LARGE SETS OF MUTUALLY ALMOST
DISJOINT STEINER TRIPLE SYSTEMS NOT
FROM STEINER QUADRUPLE SYSTEMS

F.FRANEK, MCMASTER UNIVERSITY
T.S.GRrR1GGS, UNIVERSITY OF CENTRAL LANCASHIRE
A.Ro0sA, MCMASTER UNIVERSITY

ABSTRACT. We construct what we believe to be the first examples of large
sets of v MAD STS(v) which are not obtained from Steiner quadruple sys-
tems.

1. INTRODUCTION

A Steiner triple system of order v (briefly STS(v)) is a pair (V, B) where
V is a v-set, and B is a collection of 3-subsets of V' called ¢riples such that
each 2-subset of V is contained in exactly one triple. It is well known that
an STS(v) exists if and only if v =1 or 3 (mod 6).

A family (V,B41),(V,Bz),...,(V,By) of q Steiner triple systems of order
v, all on the same set V, is a large set of STS(v) if every 3-subset of V is
contained in at least one STS of the family. Two STS(v), (V,B1),(V,Bz)
are disjoint if By N By = 0 and almost disjoint if |B; N Bz| = 1. The classic
papers of Lu [L1],[L.2] and Teirlinck [T] established the existence of large
sets of mutually disjoint (MD) STS(v) for all admissible v # 7. Such large
sets necessarily contain v — 2 systems.

In [LR], Lindner and Rosa considered large sets of mutually almost
disjoint (MAD) STS(v). They showed that for admissible v > 15 such large
sets must contain v — 1 (later shown to be impossible, cf. [GR]), v, or v+ 1
systems, and proved the existence for every v = 1 or 3 (mod 6), of a large
set of v MAD STS(v). For this end, they employed the existence of Steiner
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quadruple systems. The definition of a Steiner quadruple system of order v
(SQS(v)) parallels that of an STS(v): an SQS(v) is a pair (V,B) where V
is a v-set and B is a collection of 4-subsets of V called quadruples such that
each 3-subset of V is contained in exactly one quadruple. In a celebrated
paper [H], Hanani established that an SQS(v) exists if and only if v = 2 or
4 (mod 6).

Given an SQS(v), (V,B), and an element & € V, consider the pair
(Va,By) where V, =V \ {z}, and B, = {{a,b,c} : {a,b,c,z} € B}. Clearly,
(Va,Bz) is an STS(v — 1) called the derived triple system through z of the
SQS(v). It is now very easy to give a description of the construction used
in [LR] to prove the existence of a large set of v MAD STS(v). Take an
SQS(v + 1) with V = {0,1,2,...,v}, and let B,, be the set of all triples of
the derived triple system through z of the SQS(v + 1) in which then y is
replaced with z. It is then easily seen that (V,B1o),(V,B20),-..,(V,Byo) is
a large set of v MAD STS(v) [LR] (cf. also [GR)).

Let us call any large set of v MAD STS(v) obtained from an SQS(v +
1) via the construction described above an SQS-delivered large set. Two
fundamental questions posed already over 20 years ago in [LR] asked (i) do
there exist large sets of v+ 1 MAD STS(v), and (ii) do there exist large sets
of v MAD STS(v) which are not SQS-delivered. In [GR] we answered the
first of these in the affirmative; in this paper we answer the second question

in the affirmative, too.

2. ANOTHER APPROACH TO CONSTRUCT
LARGE SETS OF v MAD STS(v)

In what follows we consider STS(v), (V,B) where V = Z, ={0,1,...,
v — 1}. As usual, the distance d(z,y) between two elements z,y € Z, is
given by d(z,y) = min(|z — y[,v — [z — y|). Then for every triple B =
{z,y,2} € B, z < y < z, we can associate a cyclically ordered difference
triple D = D({z,y,2}) = (d(z,y),d(y, 2),d(z,z)).

Let Oq,0,,...,04 be the orbits of triples under the action of Z,. It is
well known that then ¢ = [%(v — 1)(v — 2)], and all orbits are of length v

except when v = 3 (mod 6) in which case there is exactly one short orbit
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of length v/3. The rotation distance r(B1, By) between two triples By, B
belonging to the same orbit (i.e. with the same difference triple D) is defined
as ’I’(B],Bz) = min {’L,] H B] —|—’L = BQ,BQ —|—] = B]}
Given a set of triples S, S C O;, let r(S) be the multiset
r(S) ={r(B;,B;) : B;,B; € S,B; # B;}. Thus r(S) = (l‘gl); in particular,
r(S)=0if § =1.

For the set B of triples of our STS(v), write
where B; C O;, and let p; = |B;|; p; is simply the number of triples of B
that belong to the orbit O;. An STS(v), (Z,,B) is called Z,-ezxtensive (or
simply eztensive) if p; > 1 for each i = 1,...,¢q (i.e B contains at least one
representative of each orbit O;).

Theorem 1. Let v = 1 (mod 6), and suppose there ezists an STS(v),
(Zy,B) with the following properties:
(1) (Zy,B) is extensive;
(i1) of 0;*,i =1,...,1, are the orbits of triples of (Z) under Z,, for which
p; > 1 then

l N 1
U,_,7B) ={12,....5(e = 1)}
Then (Z,,B+ k), k € Z, is a large set of v MAD STS(v).
(Note that here {1,2,..., %(v — 1)} is a set, not a multiset.)

Proof. That the set {(Z,,B0),(Zv,B1),---,(Zs,By—1)} is a large set
of STS(v) follows from our assumption (i). Consider now two STSs from
our set, say, (Z,,B;) and (Z,,B,). Let d(z,y) = w where, say (w.l.o.g),
y=a + w. Since w € {1,2,..., %(v — 1)}, there exists exactly one index j,
say, j = z, such that w € »(B}). This means that if, say, B' and B" are the
two triples of B} with distance d(B', B") = w, and, say, B" = B' + w, then
B',B" € B, and B' +w,B" 4+ w € B,. But B'+w = B", thus the triple B"
is common to both B, and B,. At the same time, due to the uniqueness of
z, B, and B, have no other triple in common. This completes the proof. [

The next theorem applies to the case v = 3 (mod 6) and is really only
a slight modification of Theorem 1. Its proof is similar to the proof of
Theorem 1 and hence is omitted.
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Theorem 2. Let v = 3 (mod 6), and suppose there ezists an STS(v),
(Zy,B) with the following properties:
(1) (Zy,B) is extensive;
(i1) if Oy 1s the short orbit of triples under Z, then p, = 1;
(i) of OF,i=1,...,1 are the orbits of triples of (Z) under Z, for which

p; > 1 then

U rB) = 1,2, 50— D} {300

Then (Zy,,B+ k), k € Z, is a large set of v MAD STS(v).

Finally in this section we prove a result about the structure of an SQS-
delivered large set of v MAD STS(v) which enables us to deduce that the
example for v = 15 in the next section is not SQS-delivered. An easy
counting argument (cf. [GR]) shows that if (V,B,),(V,B1),...,(V,By_1)
is any large set of v MAD STS(v) then (Z) = Y1 U V3 where V! [resp.
V?] is the set of triples that belong to exactly one [resp. three] of the sets
By, Bi,...,B,—_1. Moreover, (V,V?) is itself an STS(v) (cf. [LR]). Now if
the large set is SQS-delivered from an SQS(v+1),({0,1,2,...,v—1,00},B)),
where w.l.o.g. oo plays the role of the special element (cf. Introduction),
then V? is the derived STS(v) through oco. Further, since B, is obtained
from B by deleting the element z from all quadruples which contain it and
replacing co with z, it follows that all triples B € V3 N B, must contain the
element z, and no triple B' € V! N B, can contain z. Thus we have proved

the following theorem.

Theorem 3. In any STS(v) belonging to an SQS-delivered large set of v
MAD STS(v), (V,Bo),(V,B1),...,(V,By_1), for each =z € {0,1,...,v—1}

those triples that belong to V3 N B, contain a common element.

We also have the following obvious corollary.

Corollary 4. If (Z,,B + k),k € Z, is a set of v MAD STS(v) obtained
from Theorem 1 or Theorem 2, and the triples in V3 N B do not have a

common element then the set 1s not SQS-delivered.



3. LARGE SETS OF v MAD STS(v) FROM
THEOREMS 1 AND 2 FOR SMALL ORDERS v

v=T: It is easily checked that (Z7,B) where B = {{0,1,2}, {0,3,5},
{0,4,6},{1,3,4}, {1,5,6}, {2,3,6}, {2,4,5}} is an STS(7) that satisfies the con-
ditions of Theorem 1, i.e. is extensive, and 7({{0,4,6},{1,3,4},{2,4,5}}) =
{1,2,3}; the orbit with difference triple (2,1, 3) is the only one having more
than one representative in the STS(7). It is also immediately apparent (the
element 4 occurs in all three triples) that this STS does not satisfy the con-
ditions of Corollary 4. In fact the resulting large set of 7 MAD STS(7) is
SQS-delivered. Other examples for v=7T are essentially equivalent to this
one.

v = 9: An exhaustive check reveals that, somewhat disappointingly,
there exists no Zg-extensive STS(9)! This exhaustive examination can be
actually carried out by hand, for example, by inspecting the 120 distinct
STS(9) that contain a fixed triple, such as {0,1,2}.

v=13: Here checking by hand is no longer feasible. We carried out an
exhaustive computer backtrack search for an STS(13) satisfying the con-
ditions of Theorem 1. And while there is a huge number of Z;;3-extensive
STS(13), there is no STS(13) satisfying the conditions of Theorem 1.

v=15: Here at last our computer backtrack search (by far not exhaus-
tive) was successful. Below is one of several hundred STS(15) found which
satisfy the conditions of Theorem 2. It is easily verified that it satisfies
Corollary 4 as well, and thus the resulting large set of 15 MAD STS(15)
is not SQS-delivered. For the sake of brevity, all set-notation brackets and
commas are omitted.

Triples:

0 1 2 (difference triple 1 1 2) 2 3 5 (difference triple 1 2 3)

1 3 4 (difference triple 21 3) 4 5 8 (difference triple 1 3 4)
71011,0 11 14,10 13 14 (difference triple 3 1 4)

7 8 12 (difference triple 1 4 5) 2 6 7 (difference triple 4 1 5)
3 12 13 (difference triple 1 5 6) 3 8 9 (difference triple 5 1 6)
1 9 10 (difference triple 1 6 7) 5 6 14 (difference triple 6 1 7)
4 11 12 (difference triple 1 77) 5 7 9 (difference triple 2 2 4)



2 12 14 (difference triple 2 3 5) 8 11 13 (difference triple 3 2 5)

4 6 10 (difference triple 2 4 6) 2 4 13 (difference triple 4 2 6)

0 5 13 (difference triple 2 57) 5 10 12 (difference triple 5 2 7)

2 9 11 (difference triple 2 6 7)

068,1814,2 810 (difference triple 6 2 7)

0 9 12 (difference triple 3 3 6) 6 9 13 (difference triple 3 4 7)

0 4 7 (difference triple 4 3 7) 3 6 11 (difference triple 3 5 7)

0 3 10 (difference triple 53 7) 1 7 13 (difference triple 3 6 6)

3 7 14 (difference triple 4 4 7) 1 6 12 (difference triple 4 5 6)

1 5 11 (difference triple 54 6) 4 9 14 (difference triple 5 5 5)

There are only two orbits, namely those with difference triples (3,1,4)

and (6,2,7) which have more than one representative among the triples of
our STS. The rotation distances between the 3 triples of the first of these
are 1,3,4, and of the second are 2,6,7. The system itself is isomorphic to

#33 of the standard listing [MPR].

4. LARGE SETS OF v MAD STS(v) FOR ORDER 19.

For v > 19, the search space is too large for a backtrack to be feasible.
Another method to construct an STS satisfying the conditions of Theorem
1 or Theorem 2 (according as v =1 or v = 3 (mod 6)) is needed.

Let v = 6s + 1. Then the number of triples in an STS(v) is s(6s + 1)
and the number of orbits of triples under the action of Z, is s(6s — 1),
all of length v. Using Theorem 1, in order to construct a large set of
v MAD STS(v) we need to assemble an STS(v) containing precisely one
representative of 652 — 2s orbits and three representatives of s orbits. Our
method is to introduce a multiplier m of order s and make the assumption
that B € B implies mB € B. This has the additional implication that the
STS(v),(V,V?) will not only be cyclic but also stabilized by the multiplier
m. The details of the method are best illustrated by the particular cases
given in this and the following sections.

For v = 19, the 51 cyclic orbits are partitioned by the multiplier 7
of order 3 into 15 classes of three orbits and 6 stabilized orbits generated
respectively by the triples {0,1,8},{0,2,16},{0,4,13},{0,1,12},{0,2,5},
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{0,4,10}. We choose as the set V* of triples the orbits generated by
{0,1,8},{0,4,13},{0,2,5} and as the triples in V* N B those containing
the element 0. We then seek to complete the construction of an STS(19)
by adjoining one representative of each the remaining 48 orbits with the
additional condition that the inclusion of any triple implies that the triple
obtained by multiplying by 7 is also included. Of course, any such system
constructed will not satisfy the condition of Corollary 4 and may be SQS-
delivered. In fact, an exhaustive computer search produced precisely three
solutions of which one is SQS-delivered. The triples which complete each of
these three solutions are listed below together with details of the determi-
nation of whether SQS-delivered and proof of nonisomorphism of the large
sets constructed. Again all set-notation brackets and commas are omitted.
Solution 19/1.
345,2916,146 17,1516 18,1017 12,13 58,569, 16 4 6,
1794,6711,4111,917,8914,186 3,124 2,13 14 1,
1537,10211,91018,613 12,4158, 78 17,11 18 5, 1 12 16,
161711,1751,516 7,17 18 13, 5 12 15, 16 8 10, 14 15 11, 3 10 1,
2137,1218,71412,113 8,911 13,6 1 15,4 710, 15 17 2,
10514,13163,6 82,418 14,912 3,10 13 15,2 3 14, 8 12 18.

The resulting large set is not SQS-delivered for the following reason.
Suppose otherwise, i.e. that the large set is SQS-delivered from an
SQS(v+1), ({0,1,...,v—1,00},B) where oo is the special element. Then
{3,4,5} € By implies {0,3,4,5} € B implies {0,4,5} € B; implies
{16,1,2} € By by the cyclic nature of generating the large set. But
{16,1,2} ¢ B,.

Solution 19/2.

8910,18 613,124 15,56 8,16 4 18,17 912, 12 13 16, 8 15 17,
18105,348,2918,14 6 12,7 8 13,11 18 15,1 12 10, 10 11 17,
1315,15716,16 176,1754, 516 9,14 15 5,3 10 16, 2 13 17,
1215,71410,11313,1314 9,153 6,102 4,17 18 4, 512 3,
1682,674,4119,916,1813,1272,811 14,5 7 11,
16111,1717,793,11 62,14 14,10 13 15,2 3 14, 8 12 18.



Again the resulting large set is not SQS-delivered by a similar argument
to that given under Solution 1 using the triple {8,9,10} or, indeed, many
other triples.

For the sake of completeness, the third solution, which using the same
argument can be shown to be SQS-delivered, is also given.

Solution 19/3.
456,9164,6179,91012,6 138,415 18,12 13 16, 8 15 17,
18105,348,2918,146 12,8 914,18 63,1242, 15 16 3,
10172,13514,6 715,411 10,91 13,16 177,175 11,5 16 1,
1215,71410,11 313,17 1813, 512 15,16 8 10, 14 1511, 3 10 1,
2137,785,111816,11217,7911,11 61,147,359,
2166,14174,18114,12 73,811 2,10 13 15,2 3 14, 8 12 18.

The system formed by the set V? of triples in all of the above three so-
lutions is the well-known Netto system (A4 in the standard listing [MPR]).
In Solutions 1 and 3 we discovered that the systems themselves which com-
prise the large set are also the Netto systems. Nevertheless, the large sets
are nonisomorphic since one is SQS-delivered whereas the other is not. The
systems which make up the large set of Solution 2 are not the Netto systems,
so all three solutions are pairwise nonisomorphic.

There are two further possibilities for the set V' of triples. We may use
either the orbits generated by {0,1,8}, {0,2,5}, {0,4,10} which is system
A3 in [MPR] or the orbits generated by {0,1,4}, {0,7,9}, {0,6,11} which
is one of the 15 classes of three orbits and is system A2 in [MPR]|. We
conducted exhaustive computer searches in both these cases, again using as
the triples in V* N B those containg the element 0. To our surprise, we found
no solutions in the latter case but the former yielded three further solutions
whose systems, and hence large sets, are pairwise nonisomorphic and which
are not SQS-delivered. The triples which complete these systems are given
below.

Solution 19/4.

8910,18 613,124 15,1718 1,512 7,16 8 11, 13 14 17, 15 3 5,
102 16,5 6 10,16 4 13, 179 15, 7 8 13,11 18 15,1 12 10, 10 11 17,
1315,15716,12132,81514,18103,4 514,916 3, 6 17 2,



1215,71410,11313,161712,1758,5 16 18,6 73, 4 11 2,
9114,341,297,14611,468,9418,69 12, 12 14 18,
8312,1828,9115,61 16,4 717,10 13 15,2 3 14, 1 7 11.
Solution 19/5.

1516 17,10 175,13 516,34 6,294,146 9, 6 7 10, 4 11 13,
9115,121317,8 155,18 1016, 7 8 13, 11 18 15,1 12 10, 13 14 1,
1537,10211,14154,3109,213 6,8 918,18 6 12,12 4 8,
4518,91612,6 178,561,164 7,179 11, 17 18 14, 5 12 3,
1682,1218,71412,1138,579,16 11 6, 171 4, 8 10 14,
18133,12152,1316,72 17,1114 5,10 13 15,2 3 14,1 7 11.
Solution 19/6.

1617 18,17 512,516 8, 1415 17,310 5,213 16,34 7,2 9 11,
1461,1516 1,10 177,13 511,10 11 16,13 1 17,15 7 5, 6 7 13,
41115,9110,8917,186 5,124 16,13 144,153 9, 10 2 6,
782,111814,1123,12138,81518,181012,451,9 16 7,
61711,1218,71412,1138,468,94 18,69 12, 8 10 14,
18133,12152,24 17,149 5,3 6 16,10 13 15, 2 3 14, 1 7 11.

5. FURTHER LARGE SETS OF v MAD STS(v).

For v = 25, the 92 cyclic orbits are partitioned by the multiplier 7 of
order 4 into 20 classes of four orbits and 6 classes of two orbits. But neither
any of the classes of four orbits nor any pair of classes of two orbits form
an STS(25), and so the method is not applicable.

However, for v = 31, we are again in luck. The multiplier 2 of order 5
partitions the 145 cyclic orbits of triples into 29 classes of five orbits. At this
value of v we re-encounter the combinatorial explosion and again are not
able to make an exhaustive computer backtrack. But below are listed the
triples of two nonisomorphic STS(31) satisfying Theorem 1, one of each of
the two possibilities for the system V? formed by the triples occuring three
times in the large set. As with the examples given in the previous section

it is easy to show that neither system is SQS-delivered.
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Solution 31/1.

V3 is the set of triples generated {0,1,6} under the mappings f : 7 —
i+1 (mod 31) and g : 1 — 2i (mod 31). V3N B is the set of triples containing
0. The system is completed by the following triples and their images under
repeated application of the mapping g.
123,147,3813,568,6710,4509,1213 19, 26 27 4,

18 19 28,23 24 3,10 11 22, 21 22 3, 8 9 22, 20 21 6, 14 15 1, 24 25 12,
28 29 17,19 20 9, 7 8 29, 22 23 15, 13 14 7, 27 28 22, 20 23 29, 23 26 2,
24 27 5, 17 20 30, 2 5 22, 29 1 19.

Solution 31/2.

V3 is the set of triples generated by {0,1,12} under the mappings f
and g as in Solution 1. V3 N B is again the set of triples containing 0. The
system is completed by the following triples and their images under repeated
application of g.
123,147,1611,568,6710,4509,27282,29 30 5,

10 11 19, 14 15 24, 18 19 29, 23 24 5, 15 16 29, 11 12 28, 21 22 8, 8 9 27,
20219,7 828,12 13 3, 28 29 21, 25 26 19, 26 27 21,2 5 11, 9 12 19,
3615,12 15 25,21 24 10, 8 11 29.

6. ORDER 15 REVISITED.

The method outlined in Section 4 can also be applied to the case where
v = 65+ 3. Then the number of triples in an STS(v) is (3s+1)(2s+1), and
there are, under the action of Z,, 35(2s + 1) orbits of triples of length v,
plus the short orbit of length v/3. Using Theorem 2, in order to construct a
large set of v MAD STS(v) we need to assemble an STS(v) containing one
representative each of 25(3s + 1) orbits of length v and the short orbit, and
three representatives of the remaining s orbits. Again we use a multiplier of
order s. Of the three values of v (15,21,27) within range of this method only
for v = 15 do we have a positive result. For v = 27 we need a multiplier of
order 4, but ¢(27) = 18 so no such multiplier exists. For v = 21, in spite of
an extensive though not exhaustive computer search no solution was found.
We doubt if one exists by this method. On the other hand, the results for

v = 15 are interesting.
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Under the multiplier 4 of order 2 the 31 cyclic orbits are partitioned
into 12 classes of two orbits and 7 stabilized orbits, including the short one,
generated respectively by the triples {0,1,4}, {0,2,8}, {0,1,12}, {0,2,9},
{0,3,6}, {0,6,12}, {0,5,10}. There are two possibilities for the set V* of
triples; either the orbits generated by {0,1,4}, {0,2,8}, {0,5,10} which is
the projective STS(15) (#1 in [MPR]) or the orbits generated by {0,1,4},
{0,2,9}, {0,5,10} which is the anti-Pasch STS(15) (also called the Netto
system; #80 in [MPR]). As before, we will choose as the triples in V3 N B
those containing the element 0. In the former case we obtained 9 solutions
among which there are two pairs of isomorphic ones. Of the seven pairwise
nonisomorphic solutions, five are not SQS-delivered, but two are. We list
these below identifying which of the 80 STS(15) in the standard listing of
[MPR] is obtained and whether the large set is SQS-delivered or not.
Solution 15/1. (System #1; not SQS-delivered)
567,5913,346,1219,237,81213,13144,7 11 1,
1210,4810,893,2612,101214,103 11,11 132, 14 7 8,
9114,6141,1313,4127,245,815,68 11,9 2 14,
9106,3512, 71013, 14 5 11.

Solution 15/2. (System #5; not SQS-delivered)
234,8121,8911,2614,459,156,67 12,9133,
1210,4810,13148,7112,1012 14,103 11,13 7, 4 12 13,
1419,1146,683,9212,578,5132, 11131, 14 7 4,
9106,3512,71013,14 5 11.

Solution 15/3. (System #31; not SQS-delivered)
234,8121,8911,2614,459,156,67 12,9 13 3,
10114,10141,13148,7112,468,192,13 7,4 12 13,
8103,21012,12149,3116,578,5132, 11131, 147 4,
9106,3512,71013,14 5 11.

Solution 15/4. (System #73; not SQS-delivered)
123,4812,568,592,12132,378,6712,913 3,
4513,157,13148,7112,246,819,10121, 10 3 4,
9114,6141,12149,3116,81011,210 14,11 131, 14 7 4,
9106,3512, 71013, 14 5 11.
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Solution 15/5. (System #78; not SQS-delivered)
456,159,8911,2614,348,1212,6712,913 3,
10114,10141,13148,7112,81012,2103,1 3 7, 4 12 13,
681,924,12149,3116,578,5132,1113 1,14 7 4,
9106,3512, 71013, 14 5 11.

Solution 15/6. (System #1; SQS-delivered)
567,5913,8911,2614,7812,1323,349,121 6,
1210,4810,13148,7112,1012 14,103 11,1 3 7, 4 12 13,
1419,1146,683,9212,245,815,1113 1,14 7 4,
9106,3512, 71013, 14 5 11.

Solution 15/7. (System #78; SQS-delivered)
456,159,8911,2614,6711,91314,34 9,121 6,
10114,10141,1211,4814,81012,2103,1 3 7, 4 12 13,
1214 7,31113,683,9212,578,5132,24 7,81 13,
9106,3512, 71013, 14 5 11.

We found it interesting, to say the least, that the two systems which
occur in the large sets generated by this method which are SQS-delivered,
i.e. #1 and #78 also occur in non SQS-delivered solutions. In the case
where the set V3 is the anti-Pasch STS(15) there are no solutions. When
we checked the several hundred STS(15) which were found by the computer
backtrack search from Section 3 we discovered that in all of them the set )3
also is the projective STS(15). In other words, we have no solution where
V3 is the anti-Pasch STS(15). Clearly, there is much still to be investigated

in this area.
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