Journal of Discrete Algorithms 17 (2012) 2-8

. . . . . =
Contents lists available at SciVerse ScienceDirect " JOURNAL OF
ALGOmTHMS

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

More results on overlapping squares ™

Frantisek Franek?, Robert C.G. Fuller?, Jamie Simpson®, W.E. Smyth ®*

4 Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton, Ontario L8S 4K1, Canada
b pepartment of Mathematics & Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

ARTICLE INFO ABSTRACT
Article history: Three recent papers (Fan et al., 2006; Simpson, 2007; Kopylova and Smyth, 2012) [5,11,8]
Available online 3 April 2012 have considered in complementary ways the combinatorial consequences of assuming that
three squares overlap in a string. In this paper we provide a unifying framework for these
Keywords: results: we show that in 12 of 14 subcases that arise the postulated occurrence of three
Square . . . . L. . .
Period neighboring squares forces a breakdown into highly periodic behavior, thus essentially
Periodicity trivial and easily recognizable. In particular, we provide a proof of Subcase 4 for the first
Repetition time, and we simplify and refine the previously established results for Subcases 11-14.
Combinatorics of words © 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we build on the results of three recent papers [5,11,8] to extend the combinatorial analysis of overlapping
squares occurring at the same or neighboring positions in a given string. In order to reduce proliferation of notation, we
adopt throughout the convention that a string denoted x (in mathbold) has length x (regular mathmode). For a complete
description of the background and motivation of this research, see [8].

In [5,8] the following problem was considered:

(P) Suppose that a string x has prefixes u? and v2, 3u/2 < v < 2u, and suppose further that a third square w? occurs at
position k+ 1 of x, where v —u <w < v, w#u, and 0 <k < v —u. What can be said about the periodicity of x?

This problem was first discussed in [4], though in a much simplified form (k = 0). An easily-proved result specifies a basic
structure imposed on x by the conditions on u and v:

Lemma 1. (See [11,8].) Suppose x = v2 has prefix u®. Then

X = Uquzuq U U U U U U1 U (1)

withu; =2u—v>0,uy=2v—3u>0ifandonly if3u/2 <v < 2u.

We observe that (P) is only one of several cases that may arise. For example, [8,11] also consider the case in which
u < v < 3u/2; it turns out that this condition, even without the introduction of w2, is sufficient to guarantee the occurrence
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Fig. 1. Subcase 6.

Table 1

The 14 subcases identified in [5], slightly modified, for three neighboring squares u, v, w (with v —u<w <v, w#u, 0<k<v —u).
Subcase S k k+w k+2w Special conditions
1 0<k<u k+w<u k+2w <u+up k>uy
2 0<k<u k+w<u k+2w <u+up k <up
3 0<k<uy k+w<u k42w >u+u; -
4 0<k<uy u<k+w<u+ug - -
5 0<k<uy utu<k+w<gv - -
6 0<k<uy v<k+w<2u - -
7 ug <k<ug+up k+w<u+u k+2w < 2u -
8 uy <k<ujp+uy k+w<u+u k+2w > 2u -
9 uy <k<ujp+uy u+uy<k+w<gv - w<u
10 uy <k<uy+up k+w<v k+2w<u+v w>u
11 ug <k<ui+uy k+w<v u+v<k+2w<2v—1uy -
12 up <k<up+uy k+w<v 2v—up <k+2w -
13 uy <k<ug+up v<k+w<2u - -
14 ug <k<uy+up 2u<k+w<2u+up;—1 - -

Table 2

This table shows the state of our knowledge when [8] was written. Here o is the alphabet
size, d the prefix of x of length gcd(u, v, w), s the prefix of d of length ged(u — w, v —u).

Subcases S Conditions Breakdown of v
1,256,809, 10 o=dVvx x=d/?
3,47 o=d x=d¥

o>d X =§U/ssV/sgv=w)/s
11-14 o=d x=d*?

o>d unknown

of repetitions of small period and indeed to enable the number, size and location of the repetitions that occur to be exactly
specified [8]. More generally, it will also be of interest to consider the various cases that arise when u2 and v2 do not occur
at the same position — this is an open area of research.

Specifically, for the case defined by (P), it turns out to be convenient to consider 14 subcases, defined as shown in Table 1
in terms of the four parameters (u, v, k, w) (thus also uq, uy). For each subcase we specify the location in (1) of the start,
the end and the center of the square w? in terms of the parameters u, v, k. A diagram of one of these subcases is shown in
Fig. 1.

Based on a computation of all strings determined by 1 < uq <30, 1 <uy <30, together with all corresponding allowable
values of w and k, [8] formulates conjectures as shown in Table 2. In this table, o is the largest alphabet size compatible
with the particular parameters u, v, k, w, while

d=gcd(uy, up, w) =ged(u, v, w) (2)

and

s=gcd(u —w, v —u). (3)

For Subcases 11-14 with o > d, no conjecture was provided in [8], an oversight that we address in Section 3. In general,
we summarize the status of the Table 2 conjectures as follows:

(1) The conjectures for Subcases 5, 6 and 10 were first proved in [11]; then in [8] the conjectures for all the subcases in
the first group, 1, 2, 5, 6, and 8-10, were proved.

(2) In Section 2 we prove the correctness of the conjecture for Subcase 4; thus only Subcases 3 and 7 remain unproved.

(3) It was shown in [11] that the conjectures shown for Subcases 11-14 with o =d hold except in two Exceptional Cases,
that we discuss further in Section 3. We establish necessary and sufficient conditions that o =d, both in general and
for Subcases 11-14; the latter result leads to a much simplified treatment of these subcases.

(4) Also in Section 3 we state new and more precise results for Subcases 11-14 when o > d.
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Thus overall we are able to confirm that in 12 of the 14 subcases arising from problem (P), the prefix u is itself a repetition
of small periodicity, while x is either a repetition of small periodicity or breaks down into repetitive substrings of small
periodicity. This means that for these 12 subcases the occurrence of the three squares u2, v2, w? is impossible except in
easily-recognized circumstances.

2. Subcase 4

We begin with a brief introduction of necessary terminology; in general, usage follows [12]. We write a string x of length
x as x[1..x]. If x=uvw for possibly empty strings u, v, w, then u is a prefix, v a substring, and w a suffix of x. If ¥ has
prefix u and also suffix u, 0 < u < x, then u is a border of x and x — u a period of x.

Given a nonempty string x on a finite alphabet X, a repetition in x is a substring u®, u nonempty, integer e > 2, where
x = vuw for some (possibly empty) strings v, w. We call e the exponent of the repetition, u its generator, and u its period.
For e = 2,3, we say that u® is a square or cube, respectively. There are well-known algorithms [3,1,10] that compute all
the repetitions in x in O(xlogx) time, asymptotically optimal since Fibonacci strings f contain £2(f log f) repetitions [3].
A repetition in x can be represented in constant space by a triple (i, p, e), where u€ is said to occur at position i in x and
p=u.

A run in x (originally introduced in [9] as a maximal periodicity) is a substring w of x of minimum period p < w/2
occurring at some position i, where neither x[i —1..i+w — 1] nor x[i..i + w] (whenever these are well defined) has period p.
Note that a run always has a prefix u®, p=u, e = |w/p| > 2, that is a repetition. A run can be specified by a four-tuple
(i, p,e,t), where i, p, e are defined as for a repetition, and the tail t = w mod p. In general, each run (i, p, e, t) determines
t + 1 repetitions of exponent e, and computing all the runs in x implicitly computes all the repetitions. Using linear time
preprocessing with high constant factor, the runs can be computed in O (x) time [7,2].

To establish Subcase 4 we will need the following results:

Lemma 2 (“Periodicity Lemma”, see [6]). Let p and q be two periods of x, and let d = gcd(p, q). If p +q < x+d, then d is also a period
of x.

The next lemma is folklore; a proof can be found in [7].
Lemma 3. If x = uvw, where both uv and vw have period p < v, then x has period p.

Lemma 4. (See [11].) Let x = arb. If x = "r't’, where t is a nonnegative integer and ', ¥”’ are a prefix and a suffix, respectively, of r,
then x has period gcd(r, " — a).

Theorem 5 (Subcase 4). Suppose that string x has prefixes u?> and v2, 3u/2 < v < 2u, and suppose further that a square w? occurs
at position k + 1 of X, whereu <w < v,0<k<uyandu <k+ w <u+uy. Then x[1..u], [u + 1..u + v] and x[u + v + 1..2v]
each has period s, as defined in (3). Furthermore, ifk + 2w <u + v and s <k + w — u, then x has period d, as defined in (2).

Proof. By Lemma 1

X =uUquUuququuquuq1UqUy.

The first half of the w square equals ujuzujuj where u] is a suffix and uj a prefix of uy. The second half of the square is
n n

a prefix of uj (uauq)?uquy, where uy’ is a possibly empty suffix of uq. Let p be the prefix of w of length

min{w,u+v —k — w}.
The copy of this in the second half of the w-square has period u; + ui. We claim the copy of p in the first half of this
square extends to at least ¥[2uq + uy]. This is clearly so if p = w. Suppose instead that p =u + v —k — w and, for the sake
of contradiction, that the claim does not hold. Then
k+u+v—-—k—w<2u;+u
= 3ui+2uy<w

= vV<w

which is a contradiction. Thus the claim holds. This allows us to apply Lemma 4 with p in the role of x, upu; in the role

"

of r, uy’ in the role of r” and u] in the role of a. We see that p has period
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i

ged([uy’| — [u)

Juz +up) = ged(Guy +uz —k — w) — (ug — k), uq +uz)
=gcdQuy +upy — w, ug +uy)
=gcdlu —w,v—u)
=s, see(3).

Thus upuq = s® where € = (v —u)/s is an integer. Hence ujuauq, U124, and uquy all have period s. The concatena-
tion of these three factors makes up v2 so that x[1...u], x{u+1...u+ v] and *[u + v+ 1...2v] all have period s. This is
the first part of the theorem.

If k42w <u+ v then p=w. Hence the second half of the w-square is contained in x[u + 1...u + v] and so w has
period s. Now suppose that we also have k + w — u > s. The intersection of x[k + 1...k + w] (the first half of the square)
with X[u+1...u+ v] has length k+w —u, so by Lemma 3, the whole of x[k+1...u+ v] has period s. Another application
of Lemma 3 using x[1...u] and x[k + 1...u 4+ w] shows that all of x%[1...u + w] has this period. In particular x[1..2u] has
period s as well as period u. By the Periodicity Lemma it therefore has period gcd(u, gcd(u — w, v —u)) = ged(u, v, w) =d.
This periodicity clearly extends to the whole of x, completing the proof. O

3. Subcases 11-14

We paraphrase here a version of the main result of [11] (compare with the problem statement (P) in Section 1):

Theorem 6. Suppose that a string x has prefixes u? and v2, 3u/2 < v < 2u, and suppose further that a square w? occurs at position
k+1ofx whereu <w < vand 0 < k< v —u.Then x has period d, as defined in (2), except possibly in two Exceptional Cases that,
setting d’ = gcd(u, v — w), are defined as follows:

EC1 ifk>2u—v,v>k+w,u+v <k+ 2w, and

d>2u—(k+w)+d, (4)

then x[1..2u] and X[k + w + 1..2v] both have period d’;
EC2 ifk >2u—v,v <k+ w, and

d>2u—v, (5)
then x[1..2u] and X[v + 1..2v] both have period d’.

We make several remarks about this result:

(R1) Theorem 6 requires w > u, while in problem (P) of Section 1 the condition w > v — u is sufficient, a weaker one since
by Lemma 1

u—(v-—u)=Qu;+uz)— (U +uz)=u1 >0.

It is tedious but straightforward (see Appendix A) to verify that for Subcases 5, 6 and 10-14 of Table 1, w > u, and so
Theorem 6 applies to these cases. In fact, for these cases it is slightly more general in its application, since it allows
k=v—u.

(R2) The Exceptional Cases identified in Theorem 6 both require k > 2u — v = uy + u and so by Table 1 cannot apply to
Subcases 5 and 6. Thus the main result of Theorem 6, that ¥ has period d, agrees exactly with the conjectures for
Subcases 5 and 6 shown in Table 2 and proved in [8].

(R3) In addition EC1 requires v > k+ w and u + v < k + 2w, conditions that we see from Table 1 restrict its application
to Subcases 11 and 12. At the same time EC2 requires v < k + w, conditions compatible with any of Subcases 11-14.
Thus the main result of Theorem 6 again agrees exactly with the conjecture for Subcase 10 as shown in Table 2 and
proved in [8].

(R4) As given in [11], Theorem 6 includes also the case u < v < 3u/2, showing that in this case also x has period
gcd(u, v, w). But [8] gives the stronger result that, without introducing w, x contains exactly m+5 specified runs (rep-
etitions), where m = [u/(v —u)], and otherwise contains only runs (repetitions) of period strictly less than v —u < u/2.

(R5) We can relate the new quantity d’ to d, as follows. Observing that d = gcd(uq, u, w) = ged(uq, u, w + uq), while

d =gcdQuy + up, 3u1 + 2uz — w) = ged(w + uq, u),

we see

d=ged(d', uq). (6)
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Based on these remarks, we see that Theorem 6 establishes the breakdown of u (as well as of v and w) into a repetition of
small period d for Subcases 11-14, except when EC1 holds (for Subcases 11 and 12) and when EC2 holds (Subcases 11-14).
Note that Theorem 6 requires u < w < v, in other words

O<v—w<v—u=uj+uz;<u.

It follows that d’ = gcd(u, v — w) is a positive integer strictly less than u that divides u. Suppose first that EC1 holds. Since
therefore x[1..2u] has period d’, it follows that u is a repetition of period d’. Thus, since v = uuquy, it is immediate that v
also has period d’. Similarly, for EC2, u is again a repetition of period d’ and v has period d'.

If now we suppose that the conditions of Theorem 6 are satisfied, but neither EC1 nor EC2 holds, then of course u and v
are repetitions of period d. But since by (6) d|d’ and d’|u, therefore again u is a repetition of period d’ and so v has period
d’. Thus we have established a somewhat stronger version of Theorem 6:

Lemma 7. Suppose the conditions of Theorem 6 hold, with d = gcd(u, v, w), d’ = gcd(u, v — w). Then u is a repetition of period d’,
and v also has period d’. Moreover, u and v are both repetitions of period d if and only if neither EC1 nor EC2 of Theorem 6 holds.

This result makes it clear that for Subcases 11-14, if x # dX/D a5 specified in Table 2, then an appropriate replacement
for “unknown” would be

u—=d

The puzzle that remains is to show the equivalence of the conditions stated for EC1 and EC2 and the conjectured (and
simpler) condition o > d given in Table 2. It was shown informally in [8] that o £ d and that, over all the Subcases 1-14,
o =d is a condition necessary for periodicity d, but the following lemma goes further. It establishes for all subcases that
o =d if and only if ¥ has period d, hence that o > d if and only if ¥ does not have periodicity d — in particular, for Subcases
11-14, if and only if one of EC1/EC2 holds.

Lemma 8. Suppose X = v2 has prefix u2, and that x[k + 1, k + 2w] is a square with 0 < k < uj. Let & be the maximum alphabet size
that x can have consistent with these periodicities. Then x has period d = gcd(u, v, w) ifand only if o =d.

Proof. The periodicities in ¥ engender a set of equations among the letters of x (x[i] = &x[i + v] for i € 1..v, etc.). This
produces a set of equivalence classes on {1, ..., |x|}, with i ~ j if x[i] = x[j]. Clearly o is the number of resulting equivalence
classes. If i # jmodd then i and j belong to different equivalence classes, since the equations can only equate letters with
indices differing by a multiple of d. Thus o >d.

If x has period d the letters used in x[1..d] will be the same as those used in the whole of x. This establishes the lemma
in one direction.

For the other direction suppose o = d. Then the set of equivalence classes is {S,: n=1,...,d} where S, ={i: i=
nmodd}. We can then label the letters of ¥ with the index of their equivalence class. Clearly x has period d. O

Consider, for example, the string

x=v?=12112112112 12112112112 (7)

corresponding to u1 =1, u =4, u=6, v=11, k=3, w=38. Since 0 =2 > 1=d, we conclude from Lemma 8 that u does
not have period d; moreover, since x is an example of Subcase 12, it follows from Lemma 7 that u is a repetition of period
d’ = 3. Note that since v =11 =k + w, therefore x satisfies EC2 of Theorem 6.

For Subcases 11-14 we can establish another necessary and sufficient condition that o =d:

Lemma 9. For Subcases 11-14, let d = gcd(u, v, w), d’ = gcd(u, v — w). Then o > d if and only if d’ > u;.

Proof. Suppose o > d. Then by Lemma 8 x does not have period d, and so by Lemma 7 either EC1 or EC2 of Theorem 6
holds. If EC1 holds, then

d>2u—(k+w)+d
>2u—v+d
=uq+d>uj.

However, if EC2 holds, then d’ > 2u — v = uy. This proves necessity.

Suppose then that d’ < uy. We show that therefore o =d. If d’ = uq, then by (6) d =d’, so that by Lemma 7 u is a
repetition of period d, and so by Lemma 8 o =d. On the other hand, if d’ < u1, two cases arise depending on the value of
t=vmodd”:
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(t =0) In this case u and v, hence uy and u3, are repetitions of period d’. Therefore in particular d’|u; (d divides u1), so
that by (6) d =d’; hence u is a repetition of period d, implying as above that o =d.

(t > 0) Here, since by Lemma 7 u is a repetition of period d’, it follows that the prefix u® of x has suffix tu; =d'" for some
r > 2, where tuq has prefix d'. Thus d’ = R¢(d’), the tth rotation of d’, and so by [12, Lemma 1.4.2] d’ is a repetition
of period g =gcd(t,d’ —t). Since v=d’ Lv/d']¢, it follows that u and v are repetitions of period g, hence so also is u.
We find then that g|d’ and g|uq, while d = gcd(d’, uq), telling us that g|d. Thus u and v are also repetitions of period
d, and so by Lemma 9 o =d, as required. O

Thus Lemma 9 replaces conditions EC1 and EC2 of Theorem 6 by the condition d’ > u;. Note that for the string (7), an
example of Subcase 12, d'=3>1=ujand 0 =2 > 1=d.
We now prove a result that provides a more precise periodic breakdown for Subcases 11-14 whenever d’ > uy:

Lemma 10. For Subcases 11-14, suppose d’ = gcd(u, v — w) > uy. Then d’ has period t = v modd’ > 0 (t is a nonempty border of v
and a generator of d’).

Proof. If d’ divides v, then

d =gcd(u,v—w,v)=gcd(u, v, w) =d.

Since by Lemma 7 u and v have period d’, it follows therefore from (2) that x is a repetition of period d = d’, hence by
Lemma 8 that o =d, and so by Lemma 9 that d’ < u, contradicting the hypothesis of the lemma. Therefore t = v modd’ > 0,
and so

d'|v/d| <v<2u.

Setting d’' = x[1..d'], we see that x[d’|v/d’'| +1..d'|v/d’'| +d'] is a copy of d’, and so, by the v-periodicity, is X[v +1..v +d’].
These two copies intersect, so d’ has a border of length d’|v/d’] +d’ — v. Hence d’ has period

d—(d|v/d|+d—v)=v—d|v/d]
=vmodd/,

as required. O
Putting together the results of Lemmas 7, 9 and 10, we have the following succinct formulation:

Suppose that the parameters (u, v,k, w) correspond to any one of Subcases 11-14. Then u is a repetition of period
d =gcd(u, v —w). If d > 2u — v, then d’ has period t = vmodd’ > 0, so that in fact

v= (td//t)v/d ;
otherwise, u and v are repetitions of period d = gcd(u, v, w).
Thus, computing d, d’, 2u — v, and t determines X up to an isomorphism on the alphabet. Note that d’ may or may not be

a run (possibly t > d/2). For example, in the string (7), since d’ > u1 = 2u — v, therefore d’ = 121 of length 3 has period
t=11mod3=2> 3/2.

4. Subcase reduction to canonical form

In this section we introduce ideas that may in future assist in the simplification of the results related to neighboring
squares and their proofs. Observe that whenever a subcase is regular — that is, ¥ breaks down into a repetition of period
d =gcd(uq, uz, w) —, the value of k can be replaced by zero. In other words, since each copy of w must be a repetition of
period d, the given subcase can be replaced by an equivalent subcase in which w? is shifted left by k positions. Consider,
for example, an instance of Subcase 12 determined by

u=16, v =26, k=7, w =20,

hence uy =6, u; =4, d=d = 2. Since d’ < u;, we know by Lemma 9 that ¢ =d, hence that the resulting string (on
maximum alphabet size 2) is just x = (12)?® with w = (21)!°. Clearly we can also regard this string as an instance of
Subcase 4 with parameters

u=16, v =26, k=0, w =20,

where u =16 <20 =k + w < u + uq = 22. (Of course, (12)26 is an instance of many strings in many other subcases.) We
call this left shift by k of a regular string a reduction and the corresponding repetition x= (1 2 --- d)*/¢ its canonical form.
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Observation 11. An instance (u, v, k, w) of problem (P) is regular if and only if the maximum alphabet size 0 = gcd(u, v, w).

Observation 12. Every regular instance (u, v, k, w) of Subcase S, 7 < S < 14, reduces to a regular instance (u, v, 0, w) of some
Subcase S’ < 6.

In other words, regular instances of all 14 subcases (assuming the conjectures for Subcases 3 & 7 hold) reduce to the
Three Squares Lemma [4]!

5. Conclusions & future work

In this paper we have considered the problem (P) on overlapping squares parameterized by (u, v, k, w), which breaks
down into 14 subcases depending on the parameter values. We have provided a proof for Subcase 4, previously unresolved,
and we have clarified, simplified and strengthened the results for Subcases 11-14. We have also provided a context that may
be useful for future study of these and related problems. The immediate tasks that remain are proofs for the conjectures
given in Table 2 relating to Subcases 3 and 7; these have so far defied our efforts.

Appendix A
We show that for Subcases 5, 6 and 10-14 of Table 1, w > u:

(5) Since k<uy and k+w >u+uy, w>u.

(6) Since k + w > v > u + uq, the result follows from (5).
(10) The “special condition” is w > u.
(11) Since k+2w > u + v and k < uy + uy, we have

2w>u+v —k
Zu+v—(u+uz)
=u+v—_Qu-—v)—(2v-3u)
=2u,

and so w > u.
(12) Here k+2w > 2v —uy > u+ v and so the result follows from (11).
(13) Since k+ w > v and k < uq + uy, we have

w>v—k
Zv—(u1+uy)
=v—Qu—-—v)—(2v-—-3u)
=u.

(14) Here k+ w > 2u > v and so the result follows from (13).
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