
March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

International Journal of Foundations of Computer Science
Vol. 23, No. 2 (2012) 389–401
c© World Scientific Publishing Company
DOI: 10.1142/S0129054112400199

CROCHEMORE’S REPETITIONS ALGORITHM

REVISITED: COMPUTING RUNS

FRANTISEK FRANEK∗,‡ and MEI JIANG†

Department of Computing and Software

McMaster University

Hamilton, Ontario

Canada L8S 4K1
∗franek@mcmaster.ca

†jiangm5@mcmaster.ca

Received 25 March 2010
Accepted 6 August 2010

Communicated by J. Holub

Crochemore’s repetitions algorithm introduced in 1981 was the first O(n logn) algo-
rithm for computing repetitions. Since then, several linear-time worst-case algorithms
for computing runs have been introduced. They all follow a similar strategy: first com-
pute the suffix tree or array, then use the suffix tree or array to compute the Lempel-Ziv
factorization, then using the Lempel-Ziv factorization compute all the runs. It is con-
ceivable that in practice an extension of Crochemore’s repetitions algorithm may outper-
form the linear-time algorithms, or at least for certain classes of strings. The nature of
Crochemore’s algorithm lends itself naturally to parallelization, while the linear-time al-
gorithms are not easily conducive to parallelization. For all these reasons it is interesting
to explore ways to extend the original Crochemore’s repetitions algorithm to compute
runs. We present three variants of extending the repetitions algorithm to compute runs:
two with a worsen complexity of O(n(logn)2), and one with the same complexity as
the original algorithm. The three variants are tested for speed of performance and their
memory requirements are analyzed. The third variant is tested and analyzed for various
memory-saving alterations. The purpose of this research is to identify the best exten-
sion of Crochemore’s algorithm for further study, comparison with other algorithms, and
parallel implementation.

Keywords: Repetition; run; string; periodicity; suffix tree; suffix array.

1. Introduction

An important structural characteristic of a string over an alphabet is its period-

icity. Repetitions (tandem repeats) have always been in the focus of the research

into periodicities. The concept of runs that captures maximal fractional repetitions

which themselves are not repetitions was introduced by Main [12] as a more succinct

‡Supported in part by a research grant from the Natural Sciences and Engineering Research
Council of Canada.

389

http://dx.doi.org/10.1142/S0129054112400199

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

390 F. Franek & M. Jiang

notion in comparison to repetitions. The term run was coined by Iliopoulos et al.

[8]. It was shown by Crochemore in 1981 that there could be O(n log n) repetitions

in a string of length n and an O(n log n) time worst-case algorithm was presented

[3] (a variant is also described in Chapter 9 of [4]), while Kolpakov and Kucherov

proved in 2000 that the number of runs was O(n)[9].

Since then, several linear-time worst-case algorithms have been introduced, all

based on linear algorithms for computing suffix trees or suffix arrays. Main [12]

showed how to compute the leftmost occurrences of runs from the Lempel-Ziv fac-

torization in linear time, Weiner [14] showed how to compute Lempel-Ziv factor-

ization from a suffix tree in linear time. Finally, in 1997 Farach [6] demonstrated a

linear construction of suffix tree. In 2000, Kolpakov and Kucherov [9] showed how

to compute all the runs from the leftmost occurrences in linear time. Suffix trees

are complicated data structures and Farach construction was not practical to im-

plement for sufficiently large n, so such a linear algorithm for computing runs was

more of a theoretical result than a practical algorithm.

In 1993, Manber and Myers [13] introduced suffix arrays as a simpler data

structure than suffix trees, but with many similar capabilities. Since then, many

researchers showed how to use suffix arrays for most of the tasks suffix trees were

used without worsening the time complexity. In 2004, Abouelhoda et al. [1] showed

how to compute in linear time the Lempel-Ziv factorization from the extended suf-

fix array. In 2003, several linear time algorithms for computing suffix arrays were

introduced (e.g. [10, 11]). This paved the way for practical linear-time algorithms to

compute runs. Currently,there are several implementations(e.g. Johannes Fischer’s,

Universität Tübingen, or Kucherov’s, CNRS Lille) and the latest, CPS, is described

and analyzed in [2].

Though suffix arrays are much simpler data structures than suffix trees, these

linear time algorithms for computing runs are rather involved and complex. In com-

parison, Crochemore’s algorithm is simpler and mathematically elegant. It is thus

natural to compare their performances. The strategy of Crochemore’s algorithm

relies on repeated refinements of classes of equivalence, a process that can be easily

parallelized, as each refinement of a class is independent of the other classes and

their refinement, and so can be performed simultaneously by different processors.

The linear algorithms for computing runs are on the other hand not very conducive

to parallelization (the major reason is that all linear suffix array constructions rely

on recursion). For these reasons we decided to extend the original Crochemore’s al-

gorithm based on the most memory efficient implementation by Franek et.al. [4]. In

this report we discuss and analyze three possible extensions of [4] for computing runs

and their performance testing: two variants with time-complexity of O(n(log n)2)

and one variant with time-complexity of O(n logn). Two different methods to save

memory for the third variant are tested and analyzed. The purpose of this study

was to identify the best extension of Crochemore’s repetitions algorithm to compute

runs for comparison with other runs algorithm and for parallel implementation.

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

Crochemore’s Repetitions Algorithm Revisited: Computing Runs 391

2. Basic Notions

Repeat is a collection of repeating substrings of a given string. Repetition, or tandem

repeat, consists of two or more adjacent identical substrings. It is natural to code

repetitions as a triple (s, p, e), where s is the start or starting position of the repeti-

tion, p is its period , i.e. the length of the repeating substring, and e is its exponent

(or power) indicating how many times the repeating substring is repeated. The re-

peating substring is referred to as the generator of the repetition. More precisely:

Definition 1. (s, p, e) is a repetition in a string x[0..n−1] if

x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)].

A repetition (s, p, e) is maximal if it cannot be extended to the left nor to the right,

i.e. (s, p, e) is a repetition in x and x[(s−p+1)..(s−1)] = x[s..(s+p−1)] and

x[(s+(e−1)p)..(s+ep−1)] = x[(s+ep)..(s+(e+1)p−1)].

In order to make the coding of repetitions more space efficient, the repetitions with

generators that are themselves repetitions are not listed; for instance, aaaa should

be reported as (0,1,4) just once, there is no need to report (1,2,2) as it is subsumed

in (0,1,4).

Thus we require that generator of a repetition be irreducible, i.e. not a repetition.

Consider a string abababa, there are maximal repetitions (0,2,3) and (1,2,3).

But, in fact, it can be viewed as a fractional repetition (0,2,3+1

2
). This is an idea

of a run coded into a quadruple (s, p, e, t), where s, p, and e are the same as for

repetitions, while t is the tail indicating the length of the last incomplete repeat.

For instance, for the above string we can only report one run (0,2,3,1) and it char-

acterizes all the repetitions implicitly. The notion of runs is thus more succinct and

more space efficient in comparison with the notion of repetitions. More precisely:

Definition 2. x[s..(s+ep+t)] is a run in a string x[0..n−1] if

x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)] and

x[(s+(e−1)p)..(s+(e−1)p+t)] = x[(s+ep)..(s+ep+t)], where 0 ≤ s < n is the start

or the starting position of the run, 1 ≤ p < n is the period of the run, e ≥ 2 is the

exponent (or power) of the run, and 0 ≤ t < p is the tail of the run. Moreover, it

is required that either s = 0 or that x[s−1] 6= x[s+2p−1] (in simple terms it means

that it cannot be extended to the left) and that x[s+(ep)+t+1] 6= x[s+(e+1)p+t+1]

(in simple terms it means that the tail cannot be extended to the right). It is also

required, that the generator be irreducible.

3. A Brief Description of Crochemore’s Algorithm

Let x[0..n−1] be a string. We deffine an equivalence ≈p on positions {0, · · · , n−1}

by i ≈p j if x[i..i+p−1] = x[j..j+p−1]. In Fig. 1, the classes of ≈p, p = 1..8 are

illustrated. For technical reasons, a sentinel symbol $ is used to denote the end of

the input string; it is considered to be the lexicographically smallest character. If

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

392 F. Franek & M. Jiang

a b a a b a b a a b a a b a b $

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

{0,2,3,5,7,8,10,11,13}a {1,4,6,9,12,14}b

level

1

{2,7,10}aa {1,4,6,9,12}ba
2 {0,3,5,8,11,13}ab {14}b$

{2,7,10}aab {1,6,9}baa
3 {0,3,5,8,11}aba {4,12}bab{13}ab$

{2,7,10}aaba {1,6,9}baab
4 {0,5,8}abaa {4}baba{3,11}abab {12}bab$

{7}aabaa {1,6,9}baaba
5 {0,5,8}abaab{3}ababa{2,10}aabab {11}abab$

6 {0,5,8}abaaba{2}aababa {10}aabab$ {6}baabaa

7 {5}abaabaa {0,8}abaabab {1}baababa

{1,9}baabab

{9}baabab$

8 {0}abaababa {8}abaabab$

{15}$

Fig. 1. Classes of equivalence and their refinements for a string abaababaabaabab.

i, i+p are in the same class of ≈p (as illustrated by 5,8 in the class {0, 3, 5, 8, 11} on

level 3, or 0,5 in class {0, 5, 8} on level 5, in Fig. 1) then there is a tandem repeat

of period p (thus x[5..7] = x[8..10] =aba and x[0..4] = x[5..9] =abaab). Thus the

computation of the classes and identiffication of repeats of the same “gap” as the

level (period) being computed lay in the heart of Crochemore’s algorithm. A naive

approach following the scheme of Fig. 1 would lead to an O(n2) algorithm, as there

are potentially ≤ n classes on each level and there can be potentially ≤ n

2
levels.

The first level is computed directly by a simple left-to-right scan of the input

string - of course we are assuming that the input alphabet is {0, · · · , n−1}, if it is

not, in O(n logn) the alphabet of the input string can be transformed to it.

Each follow-up level is computed from the previous level by refinement of the

classes of the previous level (in Fig. 1 indicated by arrows). Once a class decreases to

a singleton (as {15} on level 1 , or {14} on level 2), it is not refined any further. After

a level p is computed, the equivalent positions with “gap” are identified, extended

to maximum, and reported. Note that the levels do not need to be saved, all we need

is a previous level to compute the new level (which will become the previous level

in the next round). When all classes reach its final singleton stage, the algorithm

terminates.

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

Crochemore’s Repetitions Algorithm Revisited: Computing Runs 393

How to compute next level from the previous level – refinement of a class by

class. Consider a refinement of a class C on level L by a class D on level L: take

i, j ∈ C, if i+1, j+1 ∈ D, then we leave them together, otherwise we must separate

them. For instance, let us refine a class C = {0, 2, 3, 5, 7, 8, 10, 11, 13} by a class

D = {1, 4, 6, 9, 12, 14} on level 1. 0 and 2 must be separated as 1,3 are not both in D,

0 and 3 will be in the same class, since 1,4 are both in D. In fact C will be refined into

two classes, one consisting of D shifted one position to the left ({0, 3, 5, 8, 11, 13}),

and the ones that were separated ({2, 7, 10}). If we use all classes for refinement,

we end up with the next level.

A major trick is not to use all classes for refinement. For each “family” of

classes (classes that were formed as a refinementof a class on the previous level –

for instance classes {2, 7, 10} and {0, 3, 5, 8, 11, 13} on level 2 form a family as they

are a refinement of the class {0, 2, 3, 5, 7, 8, 10, 11, 13} on level 1). In each family we

identify the largest class and call all the others small. By using only small classes

for refinement, O(n log n) complexity is achieved as each element belongs only to

O(log n) small classes.

Many linked lists are needed to be maintained to keep track of classes, families,

the largest classes in families, and gaps. Care must be taken to avoid traversing any

of these structure lest the O(n log n) complexity be compromised. It was estimated

that an implementation of Crochemore’s algorithm requires about 20 ∗ n machine

words. FSX03 [4] managed to trim it down to 14∗n using memory multiplexing and

virtualization without sacrificing either the complexity or much of the performance.

a b a a b a b a a b a a b a b $

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

a b a a b a b a a b a a b a b $

run

run

run

Fig. 2. Reporting repetitions for string abaababaabaabab.

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

394 F. Franek & M. Jiang

4. Extending Crochemore’s Algorithm to Compute Runs

One of the features of Crochemore’s algorithm is that

(a) repetitions are reported level by level, i.e. all repetitions of the same period are

reported together, and

(b) there is no order of repetition reporting with respect to the starting positions

of the repetitions (this is a byproduct of the process of refinement),

and thus the repetitions must be “collected” and “joined” into runs. For instance, for

a string x =abaababaabaabab, the order of repetitions as reported by the algorithm

FSX03 ([4]) is shown in Fig. 2; it also shows some of the repetitions that have to

be joined into runs.

The first aspect of Crochemore’s algorithm (see (a) above) is good for computing

runs, for all candidates of joining must have the same period. The second aspect

(see (b) above) is detrimental, for it is needed to check for joining two repetitions

with “neigbouring” starts.

4.1. Variant A

In this variant all repetitions for a level are collected, joined into runs, and reported.

The high level logic:

(1) Collect the runs in a binary search tree based on the starting position. There is

no need to record the period, as all the repetitions and all the runs dealt with

are of the same period.

(2) When a new repetition is reported, find if it should be inserted in the tree as a

new run, or if it should be joined with an existing run.

(3) When all repetitions of the period had been reported, traverse the tree and

report all runs (if depth first traversal is used, the runs will be reported in

order of their starting positions).

The rules for joining:

(1) Descend the tree as if searching for a place to insert the newly reported

repetition.

(2) For every run encountered, check if the repetition should be joined with it.

(a) If the repetition is a substring of the run, ignore the repetition and termi-

nate the search.

(b) If the run is a substring of the repetition, replace the run with the repetition

and terminate the search.

(c) If the run’s starting position is to the left of the starting position of the

repetition, if the run and the repetition have an overlap of size ≥ p, the

run’s tail must be updated to accommodate the repetition (i.e. the run is

extended to the right). On the other hand, if the overlap is of size < p or

empty, continue search.

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

Crochemore’s Repetitions Algorithm Revisited: Computing Runs 395

RunLeft[] (reuse FNext[])

RunRight[] (reuse FPrev[])

Run_s[] (reuse FMember[])

Run_end[] (reuse FStart[])

Fig. 3. Data structures for Variant A.

(d) If the run’s starting position is to the right of the starting position of the

repetition, if the repetition and the run have an overlap of size ≥ p, the

run’s starting position must be updated to accommodate the repetition (i.e.

the run is extended to the left). On the other hand, if the overlap is of size

< p or empty, continue search.

For technical reasons and to lower memory requirements, the runs are recorded

in the search tree as pairs (s, d) where s is the starting position of the run, while d

is the end position of the run (let us remark again that we do not need to store the

period p). Note that we can easily compute the exponent: e = (d−s+1) / p, and

the tail t = (d−s+1) % p.

To avoid dynamic memory allocation and the corresponding deterioration of per-

formance, the search tree is emulated by 4 integer arrays of size n, named RunLeft[]

(emulating pointers to the left children), RunRight[] (emulating pointers to the

right children), Run_s[] (emulating storing of the starting position in the node),

and Run_end[] (emulating storing of the endposition in the node), see Fig. 3. Since

the four arrays, FNext[], FPrev[], FMember[], and FStart[], are used in the

underlying Crochemore’s algorithm only for class refinement, and at the time of

repetition reporting they can be used safely (as long as they are properly “cleaned”

after the use), we do not need any extra memory.

Thus the variant A does not need any extra memory as each search tree is

“destroyed” after the runs have been reported, however there is an extra penalty

of traversing a branch of the search tree for each repetition reporting, i.e. extra

O(log n) steps, leading to the complexity of O(n(log n)2).

4.2. Variant B

In this variant all repetitions for all levels are collected, joined into runs, and re-

ported together at the end.

The basic principles are the same as for variant A. However, for each level we

build a separate search tree and keep it till the repetitions of all levels (periods)

have been reported. We cannot use any of the data structures from the underlying

Crochemore’s algorithm as we did for variant A, so the memory requirement grows

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

396 F. Franek & M. Jiang

RunLeft[]

Run_p[]

RunRight[]

Run_s[]

Run_end[]

p1 p2

Search tree

for period p1

Search tree

for period p2

Fig. 4. Data structures for Variant B.

by additional 4 ∗ n machine words, see Fig. 4. The time-complexity is the same as

for variant A, i.e. O(n(log n)2).

How do we know that all the runs can fit into the search trees with a total of

n nodes? We do not know, for it is just a conjecture that the maximum number

of runs < n. However, if we run out of the space (there is a safeguard), we will

have found a counterexample to the conjecture on the maximum number of runs

(see e.g. [5]).

4.3. Variant C

As in Variant B, all repetitions for all levels are collected, joined into runs, and

reported together at the end. However, this variant differs from B in the data

structure used.

The repetitions are collected in a simple data structure consisting of an array

Buckets[]. In the bucket Buckets[s] we store a simple singly-linked list of all

repetitions that start at position s. To avoid as much as possible dynamic allocation,

so-called “allocation-from-arena” technique is used for the linked lists (Buckets[]

is allocated with the other structures) and 3 ∗ n words is allocated in chunks as

needed. The memory requirement for collecting and storing all the repetitions is

≤ 4n ∗ logn words, however an expected memory requirement is 4n words as the

expected number of repetitions is n (3n for the links, n for the buckets).

After all repetitions had been reported and collected, Buckets[] is tra-

versed from left to right and all repetitions are joined into runs - we call this

phase “sweep”. In another traversal,the runs can bereported. During the sweep,

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

Crochemore’s Repetitions Algorithm Revisited: Computing Runs 397

Buckets[]

(reuse FNext[])

s

p1 d1

p2 d2

Run_s[]

p2

s

Run_Last[]

(reuse FPrev[])

Fig. 5. Data structures for Variant C.

everything to the left of the current index are runs, while everything to the right

and including the current index are repetitions. For the joining business, we need

for each period to remember the rightmost run with that period, that is the role

of the array RunLast[] (we can reuse FNext[]). Thus when traversing the linked

list in the bucket Buckets[i] and currently dealing with a repetition with period

p2, RunLast[p2] points to the last run of period p2 so we can decide if the current

repetition is to be “promoted” to a run (with a zero tail), or joined with the run.

Since the starting position of the last run of period p2 is not stored in the run, we

need one more array Run_s[] in which we store the starting position (we can reuse

FPrev[]). Figure 5 shows the structures for this variant.

Since storing a repetition in Buckets[] takes a constant time, and there are

O(n log n) repetitions, and since the joining business is also constant time, the

overall time complexity is O(n log n) +O(n log n), i.e. O(n logn).

5. Experimental Results

Implementations of the three variants were compared as to their performance. The

testing was rather informal, just to give indications how the three variants compare.

Hardware: Sony VAIO laptop with Intel Core-2 Duo CPU T5800 @ 2.00GHz, 4GB

of RAM.

Software: Windows Vista Home Premium SP1. The code was written in C++ and

was compiled using the GNU g++ compiler.

Each run was repeated five times, the minimum numbers are recorded in the table

given in Fig. 6 (random2.txt is a file of random strings on a binary alphabet, while

random21.txt is a file of random strings on an alphabet of size 21).

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

398 F. Franek & M. Jiang

Data Set File Name String Length Time (seconds)

Variant A Variant B Variant C

DNA dna.dna4 510976 105.87 110.15 3.12

English bible.txt 4047392 63.27 62.65 23.90

Fibonacci fibo.txt 305260 173.30 177.00 2.39

Periodic fss.txt 304118 159.61 168.78 2.44

Protein p1Mb.txt 1048576 47.93 53.23 5.15

Protein p2Mb.txt 2097152 189.20 189.98 11.42

Random random2.txt 510703 193.01 189.28 4.42

Random random21.txt 510703 7.69 7.46 1.89

Fig. 6. Comparing speed performance of variants A, B, and C.

Data Set File Name Name # of runs Time (µsec / letter)

Variant A Variant B Variant C

DNA dna.dna4 510976 130368 207.18 215.57 6.11

English bible.txt 4047392 63690 15.63 15.48 5.91

Fibonacci fibo.txt 305260 233193 567.70 579.83 7.82

Periodic fss.txt 304118 281912 524.84 554.98 8.01

Protein p1Mb.txt 1048576 69605 45.71 50.76 4.91

Protein p2Mb.txt 2097152 139929 90.22 90.59 5.45

Random random2.txt 510703 210122 377.93 370.62 8.64

Random random21.txt 510703 24389 15.06 14.60 3.70

 Overall average 230.53 236.55 6.32

Fig. 7. Comparing speed performance of variants A, B, and C per character of input.

The table given in Fig. 7 records the performance averaged per a character of

input.

The results allow for a quick conclusion:

(1) Overall, variant C is significantly faster than variants A and B. In fact by 3643%!

(2) Even though variant A requires less additional memory, speed-wise does not do

much better than B.

(3) The speed of variants A and B is not proportional to the string’s length. Rather,

it mostly depends on the type of the string. It works better on strings with large

alphabet size and low periodicity. This is intuitively clear, as for high periodicity

strings the height of the search trees are large.

6. Memory-Saving Modifications of Variant C

In the first modification, C1, repetitions are collected for a round of K levels, then

a sweep is executed and the resulting runs are reported, and the bucket memory

is then reused in the next “batch” of repetitions. For our experiments, we used

K = 100, so we refer to this variant as C1-100.

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

Crochemore’s Repetitions Algorithm Revisited: Computing Runs 399

Data Set File Name File size # of runs Time (seconds)

(bytes) C C1-100 C2-10

DNA dna.dna4 510976 130368 3.02 3.04 2.87

English bible.txt 4047392 63690 20.29 20.36 20.53

Fibonacci fibo.txt 305260 233193 2.75 6.60 2.76

Periodic fss.txt 304118 281912 2.65 5.34 3.02

Protein p1Mb.txt 1048576 69605 4.47 4.52 4.42

Protein p2Mb.txt 2097152 139929 10.21 10.56 10.29

Random random2.txt 510703 210122 4.15 4.16 4.01

Random random21.txt 510703 24389 1.59 1.65 1.57

Fig. 8. Comparing speed performance of the variants C, C1-100, and C2-10.

Data set File name File size Alphabet # of Memory (blocks)

(bytes) size runs C C1-100 C2-10

DNA dna.dna4 510976 5 130368 510976 510976 510976

English bible.txt 4047392 63 63690 4047392 4047392 4047392

Fibonacci fibo.txt 305260 2 233193 2747340 1221040 610520

Periodic fss.txt 304118 2 281912 1824708 912354 608236

Protein p1Mb.txt 1048576 23 69605 1048576 1048576 1048576

Protein p2Mb.txt 2097152 23 139929 2097152 2097152 2097152

Random random2.txt 510703 2 210122 510703 510703 510703

Random random21.txt 510703 21 24389 510703 510703 510703

Fig. 9. Comparing memory usage of the variants C, C1-100, and C2-10.

In the second modification, C2, we consolidate repetitions with small periods

(≤ K) into runs when putting them to the buckets (this saves memory since there

are fewer runs than repetitions). For a repetition with periond p ≤ K and start s,

we check p buckets to the left and to the right of s; for p > K, we check K buckets

to the left and to the right of s. This guarantes that all reptitions up to period K

have been consolidated into runs before the final sweep, while repetitions of periods

> K are partially consolidated. Thus the final sweep ignores the repetitions with

periods ≤ K. Beside saving memory, the final sweep is a bit shorter, while putting

repetitions into the buckets is a bit longer. For our experiemts, we used K = 10, so

we refer to this variant as C2-10.

The table given in Fig. 8 show comparisons of C, C1-100, and C2-10 for the

speed of performance on the same datasets as the tests among the variants A, B,

and C in tables in Fig. 6 and Fig. 7.

As expected, C is the fastest, however the differences are insignificant, except

somehow significant results for fibo.txt and fss.txt.

The table given in Fig. 9 show comparisons of memory usage of C, C1-100, and

C2-10.

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

400 F. Franek & M. Jiang

File name File size Alphabet # of Time (seconds)

(bytes) size runs C C1-100 C2-10

60064.txt 60064 2 56714 0.34 0.51 0.34

79568.txt 79568 2 75136 0.50 0.72 0.56

105405.txt 105405 2 99541 0.70 1.05 0.79

139632.txt 139632 2 131869 1.06 1.59 1.10

176583.txt 176583 2 166772 1.71 2.58 1.43

184973.txt 184973 2 174697 1.63 2.78 1.46

Fig. 10. Comparing speed of C, C1-100, and C2-10 on large run-rich strings.

File name File size Alphabet # of Time (seconds)

(bytes) size runs C C1-100 C2-10

60064.txt 60064 2 56714 240256 180192 120128

79568.txt 79568 2 75136 318272 238704 159136

105405.txt 105405 2 99541 527025 316215 210810

139632.txt 139632 2 131869 698160 418896 279264

176583.txt 176583 2 166772 882915 529749 353166

184973.txt 184973 2 174697 924865 554919 369946

Fig. 11. Memory usage of C, C1-100, and C2-10 on large run-rich strings.

Only on fibo.txt and fss.tx tC1-100 and C2-10 exhibit memory savings, for

all other data sets, the memory requirements are the same corresponding to the

string’s length (i.e. only 1 arena segment is allocated).

For the next set of tests we used large strings with large number of runs. The

strings were obtained from W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and

A. Shinohara’s website dedicated to “Lower Bounds for the Maximum Number of

Runs in a String” at URL http://www.shino.ecei.tohoku.ac.jp/runs/.

The table in Fig. 10 indicates the time performance C, C1-100, and C2-10 on

these run-rich large strings, while the table in Fig. 11 gives the memory usage.

As expected, for strings with many short runs and a few long runs, C2-10 exhibits

significant memory savings, with little performance degradation.

7. Conclusion and Further Research

We extended Crochemore’s repetitions algorithm to compute runs. Of the three

variants, variant C is by far more efficient time-wise, but requiring O(n log n)

additional memory. However, its performance warrantied further investigation into

further reduction of memory requirements. The preliminary experiments indicate

that C2-K is the most efficient version and so it is the one that should be the

used as the basis for parallelization. Let us remark that variant C (and any of its

March 12, 2012 15:11 WSPC/INSTRUCTION FILE S0129054112400199

Crochemore’s Repetitions Algorithm Revisited: Computing Runs 401

modifications) could be used as an extension of any repetitions algorithm that re-

ports repetitions of the same period together.

References

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffixt rees with en-

hanced suffix arrays, J. Discr. Algorithms 2 (2004), pp. 53–86
[2] G. Chen, S.J. Puglisi & W.F. Smyth: Fast & practical algorithms for computing

all the runs in a string, Proc. 18th Annual Symposium on Combinatorial Pattern
Matching (2007), pp. 307–315

[3] M. Crochemore: Anoptimal algorithm for computing the repetitions in a word, In-
form. Process. Lett. 5 (5) 1981, pp. 297–315

[4] M. Crochemore, C. Hancart, AND T. Lecroq, Algorithms on Strings, Cam-
bridge University Press 2007

[5] M. Crochemore and L. Ilie: Maximal repetitions in strings, Journal of Computer
and System Sciences 74-5 (2008), pp. 796–807

[6] M. Farach: Optimal suffix tree construction with large alphabets, 38th IEEE Symp.
Found. Computer Science (1997), pp. 137–143

[7] F. Franek, W.F. Smyth, and X. Xiao: A note on Crochemore’s repetitions algo-

rithm, a fast space-efficient approach, Nordic J. Computing 10-1 (2003), pp. 21–28
[8] C. Iliopoulos, D. Moore, and W.F. Smyth, A characterization of the squares in

a Fibonacci string, Theoret. Comput. Sci.,172 (1997), pp. 281-291
[9] R. Kolpakov and G. Kucherov: On maximal repetitions in words, J. of Discrete

Algorithms, (1) 2000, pp. 159–186
[10] J. Kärkkäinen and P. Sanders: Simple linear work suffix array construction, Proc.

30th Internat. Colloq. Automata, Languages & Programming (2003), pp. 943–955
[11] P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays, Proc.

14th Annual Symp. Combinatorial Pattern Matching, R. Baeza-Yates, E. Chàvez,
and M. Crochemore (eds.), LNCS 2676, Springer-Verlag (2003), pp. 200–210

[12] M.G. Main: Detecting leftmost maximal periodicities, Discrete Applied Math., (25)
1989, pp. 145–153

[13] U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches,
SIAM J. Comput. 22 (1993), pp. 935–938

[14] P. Weiner: Linear pattern matching algorithms, Proc. 14th Annual IEEE Symp.
Switching & Automata Theory (1973), pp. 1–11

Copyright of International Journal of Foundations of Computer Science is the property of World Scientific

Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv

without the copyright holder's express written permission. However, users may print, download, or email

articles for individual use.

