Ramsey problem on Multiplicities of Complete Subgraphs in Nearly Quasirandom Graphs.

F. Franek^{1*} and V. $R\ddot{o}dl^{2**}$

¹ Department of Compter Science and Systems, McMaster University, Hamilton, Ontario, L8S 4K1, Canada

² Department of Mathematcis and Computer Science, Emory University, Atlanta, Georgia, 30322 U.S.A.

Abstract

Let $k_t(G)$ be the number of cliques of order t in the graph G. For a graph G with n vertices let $c_t(G) = \frac{k_t(G)+k_t(\bar{G})}{\binom{n}{t}}$. Let $c_t(n) =$ $Min\{c_t(G): |G| = n\}$ and let $c_t = \lim_{n\to\infty} c_t(n)$. An old conjecture of Erdös [2] related to Ramsey's theorem states that $c_t = 2^{1-\binom{t}{2}}$. Recently it was shown to be false by A. Thomason [12]. It is known that $c_t(G) \sim 2^{1-\binom{t}{2}}$ whenever G is a pseudorandom graph. Pseudorandom graphs - the graphs "which behave like random graphs" were introduced and studied in [1] and [13]. The aim of this paper is to show that for t = 4, $c_t(G) \geq 2^{1-\binom{t}{2}}$ if G is a graph arising from pseudorandom by a small perturbation.

1 Introduction.

Denote by $k_t(G)$ the number of cliques of order t in the graph G. For a graph G with n vertices let $c_t(G) = \frac{k_t(G)+k_t(\bar{G})}{\binom{n}{t}}$. Let $c_t(n) = Min\{c_t(G) : |G| = n\}$, and let $c_t = \lim_{n\to\infty} c_t(n)$. Thus $c_t(n)$ denotes the minimum proportion of monochromatic K_t 's in a coloring of the edges of K_n with two colors. An old conjecture of Erdös [2], related to Ramsey's theorem, states that $c_t = 2^{1-\binom{t}{2}}$. It follows from [6], that the conjecture is true for t = 3. For a graph H let $k_H(G)$ denote the number of (not necessarily induced) subgraphs of G which are isomorphic to H. Set $c_H(G) = \frac{k_H(G)+k_H(\bar{G})}{\binom{n}{t}}$ where t is the order of H, and $c_H(n) = Min\{c_H(G) : |G| = n\}$. Finally let e denote the number of edges of

^{*}Research supported by NSERC grant OGP0025112

^{**}Research supported by NSF grant DMS 9011850

H. One may ask in general for which graphs $H \lim_{n\to\infty} c_H(n) = \frac{t!}{|Aut(H)|} 2^{1-e}$, i.e. for which graphs *H* the asymptotic minimum of $c_H(G)$ over all graphs *G* is the same as $c_H(G)$ when *G* is a random graph. This has been shown to be true for *H* complete bipartite by Erdös and Moon [3]. Sidorenko [11] showed that it is also true whenever *H* is a cycle and not true for certain incomplete graph (K_4 less two incident edges). Thomason proved [12] it false for *H* a complete graph K_t , $t \ge 4$ (i.e. disproved Erdös's conjecture) by constructing for every *t* an infinite sequence from a single underlying graph, leading to a limit smaller than what the conjecture stipulates. As far as the lower bound, Giraud [7] showed that $c_4 > \frac{1}{46}$.

We shall write $g_1(n) \sim g_2(n)$ in place of $\frac{g_1(n)}{g_2(n)} = 1 + o(1)$. If G is a graph, then V(G) denotes its vertex set, while E(G) denotes the set of its edges. A neighborhood N(u) of a vertex $u \in V(G)$ is the set of all vertices of G adjacent to u. The degree d(u) of u is the size of its neighborhood.

In [13] and [1] pseudorandom graphs are defined as graphs with the property that $|N(v)| \sim \frac{1}{2}|V|$, and $|N(u) \cap N(v)| \sim \frac{1}{4}|V|$ for almost all $v \in V$ and almost all pairs $u, v \in V$. It was established in [13] and [1] (see also [5], and [8]) that for any fixed $t, k_t(R) + k_t(\bar{R}) \sim 2^{1-\binom{t}{2}}\binom{|V|}{t}$ for any sufficiently large pseudorandom graph R with vertex set V.

Definition 1. A sequence of graphs $\mathcal{R} = \{R_n\}_{n=0}^{\infty}$ is a **pseudorandom sequence** iff for all but $o(|V(R_n)| \text{ vertices } u \in V(R_n), d(u) = |N(u)| \text{ satisfies } \left| d(u) - \frac{|V(R_n)|}{2} \right| < o(|V(R_n)|), \text{ and for all but } o\left(\binom{|V(R_n)|}{2}\right) \text{ pairs of vertices } u, v \in V(R_n), \text{ the size } d(u, v) \text{ of their common neighborhood } N(u) \cap N(v) \text{ satisfies } \left| d(u, v) - \frac{|V(R_n)|}{4} \right| < o(|V(R_n)|).$

Pseudorandom graphs have the following property (cf. [5], [13], [8], [1]):

Theorem 2. Let $\mathcal{R} = \{R_n\}$ be a pseudorandom sequence of graphs, then there exists a sequence of positive reals $\{\varepsilon_n\}$ so that $\varepsilon_n \to 0$ as $n \to \infty$ and so that for every $V \subset V(R_n)$, $|V| \ge \varepsilon_n |V(R_n)|$, $\left(\frac{1}{2} - \varepsilon_n\right) {|V| \choose 2} < e < \left(\frac{1}{2} + \varepsilon_n\right) {|V| \choose 2}$, where the e is the number of edges of R_n induced on a set V. For a graph D = (V, E) and $U \subset V$ let $\delta_D(U) = \frac{E \cap [U]^2}{\binom{|U|}{2}}$ denote the edge density of the subgraph induced on U. For a sequence $\mathcal{D} = \{D_n\}$ and $0 let <math>p\mathcal{D} = \{pD_n\}$ be any sequence with the following property: $V_n = V(pD_n) = V(D_n)$, and there exists $\varepsilon_n \to 0$ such that $\left|\delta_{pD_n}(U) - p\delta_{D_n}(U)\right| < \varepsilon_n$ as $n \to \infty$ for any $U \subset V_n$, $|U| > \varepsilon_n |V_n|$. We can think of pD as a graph obtained from the graph D by flipping a p-biased coin (i.e. the probability of the heads coming up is p, while the probability of the tails coming up is 1-p) for each edge of D, if the heads shows up the edge is left there, otherwise the edge is removed.

Let G be a graph and let H be a graph on 4 vertices and 5 edges (i.e. K_4 less one edge), then d(G) denotes $c_H(G)$.

For a sequence $\mathcal{G} = \{G_n\}$ of graphs with $|V(G_n)| \to \infty$ as $n \to \infty$, let $d(\mathcal{G}) = \lim \inf d(G_n)$.

Answering a question of Erdös (private communication) we proved that (see Theorem 12) $d(\mathcal{G}) \geq \frac{3}{8}$ for any sequence \mathcal{G} of graphs, and the equality holds if and only if \mathcal{G} is a pseudorandom sequence.

We shall employ the following notation: if G and H are graphs such that V = V(G) = V(H) then $G \cap H$ denotes the graph with vertex set V and edge set $E(G) \cap E(H)$, while G - H denotes the graph with vertex set V and edge set E(G) - E(H).

As mentioned above, disproving the conjecture of Erdös, Thomason [12] constructed sequences of graphs $\mathcal{H} = \{H_n\}$ with $c_4(\mathcal{H}) = \lim_{n \to \infty} c_4(H_n) < \frac{1}{32}$. The main puppose of this note is to establish a result which goes in some sense in the opposite direction and prove that for sequences arising from pseudorandom ones by certain small perturbations Erdös's conjecture is valid:

Let $\mathcal{H} = \{H_n\}$ be an arbitrary sequence of graphs and let $\mathcal{R} = \{R_n\}$ be a pseudorandom sequence with $V(R_n) = V(H_n) = V_n$ for all n. Let $D_n = R_n \div H_n$ be a graph whose edges are formed by all pairs one needs to change to obtain H_n from R_n (i.e. $E(D_n)$ is formed by symmetric difference $E(H_n) \div E(R_n)$). It follows that $H_n = R_n \div D_n$ as well. Suppose that we will not carry all the "changes" corresponding to D_n to obtain H_n from R_n but only "changes" on a "random" subgraph pD_n of D_n . This way we obtain a graph sequence $\{p(R_n, D_n)\} = \{R_n \div pD_n\}$. More formally $p(R_n, D_n)$ is a graph sequence that satisfies:

• there exists a sequence $\{\varepsilon_n\}$ of positive reals such that $\varepsilon_n \to 0$ and for

every
$$U \subset V_n$$
, $|U| > \varepsilon_n |V_n|$,
 $|\delta_{p(R_n,D_n)}(U) - \delta_{R_n-D_n}(U) - (1-p)\delta_{R_n\cap D_n}(U) - p\delta_{D_n-R_n}(U)| < \varepsilon_n$.

Figure 1 shows the relative position of edge sets of R, D, pD, and p(R, D) respectively.

Figure 1:

Now we are ready to formulate our main result (see Theorem 16):

For every $\lambda > \frac{3}{8}$ there exists p_{λ} , $0 < p_{\lambda} \leq 1$, such that for every pseudorandom sequence of graphs $\mathcal{R} = \{R_n\}$, and for every sequence of graphs $\mathcal{D} = \{D_n\}$ with $d(\mathcal{R} \div \mathcal{D}) \geq \lambda$, if $c_4(p(\mathcal{R}, \mathcal{D}))$ exists, then $c_4(p(\mathcal{R}, \mathcal{D})) \geq \frac{1}{32} + \frac{1}{8}(\lambda - \frac{3}{8})p^4$ whenever 0 .

Loosely speaking this means that counterexamples to Erdös's conjecture have to differ essentially from pseudorandom graphs.

2 Further Definitions.

Definition 3. If V, W are disjoint sets of vertices of G, then e(V, W) denotes the number of edges of G with one endpoint in V and the other in W. $\delta(V, W)$ $= \frac{e(V,W)}{|V|\cdot|W|}$ is the edge-density between V and W. If $\varepsilon > 0$, we say that V, W is an ε -uniform pair if $|\delta(V, W) - \delta(V', W')| < \varepsilon$ whenever $V' \subset V$ and $|V'| \ge \varepsilon \cdot |V|$, and $W' \subset W$ and $|W'| \ge \varepsilon \cdot |W|$.

Definition 4. Let t be a positive integer. \vec{x} is a t-vector if it is a vector with t^2 real valued entries $x_{i,j}$, $1 \le i, j \le t$ and so that $x_{i,j} = x_{j,i}$. $B_t = {\vec{x} \in R^{t^2} : \vec{x} \text{ is a t-vector } \mathcal{E} |x_{i,j}| \le 1 \text{ for all } 1 \le i, j \le t}.$

Definition 5. Let G be a graph. Let $\varepsilon > 0$, and let t be a positive integer. We say that a t-vector $\vec{x} \in$ -represents graph G iff the vertex set of G can be partitioned into t disjoint classes $A_1, ..., A_t$ so that $||A_i| - |A_j|| \leq 1$ for all $1 \leq i, j \leq t$, and all but $t^2 \varepsilon$ pairs $\{A_i, A_j\}$, are ε -uniform, and where $\delta(A_i, A_j) = \frac{1}{2}(1+x_{i,j})$ for all $1 \leq i, j \leq t, i \neq j$, and $\delta(A_i, A_i) = \delta(A_i)$ for all $1 \leq i \leq t$. If \mathcal{G} is an infinite sequence of graphs and \vec{x} is a t-vector, we say that \vec{x} represents sequence \mathcal{G} iff there is a sequence of positive reals $\{\varepsilon_n\}$ so that $\varepsilon_n \to 0$ and $\vec{x} \in_n$ -represents G_n , for every n.

(We use *t*-vectors as representatives of sequences of graphs. For technical reasons the coordinates of *t*-vectors are not edge-densities directly, but edge-densities transformed by $p_{i,j} = \frac{1}{2}(1 + x_{i,j})$. Henceforth B_t defined above is the part of R^{t^2} which is meaningful for us. Note also that the origin then represents pseudorandom graphs as $p_{i,j} = \frac{1}{2}$ corresponds to $x_{i,j} = 0$.)

Now we can reformulate Theorem 2 in our language as follows:

Theorem 5. A t-vector \vec{x} represents a pseudorandom sequence iff $\vec{x} = \vec{o}$.

At this point we introduce a few polynomials in t^2 variables.

Definition 7.: Let \vec{x} be t-vector.

$$C_{4}(\vec{x}) = \frac{1}{2^{6} \cdot t^{4}} \sum_{\substack{1 \le i, j, k, l \le t \\ + (1 - x_{i,j})(1 - x_{i,k})(1 - x_{i,l})(1 - x_{j,k})(1 - x_{j,l})(1 - x_{j,l})(1 - x_{k,l})} [(1 - x_{i,l})(1 - x_{i,l})(1 - x_{j,l})(1 - x_{k,l})]$$
(7.1)

$$D(\vec{x}) = \frac{6}{2^{5} \cdot t^{4}} \sum_{1 \le i, j, k, l \le t} [(1+x_{i,j})(1+x_{i,k})(1+x_{i,l})(1+x_{j,k})(1+x_{j,l}) + (1-x_{i,j})(1-x_{i,k})(1-x_{i,l})(1-x_{j,k})(1-x_{j,l})]$$
(7.2)

$$c(\vec{x}) = \frac{3}{2^{5} \cdot t^{4}} \left(4t \sum_{1 \le i, j, k \le t} x_{i,j} x_{j,k} + \sum_{1 \le i, j, k, l \le t} x_{i,j} x_{k,l} \right)$$
(7.3)

$$b(\vec{x}) = \frac{3}{2^{5} \cdot t^{4}} \left(\sum_{1 \le i, j, k, l \le t} x_{i,j} x_{i,l} x_{j,k} x_{k,l} + 4 \sum_{1 \le i, j, k, l \le t} x_{i,j} x_{i,l} x_{j,l} x_{k,l} \right)$$
(7.4)

$$a(\vec{x}) = \frac{1}{2^{5} \cdot t^{4}} \sum_{1 \le i, j, k, l \le t} x_{i,j} x_{i,k} x_{j,l} x_{j,k} x_{j,l} x_{k,l}$$
(7.5)

Lemma 8.

(a) Let $\{\varepsilon_n\}$ be an infinite sequence of positive reals so that $\varepsilon_n \to 0$. Let $\{t_n\}$ be an infinite sequence of positive integers so that $t_n \to \infty$. Let $\{G_n\}$ be an infinite sequence of graphs. Let for each n, $\vec{x_n}$ be a t_n -vector such that it ε_n -represents graph G_n . Then $\lim_{n\to\infty} c_4(G_n) = \lim_{n\to\infty} C_4(\vec{x_n})$, and $\lim_{n\to\infty} d(G_n) = \lim_{n\to\infty} D(\vec{x_n})$.

(b) Let a t-vector \vec{x} represent a graph sequence \mathcal{G} . Then $d(\mathcal{G}) = D(\vec{x})$.

Proof We omit the somehow tedious but not difficult proof. For the method see [9]. \Box

3 Methods and Results.

Lemma 9. For any t-vector \vec{x} ,

. . .

$$C_4(\vec{x}) = \frac{1}{32} + c(\vec{x}) + b(\vec{x}) + a(\vec{x})$$
(9.1)

$$D(\vec{x}) = \frac{3}{8} + 4\left(2c(\vec{x}) + b(\vec{x})\right)$$
(9.2)

Proof The tedious although straightforward calculations to prove the claim are left to the reader. \Box

Lemma 10. For any t-vector $\vec{x} \in B_t$, $|a(\vec{x})| \leq \frac{1}{32}$.

Lemma 11. For any t-vector \vec{x} , $c(\vec{x}) \ge 0$.

Proof
$$c(\vec{x}) = \frac{3}{32 \cdot t^4} \left(4t \sum_{1 \le i, j, k \le t} x_{i,j} x_{i,k} + \sum_{1 \le i, j, k, l \le t} x_{i,j} x_{k,l} \right)$$
. First observe that

$$\sum_{1 \le j, k \le t} x_{i,j} x_{i,k} = \left(\sum_{1 \le j \le t} x_{i,j} \right)^2 \text{ for any fixed } i. \text{ Hence } \sum_{1 \le i \le t} \left(\sum_{1 \le j \le t} x_{i,j} \right)^2 = \sum_{1 \le i, j \le t} x_{i,j} x_{i,k}. \text{ Then observe that } \left(\sum_{1 \le i, j \le t} x_{i,j} \right)^2 = \sum_{1 \le i, j \le t} \sum_{1 \le k, l \le t} x_{i,j} x_{k,l} = \sum_{1 \le i, j, k, l \le t} x_{i,j} x_{k,l}. \text{ Therefore } c(\vec{x}) = \frac{3}{32 \cdot t^4} \left(4t \sum_{1 \le i \le t} \left(\sum_{1 \le j \le t} x_{i,j} \right)^2 + \left(\sum_{1 \le i \le t} \sum_{1 \le j \le t} x_{i,j} \right)^2 \right) \ge 0. \square$$

Theorem 12. Let \mathcal{G} be a sequence of graphs. Then $d(\mathcal{G}) \geq \frac{3}{8}$ and equality holds if and only if \mathcal{G} is a pseudorandom sequence.

Proof Fix a graph $G \in \mathcal{G}$ of order m. For a pair of vertices $\{v, w\} \in [V(G)]^2$ define b(v, w) as the number of vertices $u \in V(G)$ such that $\{v, u\}, \{w, u\} \in E(G)$ provided $\{v, w\} \in V(G)$, or the number of vertices $u \in V(G)$ such that neither $\{v, u\} \in V(G)$, nor $\{w, u\} \in V(G)$ provided $\{v, w\} \notin V(G)$. Let $q(G) = k_3(G) + k_3(\overline{G})$ and set q = q(G). Then $\sum_{\{v,w\} \in [V(G)]^2} b(v, w) = 3q$. Set

$$b(v,w) = \frac{3q}{\binom{m}{2}} + \Delta(v,w)$$
 (12.0)

Then

$$\begin{aligned} &3q = \sum_{\{v,w\} \in [V(G)]^2} b(v,w) = \sum_{\{v,w\} \in [V(G)]^2} \left(\frac{3q}{\binom{m}{2}} + \Delta(v,w)\right) = 3q + \\ &\sum_{\{v,w\} \in [V(G)]^2} \Delta(v,w) \\ &\text{and hence } \sum_{\{v,w\} \in [V(G)]^2} \Delta(v,w) = 0. \text{ On the other hand the number of non-induced subgraphs on 4 vertices and 5 edges in G and its complement $\bar{G} \\ &\text{equals } \sum_{\{v,w\} \in [V(G)]^2} \binom{b(v,w)}{2} = \frac{1}{2} \sum_{\{v,w\} \in [V(G)]^2} \left(b^2(v,w) - b(v,w)\right) \ge \\ &\frac{1}{2} \left[\frac{9q^2}{\binom{m}{2}} - 3q + \sum_{\{v,w\} \in [V(G)]^2} \Delta^2(v,w)\right]. \end{aligned}$$$

Set $q_0(G) = \left(\begin{bmatrix} |V(G)| \\ 2 \\ 3 \end{bmatrix} \right) + \left(\begin{bmatrix} |V(G)| \\ 2 \\ 3 \end{bmatrix} \right)$ and set $q_0 = q_0(G)$. As $q \ge q_0$ (cf. [6]) and the function $f(q) = \frac{1}{2} \left[\frac{9q^2}{\binom{m}{2}} - 3q \right]$ is increasing for $q \ge q_0 \left(\text{ as } q_0 \ge \frac{1}{6} \binom{m}{2} \right)$, we can conclude that $d(G) \ge \frac{f(q_0)}{\binom{m}{4}}$. Since $f(q_0) \sim \frac{1}{64}m^4$, we can infer that $\lim_{n\to\infty} d(G_n) \ge \frac{3}{8}$, and hence $d(\mathcal{G}) \ge \frac{3}{8}$.

Conversely, let $d(\mathcal{G}) = \frac{3}{8}$. This means that for $G_n \in \mathcal{G}$ both $f(q(G_n))$ (and hence also $q(G_n)$) and $\sum_{\{v,w\}\in [V(G_n)]^2} \Delta^2(v,w)$ have to be asymptotically minimal. More precisely

$$q(G_n) \sim q_0(G_n) \tag{12.1}$$

and

$$\lim_{n \to \infty} \frac{1}{\binom{|V(G_n)|}{4}} \sum_{\{v,w\} \in [V(G_n)]^2} \Delta^2(v,w) = 0$$
(12.2)

Fix a graph $G \in \mathcal{G}$ of order m, and let d_1, \ldots, d_m be the degree sequence of G. Using the argument of [6] one can show that Eq. 12.1 implies that

for all but o(m) vertices of $G |d_i - \frac{m}{2}| < o(m)$ (12.3) Indeed, the number of induced subgraphs of G which have 3 vertices and one or two edges equals to

$$\binom{m}{3} - q(G) = \frac{1}{2} \sum_{i=1}^{m} d_i (m-1-d_i) = \frac{1}{4} \sum_{i=1}^{m} \left((m-1)^2 - d_i^2 - (m-1-d_i)^2 \right)$$

and thus is asymptotically maximized when (12.3) holds.

It follows from Eq. 12.0 that

$$\frac{1}{\binom{m}{2}} \sum_{\{v,w\} \in [V(G)]^2} b(v,w) = \frac{3q_0(G)}{\binom{m}{2}} \sim \frac{m}{4}$$
(12.4)

On the other hand $\sum_{\{v,w\}\in[V(G)]^2} b^2(v,w) = \frac{9q_0^2(G)}{\binom{m}{2}} + \sum_{\{v,w\}\in[V(G)]^2} \Delta^2(v,w) \text{ and}$

hence

$$\frac{1}{\binom{m}{2}} \sum_{\{v,w\} \in [V(G)]^2} b^2(v,w) \sim \frac{m^2}{16}$$
(12.5)

Combining Eqs. 12.4 and 12.5 we conclude that $b(v, w) \sim \frac{m}{4}$ for all but $o\binom{m}{2}$ pairs $v, w \in V(G)$. Whence \mathcal{G} is a pseudorandom sequence. \Box

Lemma 13. $D(\vec{x})$ is strictly minimal for $\vec{x} = \vec{o}$.

Proof Follows from Lemma 8 (b), Theorem 5, and Theorem 12. \Box

Corollary 14. For any t-vector \vec{x} , $2c(\vec{x}) + b(\vec{x}) \ge 0$. The equality is attained if and only if $\vec{x} = \vec{o}$.

Proof Follows directly from Lemma 13 using Eq. 9.2. \Box

Lemma 15. For any $\lambda > \frac{3}{8}$ there is μ_{λ} , $0 < \mu_{\lambda} \leq 1$, so that for any positive integer t and for any $\vec{u} \in B_t$ with $D(\vec{u}) \geq \lambda$, $f_{\vec{u}}(\mu) = a(\vec{u})\mu^6 + b(\vec{u})\mu^4 + c(\vec{u})\mu^2 \geq \frac{1}{8}(\lambda - \frac{3}{8})\mu^4$ for any $\mu \in [0, \mu_{\lambda}]$.

 $\begin{array}{l} \textbf{Proof} \ \text{We have in view of Eq. 9.2 and abbreviating } a(\vec{u}) \text{ as } a, b(\vec{u}) \text{ as } b, \text{ and } c(\vec{u}) \text{ as } c \ D(\vec{u}) = \frac{3}{8} + 4(2c+b) \geq \lambda \text{ which means that } 2c+b \geq \lambda_0 = \frac{1}{4}(\lambda - \frac{3}{8}) > 0, \text{ and so } b \geq \lambda_0 - 2c. \text{ Set } \mu_\lambda = \min\left\{ 4\sqrt{\lambda_0}, \frac{1}{\sqrt{2}} \right\}, \text{ and let } \mu \in [0, \mu_\lambda]. \\ f_{\vec{u}}(\mu) = a\mu^6 + b\mu^4 + c\mu^2 = \mu^2(a\mu^4 + b\mu^2 + c). \\ \text{Since } |a| \leq \frac{1}{32}, \text{ and since } b \geq \lambda_0 - 2c, \ a\mu^4 + b\mu^2 + c \geq -\frac{1}{32}\mu^4 + (\lambda_0 - 2c)\mu^2 + c = (-\frac{1}{32}\mu^4 + \lambda_0\mu^2) + (c - 2c\mu^2) = (*) \\ \text{Since } \mu \leq 4\sqrt{\lambda_0}, \ (-\frac{1}{32}\mu^4 + \lambda_0\mu^2) \geq (-\frac{1}{32}\mu^2 16\lambda_0 + \lambda_0\mu^2) = (-\frac{1}{2}\lambda_0\mu^2 + \lambda_0\mu^2) = \frac{1}{2}\lambda_0\mu^2. \\ \text{Since } \mu \leq \frac{1}{\sqrt{2}}, \ (c - 2c\mu^2) \geq (c - 2c\frac{1}{2}) = 0. \\ \text{Thus } (*) \geq \frac{1}{2}\lambda_0\mu^2 = \frac{1}{8}(\lambda - \frac{3}{8})\mu^2. \text{ It follows that } f_{\vec{u}}(\mu) = \mu^2(a\mu^4 + b\mu^2 + c) \geq \frac{1}{8}(\lambda - \frac{3}{8})\mu^4. \end{array}$

Theorem 16. For every $\lambda > \frac{3}{8}$ there exists p_{λ} , $0 < p_{\lambda} \leq 1$, such that for every pseudorandom sequence of graphs $\mathcal{R} = \{R_n\}$, and for every sequence of graphs $\mathcal{D} = \{D_n\}$ with $d(\mathcal{R} \div \mathcal{D}) \geq \lambda$, if $c_4(p(\mathcal{R}, \mathcal{D}))$ exists, then $c_4(p(\mathcal{R}, \mathcal{D})) \geq \frac{1}{32} + \frac{1}{8}(\lambda - \frac{3}{8})p^4$ whenever 0 .

In the proof of this theorem we shall need the following very powerful theorem:

Szemerédi's Uniformity Lemma. [10] Given $\varepsilon > 0$, and a positive integer l. Then there exist positive integers $m = m(\varepsilon, l)$ and $n = n(\varepsilon, l)$ with the property that the vertex set of every graph G of order $\ge n$ can be partitioned

into t disjoint classes $A_1, ..., A_t$ such that (a) $l \le t \le m$, (b) $||A_i| - |A_j|| \le 1$ for all $1 \le i, j \le t$, (c) All but at most $t^2 \varepsilon$ pairs $A_i, A_j, 1 \le i, j \le t$, are ε -uniform.

Note that if we set $\frac{1}{2}(1 + u_{i,j}) = \delta(A_i, A_j)$ for all $1 \le i, j \le t$, then the *t*-vector \vec{u} with the entries $u_{i,j} \varepsilon$ -represents the graph G.

Proof of Theorem 16. Let $V_n = V(R_n) = V(D_n)$ for every n. Since $\{R_n\}$ is a pseudorandom sequence, there exists a sequence $\{\varepsilon_n^{(0)}\}$ of positive reals so that $\varepsilon_n^{(0)} \to 0$ as $n \to \infty$ and such that $|\delta_{R_n}(U) - \frac{1}{2}| < \varepsilon_n^{(0)}$ whenever $U \subset V_n$, $|U| > \varepsilon_n^{(0)}|V_n|$. It follows that there must exist a sequence $\{\varepsilon_n^{(1)}\}$ of positive reals so that $\varepsilon_n^{(1)} \to 0$ as $n \to \infty$ and such that: (1) $|\delta_{R_n}(U,U') - \frac{1}{2}| < \varepsilon_n^{(1)}$ whenever $U, U' \subset V_n, U \cap U' = \emptyset, |U|, |U'| > \varepsilon_n^{(1)}|V_n|$.

(1) $|\delta_{R_n}(U,U')-\frac{1}{2}| < \varepsilon_n^{(1)}$ whenever $U, U' \subset V_n, U \cap U' = \emptyset, |U|, |U'| > \varepsilon_n^{(1)}|V_n|$. By the definition of $p(R_n, D_n)$, there exists a sequence $\{\varepsilon_n^{(2)}\}$ of positive reals so that $\varepsilon_n^{(2)} \to 0$ as $n \to \infty$ and such that $|\delta_{p(R_n,D_n)}(U) - \delta_{R_n-D_n}(U) - (1-p)\delta_{R_n\cap D_n}(U) - p\delta_{D_n-R_n}(U)| < \varepsilon_n^{(2)}$ whenever $U \subset V_n, |U| > \varepsilon_n^{(2)}|V_n|$. It follows that there must exist a sequence $\{\varepsilon_n^{(3)}\}$ of positive reals so that $\varepsilon_n^{(3)} \to 0$ as $n \to \infty$ and such that

(2) $|\delta_{p(R_n,D_n)}(U,U') - \delta_{R_n-D_n}(U,U') - (1-p)\delta_{R_n\cap D_n}(U,U') - p\delta_{D_n-R_n}(U,U')| < \varepsilon_n^{(3)}$ whenever $U,U' \subset V_n, U \cap U' = \emptyset, |U|, |U'| > \varepsilon_n^{(3)}|V_n|.$

Take an arbitrary sequence of positive reals $\{\varepsilon_s^{(4)}\}$ so that $\varepsilon_s^{(4)} \to 0$ as $s \to \infty$. Let $\{l_s\}$ be an arbitrary increasing sequence of positive integers. Let $n(\varepsilon_s^{(4)}, l_s)$ and $m(\varepsilon_s^{(4)}, l_s)$ are from Szemerédi's Uniformity Lemma. Choose an increasing sequence $\{n_s\}_{s=0}^{\infty}$ so that

(a) $|V_{n_s}| \ge n(\varepsilon_s^{(4)}, l_s),$ (b) $\varepsilon_{n_s}^{(1)} \le \frac{\varepsilon_s^{(4)}}{m(\varepsilon_s^{(4)}, l_s)},$ (c) $\varepsilon_{n_s}^{(3)} \le \frac{\varepsilon_s^{(4)}}{m(\varepsilon_s^{(4)}, l_s)}.$

Fix an s, and set $n = n_s$. For $\varepsilon = \varepsilon_s^{(4)}$ and $l = l_s$ apply Szemerédi's Uniformity Lemma to the graph $R_n \div D_n$ to obtain a partition of V_n into almost equal classes A_1, \dots, A_{t_s} , where t_s satisfies $l_s \le t_s \le m(\varepsilon_s^{(4)}, l_s)$ and so that (3) $\frac{1}{2}(1+u_{i,j}) - \varepsilon_s^{(4)} < \delta_{R_n \div D_n}(U_i, U_j) < \frac{1}{2}(1+u_{i,j}) + \varepsilon_s^{(4)}$ whenever $U_i \subset A_i$, $|U_i| > \varepsilon_s^{(4)}|A_i|, U_j \subset A_j, |U_j| > \varepsilon_s^{(4)}|A_j|$, for all but $t_s^2 \varepsilon_s^{(4)}$ pairs A_i, A_j , and where $\frac{1}{2}(1+u_{i,j}) = \delta_{R_n \div D_n}(A_i, A_j)$ for all $1 \le i, j \le t_s$.

(a) Note that $|A_i| \geq \frac{|V_n|}{m(\varepsilon_s^{(4)}, l_s)}$ for every $1 \leq i \leq t_s$. Also note that (3) means that \vec{u}_s (the t_s -vector with entries $u_{i,j}$, $1 \le i, j \le j$ t_s) $\varepsilon_s^{(4)}$ -represents the graph $R_n \div D_n$. It follows from (1) and (3a) that (4) $|\delta_{R_n}(U_i, U_j) - \frac{1}{2}| < \varepsilon_n^{(1)}$ whenever $U_i \subset A_i, |U_i| > \varepsilon_s^{(4)} |A_i|, U_j \subset A_j, |U_j| > \varepsilon_s^{(4)}$ $\varepsilon_s^{(4)}|A_j|,$ as according to (b) $|U_i| > \varepsilon_s^{(4)} |A_i| \ge \frac{\varepsilon_s^{(4)} |V_n|}{m(\varepsilon^{(4)} |I_i|)} \ge \varepsilon_n^{(1)} |V_n|$, and similarly $|U_j| >$ $\varepsilon_s^{(4)}|A_j| \ge \varepsilon_n^{(1)}|V_n|.$ It follows from (2) and (3a) that (5) $|\delta_{p(R_n,D_n)}(U_i,U_j) - \delta_{R_n-D_n}(U_i,U_j) - (1-p)\delta_{R_n\cap D_n}(U_i,U_j) - \delta_{R_n\cap D_n}(U_i,$ $p\delta_{D_n-B_n}(U_i,U_i)| < \varepsilon_n^{(3)}$ whenever $U_i \subset A_i, |U_i| > \varepsilon_s^{(4)}|A_i|, U_i \subset A_i, |U_i| >$ $\varepsilon_s^{(4)}|A_i|,$ as according to (c) $|U_i| > \varepsilon_s^{(4)} |A_i| \ge \frac{\varepsilon_s^{(4)} |V_n|}{m(\varepsilon_i^{(4)} |I_n|)} \ge \varepsilon_n^{(3)} |V_n|$, and similarly $|U_j| >$ $\varepsilon_s^{(4)}|A_j| \ge \varepsilon_n^{(3)}|V_n|.$ Multiplying (4) by (1-p) and using the fact that $R_n = (R_n - D_n) \cup (D_n \cap R_n)$, we obtain (6) $|(1-p)\delta_{B_n-D_n}(U_i,U_i)+(1-p)\delta_{D_n\cap B_n}(U_i,U_i)-(1-p)\frac{1}{2}| < (1-p)\varepsilon_n^{(1)}$ whenever $U_i \subset A_i$, $|U_i| > \varepsilon_s^{(4)}|A_i|$, $U_j \subset A_j$, $|U_j| > \varepsilon_s^{(4)}|A_j|$. Multiplying (3) by p and using the fact that $R_n \div D_n = (R_n - D_n) \cup (D_n - R_n)$, we obtain (7) $\frac{p}{2}(1+u_{i,i}) - p\varepsilon_s^{(4)} < p\delta_{B_n-D_n}(U_i, U_i) + p\delta_{D_n-B_n}(U_i, U_i) < \frac{p}{2}(1+u_{i,i}) + p\varepsilon_s^{(4)}$ whenever $U_i \subset A_i$, $|U_i| > \varepsilon_s^{(4)} |A_i|$, $U_i \subset A_i$, $|U_i| > \varepsilon_s^{(4)} |A_i|$, for all but $t_s^2 \varepsilon_s^{(4)}$ pairs A_i, A_j . Adding (6) and (7) we get (8) $\frac{1}{2}(1+pu_{i,j}) - p\varepsilon_s^{(4)} - (1-p)\varepsilon_n^{(1)} < \delta_{R_n-D_n}(U_i, U_j) + (1-p)\delta_{R_n\cap D_n}(U_i, U_j) + (1-p)\delta_{R_n\cap D$ $p\delta_{D_n-R_n}(U_i, U_j) < \frac{1}{2}(1+pu_{i,j}) + p\varepsilon_s^{(4)} + (1-p)\varepsilon_n^{(1)}$ whenever $U_i \subset A_i, |U_i| > 0$ $\varepsilon_s^{(4)}|A_i|, U_j \subset A_j, |\tilde{U}_j| > \varepsilon_s^{(4)}|A_j|$, for all but $t_s^2 \varepsilon_s^{(4)}$ pairs A_i, A_j . Similarly, adding (5) and (8) we get (9) $\frac{1}{2}(1+pu_{i,j}) - p\varepsilon_s^{(4)} - (1-p)\varepsilon_n^{(1)} - \varepsilon_n^{(3)} < \delta_{p(R_n,D_n)} < \frac{1}{2}(1+pu_{i,j}) + p\varepsilon_s^{(4)} + \frac{1}{2}(1+pu_{i,j}) - \frac{1}{2}(1+$ $(1-p)\varepsilon_n^{(1)} + \varepsilon_n^{(3)}$, whenever $U_i \subset A_i$, $|U_i| > \varepsilon_s^{(4)}|A_i|$, $U_j \subset A_j$, $|U_j| > \varepsilon_s^{(4)}|A_j|$, for all but $t_s^2 \varepsilon_s^{(4)}$ pairs A_i, A_j . Let $p\vec{u}_s$ be the t_s -vector with entries $pu_{i,j}$, and set $\varepsilon_s^{(5)} = p\varepsilon_s^{(4)} + (1-p)\varepsilon_n^{(1)} +$ $\varepsilon_n^{(3)}$. Then $\varepsilon_s^{(5)} \to 0$ as $s \to \infty$, and thus for each s, the t_s -vector $p\vec{u}_s \ p\varepsilon_s^{(5)}$ -

represents the graph $p(R_{n_s}, D_{n_s})$. Since $l_s \to \infty$, also $t_s \to \infty$.

Let $p_{\lambda} = \mu_{\lambda}$ from Lemma 15. Fix a p such that $0 . If <math>c_4(p(\mathcal{R}, \mathcal{D}))$ exists, then $c_4(p(\mathcal{R}, \mathcal{D})) = \lim_{n \to \infty} c_4(p(R_n, D_n)) = \lim_{s \to \infty} c_4(p(R_{n_s}, D_{n_s}))$. By Lemma 8 (a), $\lim_{s \to \infty} c_4(p(R_{n_s}, D_{n_s})) = \lim_{s \to \infty} C_4(p\vec{u}_s)$. By the assumption of the theorem, $d(\mathcal{R} \div \mathcal{D}) \geq \lambda$, and so (as each $\vec{u}_s \varepsilon_s^{(4)}$ -represents the graph $R_{n_s} \div D_{n_s}$), for some s_0 big enough, $D(\vec{u}_s) \geq \lambda$ for every $s \geq s_0$. $C_4(p\vec{u}_s) = \frac{1}{32} + a(\vec{u}_s)p^6 + b(\vec{u}_s)p^4 + c(\vec{u}_s)p^2 \geq \frac{1}{32} + \frac{1}{8}(\lambda - \frac{3}{8})p^4$ by Lemma 15. It follows that $\lim_{s \to \infty} C_4(p\vec{u}_s) \geq \frac{1}{32} + \frac{1}{8}(\lambda - \frac{3}{8})p^4$. \Box

Acknowledgement. The authors would like to express their thanks to Peter Frankl for his helpful ideas and discussions concerning the topic of this paper.

References

- F.R.K. Chung, R.L. Graham, R.M. Wilson, *Quasi-random Graphs*, Combinatorica 9 (1989), no.4, 345-362.
- [2] P. Erdös, On the number of complete subgraphs contained in certain graphs, Publ. Math. Inst. Hung. Acad. Sci., VII, ser. A 3 (1962), 459-464.
- P. Erdös and J.W. Moon, On subgraphs on the complete bipartite graph, Canad.Math.Bull. 7 (1964), 35-39.
- [4] F. Franek and V. Rödl, 2-colorings of complete graphs with small number of monochromatic K_4 subgraphs, to appear in Discr. Math.
- [5] R.L. Graham, J.H. Spencer, A constructive solution to a tournament problem, Canad.Math.Bull. 14 (1971), 45-48.
- [6] A.W. Goodman, On sets of acquaintances and strangers at any party, Amer.Math.Monthly, 66 (1959), 778-783.
- G. Giraud, Sur le probleme de Goodman pour les quadrangles et la majoration des nombres de Ramsey, J.Combin.Theory Ser. B 30 (1979), 237-253.

- [8] P. Frankl, V. Rödl, R.M. Wilson, The number of submatrices of given type in a Hadamard matrix and related results, J.Comb.Theory, 44 (1988), 317-328.
- [9] V. Rödl, On universality of graphs with uniformly distributed edges, Discr. Math. 59 (1986), no. 1-2, 125-134.
- [10] E. Szemerédi, Regular partitions of graphs, in Proc. Colloque Internat. CNRS (J.-C. Bermond et. al., eds.), Paris, 1978, 399-401.
- [11] A.F. Sidorenko, *Tsikly v grafakh i funktsional'nye neravenstva*, Matematicheskie Zametki, 46 (1989), no. 5, 72-79 (in Russian).
- [12] A. Thomason, A disproof of a conjecture of Erdös in Ramsey theory, J. London Math. Soc. (2), 39 (1898), no. 2, 246-255.
- [13] A. Thomason, Pseudo-random graphs, in "Proceedings of Random Graphs, Poznan, '85", (M. Karonski, ed.), North-Holland Math. Stud., 144, North-Holland, Amsterdam, 1987.

Received: September 13, 1989 Revised: October 1, 1991