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We investigate the function ρd(n) = max{r(x) | x is a (d,n)-string}, where r(x) denotes the
number of runs in a string x and (d,n)-string denotes a string of length n with exactly d
distinct symbols. The notion of an r-cover is presented and discussed with emphasis on the
recursive computational determination of ρd(n). This notion is used as a key element of a
computational framework for an efficient computation of the maximum number of runs.
In particular, we were able to determine all previously known ρ2(n) values for n � 60 in a
matter of hours, confirming the results reported by Kolpakov and Kucherov, and were able
to extend the computations up to and including n = 74. Noticeably, these computations
reveal the unexpected existence of a binary run-maximal string of length 66 containing
aaaa.
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1. Introduction

In [2] the notion of an r-cover was introduced as a means to represent the distribution of the runs in a string and
thus describe the structure of run-maximal strings. The straightforward assertion from [2] that a run-maximal string has an
r-cover – except possibly a single weak point – holds only when the size of the alphabet is not kept fixed. However, the
approach can be adapted inductively to handle situations with fixed alphabets and can be used to speed up computations
of the maximum number of runs.

We encode a square as a triple (s, e, p) where s is the starting position of the square, e is the ending position of the
square, and p is its period. Note that e = s + 2p − 1. Similarly, we encode a run as a triple (s, e, p). It is clear from the
context whether a triple (s, e, p) encodes a square or a run. Note that the exponent of such a run equals � e−s+1

p � and the
tail of the run equals the remainder of the division of (e − s + 1) by p. The leading square of a run (s, e, p) refers to the
square (s, s + 2p − 1, p). The trailing square of a run (s, e, p) refers to the square (e − 2p + 1, e, p).

The join x[i1 .. ik] ∪ x[ j1 .. jm] of two substrings of a string x = x[1 .. n] is defined if i1 � j1 � ik + 1 and then
x[i1 .. ik] ∪ x[ j1 .. jm] = x[i1 .. max{ik, jm}], or if j1 � i1 � jm + 1 and then x[i1 .. ik] ∪ x[ j1 .. jm] = x[ j1 .. max{ik, jm}].
Simply put, the join is defined when the two substrings are either adjacent or overlap. For two encodings (s1, e1, p1)

and (s2, e2, p2) of squares in a string x, the join (s1, e1, p1) ∪ (s2, e2, p2) represents the join of x[s1 .. e1] ∪ x[s2 .. e2].
The alphabet of x is denoted by A(x), a (d,n)-string refers to a string of length n with exactly d distinct symbols, r(x)
denotes the number of runs in a string x, and ρd(n) refers to the maximum number of runs over all (d,n)-strings, i.e.
ρd(n) = max{r(x) | x is a (d,n)-string}. The number of distinct symbols of a string x is denoted as d(x). A singleton is a
symbol which occurs exactly once in the string under consideration, so a singleton-free string is a string in which each
symbol occurs at least twice. A square (s, e, p) is left-shiftable if x[s − 1] is defined (s > 1), and x[s − 1] = x[s + p − 1].
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Similarly, a square is right-shiftable if x[e + 1] is defined (e < n) and x[e + 1] = x[s]. In other words, a square (s, e, p) is
left-shiftable exactly when (s − 1, e − 1, p) is also a square, and is right-shiftable exactly when (s + 1, e + 1, p) is also a
square. To simplify the notation, for the empty string ε we set r(ε) = 0 and ρd(0) = 0.

Considering ρ(n) the maximum number of runs over all strings of length n, i.e. ρ(n) = max{ρd(n): 1 � d � n}, the
investigation of the asymptotic behavior of ρ(n)/n has provided a rich line of research. See [4,8] and references therein for
more details and additional results and approaches.

2. Computational approach to runs

The computational framework for determining ρd(n) presented in subsequent sections is based on the following ap-
proach: We first compute a lower bound of ρd(n), denoted as ρ−

d (n). Then it is enough to restrict our search to the
(d,n)-strings potentially satisfying r(x) > ρ−

d (n), thus significantly reducing the search space. This section introduces neces-
sary conditions guaranteeing that for a string x, r(x) > ρ−

d (n). We show that for a string x to potentially satisfy r(x) > ρ−
d (n),

it must have an r-cover and be ρ−
d (n)-dense. Only the r-covered strings are generated and the ones not satisfying the ρ−

d (n)-
density are eliminated at the earliest possible stage.

Definition 1. An r-cover of a string x = x[1 .. n] is a sequence of primitively rooted squares {Si = (si, ei, pi) | 1 � i � m} so
that

(1) none of the Si ’s, 1 � i � m is left-shiftable;
(2) si < si+1 � ei + 1 < ei+1 + 1 for any 1 � i < m, i.e. two consecutive squares are either adjacent or overlap without one

containing the other;
(3)

⋃
1�i�m Si = x;

(4) for any run R = (s, e, p) of x there is an Si with 1 � i � n containing the leading square of the run R .

A string which has an r-cover is referred to as r-covered.
An r-cover with no adjacent squares is referred to as overlapping r-cover.

See Fig. 1 for an illustration of an overlapping r-cover.

Lemma 2. The r-cover of an r-covered string is unique.

Proof. Let us assume that we have two different r-covers of x, {Si | 1 � i � m} and {S ′
j | 1 � j � k}. We shall prove by

induction that they are identical. By Definition 1(4), S1 is a substring of S ′
1 and, by the same argument, S ′

1 is a substring
of S1, and thus S1 = S ′

1. Let the induction hypothesis be Si = S ′
i for 1 � i � t . If

⋃
1�i�t Si = x, we have t = m = k and we

are done. Otherwise consider St+1. By Definition 1(4), there is S ′
v so that St+1 is a substring of S ′

v and v > t . We need to
show that v = t + 1. If not, then S ′

t+1 is a substring of
⋃

1�i�t+1 Si as otherwise S ′
t+1 would contain St+1, contradicting

v �= t + 1. Since S ′
t+1 is not a substring of

⋃
1�i�t Si , then S ′

t+1 is a substring of St+1, which in turn is a substring of
S ′

v , a contradiction. Therefore, St+1 is a substring of S ′
t+1. Similarly, S ′

t+1 i a substring of St+1 and so St+1 = S ′
t+1, which

completes the induction. �
Lemma 3. Any r-covered string is singleton-free.

Proof. Let {S j | 1 � j � m} be the r-cover of x = x[1 .. n]. For any 1 � i � n, x[i] ∈ St for some t by Definition 1(3). Since St

is a square, the symbol x[i] occurs in x at least twice. �
Before defining a ρ−

d (n)-dense string, we recall the notion of a core of a run introduced in [5]: for a run (s, e, p), its core
is the intersection of the set of indices of its leading square (s, s + 2p − 1, p) and the set of indices of its trailing square
(e − 2p + 1, e, p).

Definition 4.

(a) Let ki(x) be the number of cores in x containing the position i. Given a (d,n)-string x, the vector k(x) = (k1(x), . . . ,kn(x))
is referred to as the core vector of x.

(b) A singleton-free (d,n)-string x is ρ−
d (n)-dense, if its core vector k(x) satisfies ki(x) > ρ−

d (n) − r(x[1 .. i − 1]) − mi for
i = 1 .. n, where mi = max{ρd2(n − i): d − d1 � d2 � min(n − i,d)} and d1 = d(x[1 .. i − 1]).

Lemma 5. If a (d,n)-string x is not ρ−(n)-dense, then r(x) � ρ−(n).
d d
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Fig. 1. An illustration of all the runs in a string, with the squares of the r-cover indicated in bold.

Proof. Clearly, for any string x, r(x) � r(x[1 .. i − 1]) + r(x[i + 1 .. n]) + ki(x) for all i’s. Note that in most situations
r(x) = r(x[1 .. i − 1]) + r(x[i + 1 .. n]) + ki(x), except when the core of some run containing i is empty – such run
is split into two runs: one in x[1 .. i − 1] and the other in x[i + 1 .. n]. If x is not ρ−

d (n)-dense, then for some i0,
ki0 (x) � ρ−

d (n)−r(x[1 .. i0 −1])−mi0 . Since r(x) � r(x[1 .. i0 −1])+r(x[i0 +1 .. n])+ki0 (x) � r(x[1 .. i0 −1])+mi0 +ki0 (x),
then r(x) � r(x[1 .. i0 − 1]) + mi0 + ρ−

d (n) − r(x[1 .. i0 − 1]) − mi0 = ρ−
d (n). �

Lemma 6. If the core vector of a (d,n)-string has non-zero entries, then the string has an r-cover.

Proof. We build an r-cover by induction: Since the k1(x) �= 0, position 1 is in at least one core, hence there must be at
least one run starting at position 1. Among all runs starting at position 1, set S1 to the leading square of the run with
the largest period. Let the inductive hypothesis be that we have built the r-cover up to i � t: {Si = (si, ei, pi) | 1 � t}. If⋃

1�i�t Si = x, we are done. Otherwise
⋃

1�i�t Si = x[1 .. et]. Since ket+1(x) �= 0, there is at least one run (s, e, p) in x such
that s � et + 1 � s + 2p − 1. From all such runs chose the set of runs with the leftmost starting position, and among them
choose the one with the largest period, and set St+1 to the leading square of the chosen run. It is straightforward to verify
that all the conditions of Definition 1 are satisfied and that we have built an r-cover of x. �

Lemma 6 yields a computationally efficient generalization allowing the determination of previously intractable values
of ρd(n). Namely, the generation of r-covered strings is computationally tractable as opposed to the generation of strings
satisfying ki(x) �= 0. Note that being r-covered for a (d,n)-string x can be interpreted as a minor generalization of satisfying
ki(x) � 2 for 1 � i � n.

Lemma 7 shows how k(x) can be estimated from the partially generated r-cover of x. It is used in the following way:
r-covered strings are generated and the ones with core vectors not meeting a certain threshold vector ought to be elimi-
nated. Lemma 7 shows that the estimates for ki(x) are non-increasing with the increase of the partial r-cover.

Lemma 7. Let {S j = (s j, e j, p j) | 1 � j � m} be the r-cover of a (d,n)-string x and 1 � j1 � j2 � m, then ki(x) = ki(x[1 .. em]) �
ki(x[1 .. e j2 ]) � ki(x[1 .. e j1 ]) for 1 � i � e j1 .
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Proof. Let R be a run in x[1 .. e j2 ] containing i in its core. By Definition 1(4), the leading square of R is a substring of S j
for some 1 � j � j2. Since i lies in S j , it follows that j � j1, and so the part of R lying in x[1 .. e j1 ] is a run in x[1 .. e j1 ]
with a non-empty core containing i, therefore, ki(x[1 .. e j2 ]) � ki(x[1 .. e j1 ]). �
Lemma 8. If there is a run-maximal (d,n)-string x with an r-cover with a pair of adjacent squares, then ρd(n) � ρd1(n1) + ρd2(n2)

for some 2 � d1,d2 � d and some n1,n2 � 0 such that n1 + n2 = n.

Proof. Let {Si: 1 � i � m} be the r-cover of x. Let S j = (s j, e j, p j) and S j+1 = (s j+1, e j+1, p j+1) be two adjacent squares of
the r-cover, i.e. s j+1 = e j + 1. Let x1 = ⋃

1�i� j Si and x2 = ⋃
j<i�m Si . Clearly ρd(n) = r(x) � r(x1) + r(x2) � ρd(x1)(|x1|) +

ρd(x2)(|x2|). �
Lemma 9. If a singleton-free run-maximal (d,n)-string x does not have an r-cover, then ρd(n) � ρd(n1) +ρd(n2) for some n1,n2 � 0
such that n1 + n2 = n − 1.

Proof. Since x does not have an r-cover, there is an x[i] that is not in the core of any run. Consider substrings x1 =
x[1 .. i − 1] and x2 = x[i + 1 .. n]. We consider two cases: Case (a): If A(x) = A(x1) = A(x2), then ρd(n) = r(x) � r(x1) +
r(x2) � ρd(|x1|) + ρd(|x2|). Case (b): If A(x1) �= A(x2), then without loss of generality, assume there is c ∈ A(x1) � A(x2).
Permute the alphabet of x1 creating a new string x̃1, so that x̃1[i − 1] = c . Then x̃1 and x2 can be concatenated into a string
of length n − 1 without merging any runs. Therefore, ρd(n) = r(x) � r(x̃1) + r(x2) = r(x1) + r(x2) � ρd(n − 1) � ρd(n), and
so ρd(n) = ρd(n − 1). �
Lemma 10. If a run-maximal (d,n)-string has a singleton, then either ρd(n) = ρd−1(n − 1) or ρd(n) = ρd(n − 1).

Proof. For a given run-maximal (d,n)-string x there are three cases: Case (a): x has a singleton at the end or the beginning.
If it is at the end, then ρd(n) = r(x) = r(x[1 .. n − 1]) � ρd−1(n − 1) as x[1 .. n − 1] is a (d − 1,n − 1)-string. It follows that
ρd(n) = ρd−1(n − 1). For a singleton at the beginning the proof is identical. Case (b): x has a singleton in the middle at a
position j and the alphabets of the two parts are different, i.e. there is c so that either c ∈A(x[1 .. j − 1])�A(x[ j + 1 .. n])
or c ∈A(x[ j + 1 .. n]) �A(x[1 .. j − 1]). If c ∈A(x[ j + 1 .. n]) �A(x[1 .. j − 1]), then create x1 by permuting the alphabet
of x[ j + 1 .. n] so that c moves to the position j + 1. This will not affect the number of runs and so r(x) = r(x1). Create
x2 by moving the singleton x[ j] to the end. Again, the number of runs will not be affected and so r(x1) = r(x2). Then
y = x2[1 .. n − 1] is a (d − 1,n − 1)-string and ρd(n) = r(x) = r(x2) = r(y) � ρd−1(n − 1) � ρd(n). The argument is similar
if c ∈ A(x[1 .. j − 1]) � A(x[ j + 1 .. n]). Case (c): x has a singleton c in the middle at a position j and the alphabets of
the two parts are the same; that is, A(x[ j + 1 .. n]) = A(x[1 .. j − 1]) = A(x) − {c}. Replace all occurrences of x[ j + 1] in
x[ j + 1 .. n] with the singleton c , producing x1. This will not affect any runs and so r(x) = r(x1). Moreover, A(x) = A(x1).
Create a string x2 by removing x1[ j]. Since no runs are merged, r(x1) = r(x2). Since A(x) = A(x2), x2 is a (d,n − 1)-string
and thus ρd(n) = r(x) = r(x2) � ρd(n − 1) � ρd(n). �
Corollary 11. If there is a run-maximal (d,2d)-string with t singletons, then there is a run-maximal (d,2d)-string with t singletons at
the end.

Proof. Consider the proof of Lemma 10. If x has a singleton at the beginning, case (a) of the proof of Lemma 10, it can be
moved to the end without affecting the number of runs.

If x has a singleton in the middle and A(x[1 .. i −1]) �=A(x[i +1 .. 2d]), case (b) of the proof of Lemma 10, then we can
make the transformation preserving the number of runs but changing the singleton to a multiply-occurring symbol while
preserving any other singleton and its position. If x has a singleton in the middle and A(x[1 .. i − 1]) = A(x[i + 1 .. 2d]),
case (c) of the proof of Lemma 10, then ρd(2d) = ρd(2d − 1) = ρd−1(2d − 2), which is impossible. Recall that ρd(2d) =
ρn−d(2n − 2d) for 2 � d � n < 2d, see [3], and that ρd(n) > ρd−1(n − 2) since appending two copies zz of a new symbol
z /∈A(x) to the end of any string x increases the number of runs by 1. �
3. Heuristic for a lower bound ρ−

d (n)

The higher the value of ρ−
d (n), the less computational effort must be spent on determining ρd(n). For d = 2, generate

L2(n), the set of (2,n)-strings which: (a) are r-covered with overlapping r-cover, (b) are balanced over every prefix; that is,
the frequencies of a’s and b’s differ by at most a constant selected according to an analysis of smaller binary run-maximal
strings, (c) have a maximum period bounded by at most a predefined constant, and (d) contain no triples (aaa or bbb). We
set the value of ρ−

2 (n) to be:

ρ−
2 (n) = max

{
ρ2(n − 1),ρ2(n − 2) + 1, max r(x)

}
.

x∈L2(n)
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Algorithm 1: Generating strings with overlapping r-cover.

begin Set the first square, S1:
s1 ← 1
for p1 ← 1 .. � n

2 � do
e1 ← 2p1

foreach primitive string g of length p1 do
x[1 .. 2 ∗ p1 − 1] ← gg
addSquare(2)

begin addSquare(t)
for st ← st−1 + 1 .. et do

for et ← et−1 + 1 .. n do
if et − st + 1 is even then

pt ← (et − st + 1)/2
if st + pt − 1 � et−1 then

if the squaring of the generator locally coincides with the existing string then
square the generator
finishSquare(t)
remove the square

else
foreach completion of the generator do

square the generator
finishSquare(t)
remove the square

begin finishSquare(t)
if st − 1 �= et then (the square is not left-shiftable)

if x[st .. et ] is primitive then
if no square (s, e, p) so that st−1 � s � st � et−1 � e � et and (s, s + 2p − 1, p) /∈ {Si | 1 � i � t} then

if et = n then
if number of distinct symbols = d then

output x

else
addSquare(t + 1)

This heuristic was found to be highly efficient when tested against the known run-maximal strings for ρ2(n): Franek and
Smyth up to 34, and Kolpakov and Kucherov [7] up to 60. Note that ρ−

2 (25) < ρ2(25) since the only run-maximal (2,25)-
string contains a triple. For d � 3, we set ρ−

d (n) = max{ρd−1(n − 1),ρd−1(n − 2) + 1,ρd(n − 1)}.

4. Generating (d,n)-strings with overlapping r-covers

This section describes the generation of all r-covered strings with overlapping r-covers. For a square uu, we refer to u
as the generator of the square. We built a square by determining its generator. Starting from determining S1, we recursively
generate St given {Si | 1 � i < t}. The pseudocode for this approach is given in Algorithm 1, while we describe below the
steps.

Constructing S1: The value of s1 is set to 1 and all possible primitive strings u of length p1 for p1 = 1 .. � n
2 � are generated

using a restricted growth string approach to avoid isomorphic duplicates with respect to the permutation of the alphabet.
For every u generated, e1 is set to 2|u| − 1, x[1 .. 2p1 − 1] is set to uu, and S1 is encoded by (s1, e1, p1).

Constructing St : A partial overlapping r-cover {Si | 1 � i < t} has been built so that x[1 .. et−1] = ⋃
1�i<t Si . Since every

two consecutive squares in the r-cover being generated must overlap, it is enough to consider every pair st and et such that
st−1 < st � et−1 < et � n and pt = (et − st + 1)/2 is an integer.

Case (a): st + pt − 1 � et−1, then the generator of the square St = (st , et, pt) is already completely determined as it is
a substring of

⋃
1� j<t S j . If st + pt − 1 < et−1, the entries of the square determined by the generator must coincide with

x[st .. et−1]. Then the generator is tested for being primitive and not left-shiftable. Finally, it is tested whether extend-
ing

⋃
1� j<t S j by the square (st , et, pt) does not introduce a so-called intermediate square, i.e. a non-left-shiftable square

(s, e, p) /∈ {S j | 1 � j � t} such that st−1 � s � st � et−1 � e � et and (s, s + 2p − 1, p). If the square St = (st , et, pt) passes
all these tests, St it added to the r-cover and x[1 .. et−1] is appended by the missing part of the second occurrence of the
generator, and thus x[1 .. et] = ⋃

1� j�t S j .
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Case (b): Otherwise, all possible ways to extend the partial generator to the required length st + pt − 1 are considered
using a restricted growth string approach. Every extension is tested for being primitive and non-left-shiftable. Then the
possible extension of the string is tested for introduction of intermediate squares, if none is found, the square St = (st , et, pt)

is added to the r-cover and x[1 .. et−1] is appended by the missing part of the generator and another copy of the generator,
so x[1 .. et] = ⋃

1� j�t S j . If et = n, the whole generated string is tested for having exactly d symbols, and if it has fewer
than d, it is rejected.

A more restrictive generation may be required. For instance, when the lower bound ρ−
d (n) is being determined, see

Section 3, the test of
⋃

1� j�t S j for being balanced and having no triples can be performed at each stage. Similarly, when
strings with a required density are generated, see Section 5, the core vector of

⋃
1� j�t S j can be computed at each stage,

and if it is insufficient, this branch of the generation process is terminated based on Lemma 7. When strings with overlap-
ping r-covers satisfying parity condition are generated, see Section 5, the overlap between two consecutive squares of the
partial r-cover can be tested at each stage for the parity condition, see Section 5.2.

5. Recursive computation of ρd(n)

5.1. General case

First, ρ−
d (n) is computed by the heuristic of Section 3. Then the following two inequalities (a) ρd(n1) + ρd(n2) � ρ−

d (n)

for any n1 + n2 = n − 1, and (b) ρd1(n1) + ρd2(n2) � ρ−
d (n) for any 2 � d1,d2 � d and any n1 + n2 = n, are verified. Then

Ud(n), the set of all ρ−
d (n)-dense (d,n)-strings with overlapping r-covers is generated as described in Section 4. It follows

that

ρd(n) = max
{
ρ−

d (n), max
x∈Ud(n)

r(x)
}
.

To see that, first consider the existence of a run-maximal (d,n)-string with singletons: by Lemma 10, ρd(n) = ρd(n − 1) or
ρd−1(n − 1). Then consider the existence of a singleton-free run-maximal string x not in Ud(n):

(a) either x does not have an r-cover and so ρd(n) � ρd(n1) + ρd(n2) for some n1 + n2 = n − 1 by Lemma 9, and so
ρd(n) � ρ−

d (n); or
(b) x has an r-cover with two adjacent squares and ρd(n) � ρd1(n1)+ρd2 (n2) for some 2 � d1,d2 � d and some n1 +n2 = n

by Lemma 8, thus ρd(n) � ρ−
d (n); or

(c) x has an overlapping r-cover, but is not ρ−
d (n)-dense, in which case ρd(n) � ρ−

d (n) by Lemma 5.

5.2. (d,2d)-Strings

For the computation of ρd(2d) we can use overlapping r-covers satisfying additional conditions and hence refine the
computation vis-à-vis the general case.

Definition 12. The r-cover {Si = (si, ei, pi) | 1 � i � m} of x = x[1 .. n] satisfies the parity condition if for any 1 � i < m,
A(x[1 .. ei − 1]) ∩ A(x[si+1 + 1 .. n]) ⊆A(x[si+1 .. ei]).

Lemma 13. The singleton-free part of a run-maximal (d,2d)-string x with all its singletons at the end has an r-cover satisfying the
parity condition.

Proof. Let x have v � d − 2 singletons, all at the end, and let k(x) be the core vector of x. Assume that ki(x) = 0 for
some 1 � i � 2d − v . If i = 1 or 2d − v , then ρd(2d) = r(x) = ρd(2d − 1) = ρd−1(2d − 2), a contradiction, therefore 1 < i <

2d − v . If A(x[1 .. i − 1]) = A(x[i + 1 .. 2d − v]), then x[1 .. i − 1] must have d − v distinct symbols, and no singletons.
Therefore, the length of both x[1 .. i − 1] and x[i + 1 .. 2d − v] must be at least 2(d − v), for a combined minimum
length of 4(d − v). For these two substrings to fit within x[1 .. 2d − v], we must have 4(d − v) � 2d − v , a contradiction,
as it implies there are more distinct characters in the string than there are singletons. Therefore, there is c so that either
c ∈A(x[1 .. i −1])�A(x[i +1 .. 2d − v]) or c ∈A(x[i +1 .. 2d − v])�A(x[1 .. i −1]). Similarly as in the proof of Lemma 9,
ρd(2d) � ρd(2d − 1) = ρd−1(2d − 2), a contradiction. So every ki(x) � 1 for 1 � i � 2d − v , and thus x[1 .. 2d − v] has an
r-cover {Si | 1 � i � m} by Lemma 6. Assume that the r-cover does not satisfy the parity condition. There are two cases both
yielding a contradiction:

(a)
⋃

1�i�t Si and
⋃

t+1� j�m S j for some 1 � t � m are disjoint and have at least one symbol c in common. If we replace
all c ’s in

⋃
1�i�t Si by a new symbol ĉ /∈ A(x), we get a (d + 1,n)-string y satisfying r(y) = r(x). Thus ρd−1(2d − 2) =

ρd(2d − 1) = ρd+1(2d) � r(y) = r(x) = ρd(2d), a contradiction.
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(b)
⋃

1�i�t Si and
⋃

t+1� j�m S j for some 1 � t � m are overlapping, and there is a symbol c occurring in
⋃

1�i�t Si and
in

⋃
t+1� j�m S j , but not in the overlap of St and St+1. If we replace all c ’s in

⋃
1�i�t Si by a new symbol ĉ /∈ A(x),

we get a (d + 1,n)-string y satisfying r(y) = r(x). Thus ρd−1(2d − 2) = ρd(2d − 1) = ρd+1(2d) � r(y) = r(x) = ρd(2d),
a contradiction. �

Lemma 14. If ρd′ (2d′) = d′ for any d′ < d, then either ρd(2d) = d or, for every run-maximal (d,2d)-string x with v � d − 2 singletons
all at the end, its singleton-free part x[1 .. 2d − v] has an overlapping r-cover satisfying the parity condition.

Proof. The existence of the r-cover {Si | 1 � i � m} of x[1 .. 2d − v] satisfying the parity condition follows from Lemma 13.
We need to prove that either ρd(2d) = d or there are no adjacent squares in the r-cover. Since ρd′(2d′) = d′ for any d′ < d,
ρd′(n′) � n′ − d′ for any n′ − d′ < d. Assume that the r-cover of x has two adjacent squares St and St+1. Let x1 = ⋃

1�i�t Si

and let x2 = ⋃
t<i�m Si . Then r(x) = r(x1)+r(x2) and x1 is a (d1,n1)-string for some d1 and n1, and x2 is a (d2,n2)-string for

some d2 and n2, where n1 +n2 = 2d− v and d1 +d2 � d− v . Since the r-cover satisfies the parity condition, A(x1) and A(x2)

are disjoint and hence d1 + d2 = d. Therefore (n1 − d1) + (n2 − d2) = d. Since both x1 and x2 are singleton-free, n1 − d1 > 0
and n2 − d2 > 0. As both n1 − d1 and n2 − d2 are smaller than d, ρd(2d) = r(x) = r(x1) + r(x2) � ρd1 (n1) + ρd2(n2) �
(n1 − d1) + (n2 − d2) = d. �

Since the number of runs in a singleton-free (d,2d)-string is at most d, we do not need to consider the singleton-free
strings. By Corollary 11, we can consider only (d,2d)-strings that have singletons at the end. Since ρd(2d) > ρd−1(2d − 2),
we can set ρ−

d (2d) = ρd−1(2d − 2) + 1 and thus consider only the strings that have the non-singleton part ρ−
d (2d)-dense.

By Lemma 14 we need only consider strings whose r-covers of the non-singleton part satisfy the parity condition with no
adjacent squares. Moreover, we know that the number of singletons must be at least � 7d

8 
, see [3]. For every � 7d
8 
 � v �

d − 2, let Tv denote the set of all singleton-free ρ−
d (2d))-dense and r-covered (d,2d − v)-strings with overlapping r-cover

satisfying the parity condition. Then

ρd(2d) = max

(
d,max

{
max
x∈Tv

r(x):

⌈
7d

8

⌉
� v � d − 2

})
.

6. Computational results

The described computational framework was implemented in C++, and was run in parallel on the SHARCNET computer
cluster. We were able to recompute all previously known ρ2(n) values for n � 60 in a matter of hours, confirming the
results reported by Kolpakov and Kucherov [7]. We were then able to extend the computations up to and including n = 74.
The new values are: ρ2(61) = 52, ρ2(62) = 53, ρ2(63) = 54, ρ2(64) = 55, ρ2(65) = ρ2(66) = 56, ρ2(67) = 57, ρ2(68) = 58,
ρ2(69) = 59, ρ2(70) = 60, ρ2(71) = 61, ρ2(72) = 62, ρ2(73) = 63, and ρ2(74) = 64. The results and sample run-maximal
strings may be found at [1]. Whenever the computation required determining the number of runs in a concrete string, the
C++ implementation of the Franek, Jiang, and Weng algorithm [6] was used. One particularly interesting string found is

aababaababbabaababaababbabaababaaaababaababbabaababaababbabaababaa,

which is a run-maximal (2,66)-string. This is, to the best of our knowledge, the first known example of a run-maximal
string containing a run with exponent 4, in particular aaaa. It is also interesting to note that there are binary run-maximal
strings which are themselves squares for n = 62, 64, 66, 68, and 70.

7. Conclusion

We presented the notion of r-covers as a structural generalization of a uniform distribution of runs in a string. Then we
showed that it is enough to consider overlapping r-covered strings in order to recursively determine the maximum number
of runs ρd(n). Based on these observations, we presented a computational framework with significantly reduced search
space for computations of ρd(n) based on the notion of density and exploiting the tightness of the available lower bound.
As illustrations we obtained the previously unknown values of ρ2(n) for 61 � n � 74.
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