3) 1
2
(1+ui,j)− ε

(4)
s < δRn÷Dn

(Ui, Uj) < 1
2
(1+ui,j)+ ε

(4)
s whenever Ui ⊂ Ai,

|Ui| > ε
(4)
s |Ai|, Uj ⊂ Aj, |Uj| > ε

(4)
s |Aj|, for all but t2sε

(4)
s pairs Ai,Aj, and

where 1
2
(1+ui,j) = δRn÷Dn

(Ai, Aj) for all 1 ≤ i, j ≤ ts.

10



(a) Note that |Ai| ≥ |Vn|
m(ε

(4)
s ,ls)

for every 1 ≤ i ≤ ts.

Also note that (3) means that ~us (the ts-vector with entries ui,j, 1 ≤ i, j ≤
ts) ε

(4)
s -represents the graph Rn ÷ Dn.

It follows from (1) and (3a) that

(4) |δRn
(Ui, Uj)− 1

2
| < ε

(1)
n whenever Ui ⊂ Ai, |Ui| > ε

(4)
s |Ai|, Uj ⊂ Aj, |Uj| >

ε
(4)
s |Aj|,

as according to (b) |Ui| > ε
(4)
s |Ai| ≥ ε

(4)
s |Vn|

m(ε
(4)
s ,ls)

≥ ε
(1)
n |Vn|, and similarly |Uj| >

ε
(4)
s |Aj| ≥ ε

(1)
n |Vn|.

It follows from (2) and (3a) that
(5) |δp(Rn,Dn)(Ui, Uj)− δRn−Dn

(Ui, Uj)− (1 − p)δRn∩Dn
(Ui, Uj) −

pδDn−Rn
(Ui, Uj)| < ε

(3)
n whenever Ui ⊂ Ai, |Ui| > ε

(4)
s |Ai|, Uj ⊂ Aj, |Uj| >

ε
(4)
s |Aj|,

as according to (c) |Ui| > ε
(4)
s |Ai| ≥ ε

(4)
s |Vn|

m(ε
(4)
s ,ls)

≥ ε
(3)
n |Vn|, and similarly |Uj| >

ε
(4)
s |Aj| ≥ ε

(3)
n |Vn|.

Multiplying (4) by (1−p) and using the fact that Rn = (Rn−Dn)∪(Dn∩Rn),
we obtain
(6) |(1−p)δRn−Dn

(Ui, Uj)+(1−p)δDn∩Rn
(Ui, Uj)−(1−p)1

2
| < (1−p)ε

(1)
n when-

ever Ui ⊂ Ai, |Ui| > ε
(4)
s |Ai|, Uj ⊂ Aj, |Uj| > ε

(4)
s |Aj|.

Multiplying (3) by p and using the fact that Rn÷Dn = (Rn−Dn)∪(Dn−Rn),
we obtain
(7) p

2
(1+ui,j)− pε

(4)
s < pδRn−Dn

(Ui, Uj)+pδDn−Rn
(Ui, Uj) < p

2
(1+ui,j)+ pε

(4)
s

whenever Ui ⊂ Ai, |Ui| > ε
(4)
s |Ai|, Uj ⊂ Aj, |Uj| > ε

(4)
s |Aj|, for all but t2sε

(4)
s

pairs Ai,Aj.
Adding (6) and (7) we get

(8) 1
2
(1+pui,j)− pε

(4)
s − (1−p)ε

(1)
n < δRn−Dn

(Ui, Uj)+ (1−p)δRn∩Dn
(Ui, Uj)+

pδDn−Rn
(Ui, Uj) < 1

2
(1+pui,j)+ pε

(4)
s + (1−p)ε

(1)
n whenever Ui ⊂ Ai, |Ui| >

ε
(4)
s |Ai|, Uj ⊂ Aj, |Uj| > ε

(4)
s |Aj|, for all but t2sε

(4)
s pairs Ai,Aj.

Similarly, adding (5) and (8) we get

(9) 1
2
(1+pui,j)− pε

(4)
s − (1−p)ε

(1)
n − ε

(3)
n < δp(Rn,Dn) < 1

2
(1+pui,j)+ pε

(4)
s +

(1−p)ε
(1)
n + ε

(3)
n , whenever Ui ⊂ Ai, |Ui| > ε

(4)
s |Ai|, Uj ⊂ Aj, |Uj| > ε

(4)
s |Aj|,

for all but t2sε
(4)
s pairs Ai,Aj.

Let p~us be the ts-vector with entries pui,j, and set ε
(5)
s = pε

(4)
s + (1−p)ε

(1)
n +

ε
(3)
n . Then ε

(5)
s → 0 as s → ∞, and thus for each s, the ts-vector p~us pε

(5)
s -
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represents the graph p(Rns
, Dns

). Since ls → ∞, also ts → ∞.
Let pλ = µλ from Lemma 15. Fix a p such that 0 < p ≤ pλ. If c4(p(R, D))

exists, then c4(p(R, D)) = limn→∞ c4(p(Rn, Dn)) = lims→∞ c4(p(Rns
, Dns

)).
By Lemma 8 (a), lims→∞ c4(p(Rns

, Dns
)) =

lims→∞ C4(p~us). By the assumption of the theorem, d(R ÷ D) ≥ λ, and

so (as each ~us ε
(4)
s -represents the graph Rns

÷ Dns
), for some s0 big enough,

D(~us) ≥ λ for every s ≥ s0. C4(p~us) = 1
32

+ a(~us)p
6+ b(~us)p

4+ c(~us)p
2 ≥ 1

32
+

1
8
(λ − 3

8
)p4 by Lemma 15. It follows that lims→∞ C4(p~us) ≥ 1

32
+ 1

8
(λ − 3

8
)p4,

and so c4(p(R, D)) ≥ 1
32

+ 1
8
(λ − 3

8
)p4. 2
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[10] E. Szemerédi, Regular partitions of graphs, in Proc. Colloque Internat.
CNRS (J.-C. Bermond et. al., eds.), Paris, 1978, 399-401.

[11] A.F. Sidorenko, Tsikly v grafakh i funktsional’nye neravenstva, Matem-
aticheskie Zametki, 46 (1989), no. 5, 72-79 (in Russian).

[12] A. Thomason, A disproof of a conjecture of Erdös in Ramsey theory, J.
London Math. Soc. (2), 39 (1898), no. 2, 246-255.

[13] A. Thomason, Pseudo-random graphs, in ”Proceedings of Random
Graphs, Poznan, ’85”, (M. Karonski, ed.), North-Holland Math. Stud.,
144, North-Holland, Amsterdam, 1987.

Received: September 13, 1989
Revised: October 1, 1991

13


