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Abstract. We are interested in what sizes of cliques are to be found in any arbitrary

spanning graph of a Steiner triple system S. In this paper we investigate spanning

graphs of projective Steiner triple systems, proving, not surprisingly, that for any

positive integer k and any sufficiently large projective Steiner triple system S, every

spanning graph of S contains a clique of size k.

1. Introduction

In this paper, we investigate cliques in spanning graphs of Steiner triple sys-
tems. This research was initially motivated by Rödl’s observation (private commu-
nication) that using methods used to prove Strong Ramsey Theorems for Steiner

Systems [NR] one can show that for any positive integer k there is a positive integer

l and a finite partial Steiner (l, 2)-system so that any of its spanning graphs con-

tains a clique of size k. We looked for a class of finite Steiner systems that would
exhibit a similar property: i.e. the sizes of cliques in arbitrary spanning graphs
of the members of the class asymptoticaly growing to infinity as the orders of the
systems are growing to infinity. Not so surprisingly, the class of projective Steiner

triple systems has this kind of property; i.e. for any finite size k, any spanning

graph G of any sufficiently large projective Steiner triple system S contains a clique

of size k (for precise formulation, see Theorem).
The result is not that obvious, for spanning graphs of Steiner triple systems have

generally relatively few edges (one third of the number of blocks), and so Turán’s
or similar theorems - see e.g. [LW] - cannot be used; the fact that spanning graphs
have any cliques at all comes from the distribution of edges as enforced by the
underlying Steiner triple system, rather than by their density.

Though the result may be considered design-theoretical or graph-theoretical,
the methods employed in its proof are rather combinatorial. It is not surprising
that strong Ramsey-type results are necessary (Ramsey Theorem, Finite Sums
Theorem), for the whole problem could be stated as a Ramsey-like one: for any

size k there is a sufficiently large Steiner triple system (V, B) so that for any coloring
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of pairs of V by three colors so that no two pairs from the same block get the same

color, there exists a monochromatic clique of any color of size k. It also may not
be surprising that the combinatorial principles needed are infinite - after all we are
investigating an asymptotic behaviour of an infinite class of Steiner triple systems.

2. Notions, notation, definitions

The following basic definitions can be found in many texts, see e.g. [A]. A
Steiner triple system (STS for short) is a Steiner (3, 2)-system. A Steiner (k, l)-
system (V, B) is given by a set of elements V and a set B that is a set of subsets
of V of size k, called blocks, with the property that any subset of V of size l is a
subset fo a unique block (a partial system is such that each subset of V of size l

either is a subset of a unique block or is not a subset of any block). A graph G with
vertex set V is called a spanning graph of Steiner system S = (V, B) if it contains
a single edge from each and every block of S.

A projective STS of order 2n+1−1 is the one represented by points (the elements)
and lines (the blocks) of a finite projective space PG(n, 2) (cf [A]). Such an STS
is very often denoted as PG(n, 2) as well and we shall use that notation. The
properties and uniqueness of projective STS’s were studied e.g. in [H], [H1].

A commutative group (A, ·) is a Boolean group if the operation · satisfies the
following for any a, b, c ∈ A: (a·b)·(a·c) = b·c. Given a Boolean group (A, ·) with
the identity element 1A, we can define a STS by defining its blocks by {a, b, a·b} for
any a, b ∈ A−{1A}. It is easy to see that it does, indeed, define a STS. We denote
such a system by S(A). If the size of A is finite, then |A| = 2n for some integer
n ≥ 2, and it is well-known that S(A) is an STS PG(n−1, 2) (cf. [SS],[DP],[R]).

Let A be a Boolean algebra with the usual operations of ∨ (joint), ∧ (meet), −
(complement) and constants 0A and 1A (see e.g. [J]). We can define two binary
operations on A, 4 (so-called symmetric difference) and ∇ (so-called Boolean equal-

ity) by: a4b = (a−b)∨(b−a) = (a∨b)−(a∧b), and a∇b = −(a4b). Since a4a = 0A

and 0A4a = a for any a ∈ A, a 6= 0A, it follows that (A, 4) is a Boolean group
with the identity 0A and as such it determines a (projective) STS. Similarly, (A, ∇)
is a Boolean group with the identity 1A and as such it determines a (projective)
STS that is isomorphic to the STS determined by (A, 4) (the isomorphism just
maps any a ∈ A − {0A} to its complement −a). For purely technical reasons we
shall consider only the STS’s determined by the symmetric difference. If A1 ⊆ A is
closed under 4 (and so it must contain 0A), then (A1, 4) is a Boolean group with
the identity 0A and as such it determines a (projective) STS. We denote it as well
as S(A1), if it causes no confusion.

If X is a set, P(X) denotes the power set of X, while P+(X) denotes the
set of all non-empty subsets of X. Pfin(X) denotes the set of all finite subsets
of X and P+

fin(X) denotes the set of all non-empty finite subsets of X. Since

(P(X),∪,∩,−,∅,X) is a Boolean algebra (see e.g. [J]), P(X) with the symmetric
difference is a Boolean group and so it determines a STS of order 2|X|−1 which we
denote as S(P(X)) (in case that X is finite, then it is a projective STS). Similarly
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for an infinite X, Pfin(X) with the symmetric difference is a Boolean group and
so it determines a STS of order |X| which we denote as S(Pfin(X)).

Following the standard notation in set theory, ω denotes the set of non-negative
integers, the first infinite ordinal number, as well as the first infinite cardinal num-
ber. An integer n is viewed as a set of all smaller integers, and the canonical
well-ordering of ordinals ≤ coincides with ∈-relation, i.e. for two ordinals α and β,
α < β iff α ∈ β. If X is a set and n ≥ 1 an integer, [X]n denotes the set of all
subsets of X of size n, while [X]≤n denotes the set of all subsets of X of size ≤ n.
|X| denotes the size (cardinality) of the set X.

In the following we shall define several technical terms and notions that will be
needed for the proof of Theorem. We refer the reader to [J] for all concepts and
notations in set theory used in this paper.

Definition 1. Let (X,4) be a well-ordered set and let a, b, c, d ∈ P+
fin(X) . More-

over let amax (bmin) be the maximum (minimum) element of a (b) with respect
to 4. Then a≺≺b if amax≺ bmin. Furthemore a:b = c:d with respect to 4 if
a = {a0, ..., ap}, b = {b0, ..., bl}, c = {c0, ..., cp}, d = {d0, ..., dl}, and the elements
are listed in an ascending order according to 4, and for any i ≤ p, and any j ≤ l,
ai 4 bj iff ci 4 dj .

Note. In simple terms a:b = c:d means that the mutual positions (with respect to
4) of elements of a and b is the same as that of elements of c and d. If no confusion
arises, we may drop the reference to 4.

Definition 2. Let λ be a cardinal, m, n positive integers with λ ≥ n, m. Then
R(λ, m, n) is defined to be the least cardinal κ satisfying κ → (λ)n

m, i.e. for any set
X of size ≥ κ and any coloring of [X]n by m colors, there is a Y ⊆ X, |Y | ≥ λ, so
that Y is homogeneous for the coloring (which means that [Y ]n is monochromatic).

Note. It follows from the finite Ramsey theorem that R(k, m, n) ∈ ω exists for
any positive integers m, n, k so that k ≥ m, n. Moreover, from the infinite Ramsey
theorem it follows that R(ω, m, n) = ω for any positive integers m, n.

Definition 3. Let (X,4) be a well-ordered set, G be a spanning graph of
S(Pfin(X)) and n ≥ 2 be an integer. We say that Pfin(X) is n-homogenized

for 4 and G if for any non-empty a, b, c, d ∈ [X]≤n so that a:b = c:d, {a, b} is an
edge of G iff {c, d} is an edge of G.

Note. If no confusion arises, we may drop the reference to 4 and G.

Definition 4. Let α be a cardinal and n a positive integer with α ≥ n ≥ 2. Then
β(α, n) is defined to be the least cardinal κ with the following property: for any
set X of size ≥ κ, and any well-ordering 4 of X, and any spanning graph G of X,
there exists a Y ⊆ X, |Y | ≥ α, so that Pfin(Y ) is n-homogenized for 4 and G.

Note. Lemma 1 below asserts the existence of β(α, n) for any 2 ≤ n ≤ α ≤ ω.
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Definition 5. Let (X,4) be a well-ordered set and let Y ⊆ Pfin(X) . y ∈ Y is a
4-left-guard (4-right-guard) of Y if for any z ∈ Y , z 6= y, ymin≺zmin (zmax≺ymax).

Let G be a spanning graph of S(Pfin(X)) . A clique Y of G is called a 4-guarded

clique if (i) every set of the clique Y has a size that is divisible by 4, and (ii) Y has
a 4-right-guard, and (iii) Y has a 4-left-guard.

Note. In simple terms, the left-guard of Y (if it exists) is the unique set whose
minimum element is the left-most one of all, and similarly the right guard (if it
exists) is the unique set whose maximum element is the right-most one. As usual,
if no confusion arises, we may drop the reference to 4.

Definition 6. Let k and r be two positive integers with 2 ≤ k ≤ r < ω. The
g(k, r) denotes the least integer t such that for every finite well-ordered set(X,4)
of size ≥ t and every spanning graph G of S(Pfin(X)), G contains either a clique
of size r or a 4-guarded clique of size k.

Note. Lemma 6 below asserts that g(k, r) exist for all possible k’s and r’s.

For a set X of size n, n a positive integer, S(P(X)) has 2n−1 elements and
(

2n−1
2

)

1
3 = 1

6 (2n−1)(2n−2) blocks. Since for each block a spanning graph of

S(P(X)) selects exactly one edge, there are 3
1
6
(2n−1)(2n−2) distinct spanning graphs

of S(P(X)) . Since we will need to refer to this number (in proof of Lemma 1 below),
we define the following notation s(n):

Definition 7. For any positive integer n ≥ 2, let s(n) = 3
1
6
(2n−1)(2n−2).

Definition 8. Let X be a set, G be a spanning graph of S(P(X)) and Y ⊆ X.
Then G�S(P(Y )) is a graph defined on elements of P+(Y ) by {x, y} is an edge of
G�S(P(Y )) iff {x, y} is an edge of G, for any x, y ∈ P+(Y ).

Note. Clearly, as G is a spanning graph of S(P(X)), G�S(P(Y )) is a spanning
graph of S(P(Y )).

3. Results

Lemma 1. β(α, n) exists for any 2 ≤ n ≤ α ≤ ω. If α < ω, then β(α, n) is an

integer, otherwise β(ω, n) = ω.

Proof. Given n and α. Define {γi : 2 ≤ i ≤ 2n+1} by setting γ2n+1 = α and
γi = R(γi+1, i, s(i)) for any 2 ≤ i ≤ 2n. Set β(α, n) = γ2. It is clear that if α < ω,
the whole sequence {γi : 2 ≤ i ≤ 2n+1} consists of integers, while if α = ω, each
γi = ω.
We have to verify that β(α, n) has the required property. Let (X,4) be a well-
ordered set so that |X| ≥ β(α, n). Let G be a spanning graph of S(Pfin(X)).
Set Y1 to a subset of X of size γ2. By induction define Y1, ..., Y2n and C2, ..., C2n

so that

(i) for any 1 ≤ i ≤ 2n, |Yi| = γi+1.
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(ii) for any 1 ≤ i < j ≤ 2n, Yj ⊆ Yi.
(iii) for any 2 ≤ i ≤ 2n, Ci is a coloring of [Yi−1]

i by s(i) colors defined so that
each x ∈ [Yi−1]

i is assigned as its color the graph G�S(Pfin(x)).
(iv) for any 2 ≤ i ≤ 2n, Yi is homogeneous for the coloring Ci.

Set Y = Y2n. Then |Y | = γ2n+1 = α and Y is homogeneous for any coloring
C2, ..., C2n. Let a, b, c, d ∈ [Y ]≤n so that a:b = c:d. Then |a∪b| = |c∪d| = i ≤ 2n.
Since Y is homogeneous for Ci, G�S(P(a∪b)) is the same ”color” as G�S(P(c∪d)),
and so {a, b} is an edge of G iff {c, d} is an edge of G. �

Lemma 2. g(2, r) exists for any 2 ≤ r < ω.

Proof. Fix r ≥ 2. Set g(2, r) = β(2r+2, 4). We verify that g(2, r) satisfies the
requirements.

Let X be a set of size g(2, r). Let 4 be a well-ordering of X. Let G be a spanning
graph of S(P(X)).

Assume that G does not contain a clique of size r. Without loss of generality we
may assume that X = g(2, r) and that 4 is ≤. Since |X| = β(2r+2, 4), there is a
Y ⊆ X, |Y | ≥ 2r+2, so that P(Y ) is 4-homogenized for ≤ and G. Without loss of
generality we may assume that Y = {0, ..., 2r+1}.

Consider a triple {{0, 1, 2, 3}, {2, 3, 4, 5}, {0, 1, 4, 5}}, that is a block of S(P(Y )).

If {{0, 1, 2, 3}, {0, 1, 4, 5}} is an edge of G�S(P(Y )), then so is
{{0, 1, 2l, 2l+1}, {0, 1, 2p, 2p+1}} for any 1 ≤ l < p ≤ r, as P(Y ) is 4-homogenized
for ≤ and G and {0, 1, 2, 3}:{0, 1, 4, 5} = {0, 1, 2l, 2l+1}:{0, 1, 2p, 2p+1}. Therefore
{{0, 1, 2l, 2l+1} : 1 ≤ l ≤ r} is a clique of size r, a contradiction.

If {{0, 1, 4, 5}, {2, 3, 4, 5}} is an edge of G�S(P(Y )), then so is
{{2l, 2l+1, 2r, 2r+1}, {2p, 2p+1, 2r, 2r+1}} for any 0 ≤ l < p < r, as P(Y ) is
4-homogenized for ≤ and G and
{0, 1, 4, 5}:{2, 3, 4, 5} = {2l, 2l+1, 2r, 2r+1}:{2p, 2p+1, 2r, 2r+1}.
Therefore {{2l, 2l+1, 2r, 2r+1} : 0 ≤ l < r} is a clique of size r, a contradiction.

Therefore {{0, 1, 2, 3}, {2, 3, 4, 5}} is an edge of G�S(P(Y )), i.e. a clique of size 2.
Every set in the clique has a size that is divisible by 4, {0, 1, 2, 3} is its left-guard
and {2, 3, 4, 5} is its right-guard. Thus it is a guarded clique of size 2. �

Note. In fact, in a similar manner, the existence of g(3, r) for any 3 ≤ r can be
proven directly. The proof is more complicated, though. Since all we need is to have
a starting value for the induction carried in the proof of Lemma 6, we presented
here only the simpler proposition.

For the following theorem conjectured in 1970 by Graham and Rothschild, and
proven by Hindman in 1972, see e.g. [B], [Hi].
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Finite Sums Theorem. If ω is partitioned into finitely many sets A0, ..., Ak−1,

then for some i < k there exists an infinite B ⊆ Ai so that
∑

F ∈ Ai for any finite

F ⊂ B.

Lemma 3. Let ω = A0∪A1, B0 = {4n : n ∈ A0} and B1 = {4n : n ∈ A1}. Then

for some i < 2, there exists {xn : n ∈ ω} ⊆ Bi so that
∑

n∈F xn ∈ Bi for any finite

F ⊂ ω and xn ≥ 4
∑n−1

j=0 xj for any n ≥ 1.

Proof. From the Finite Sums Theorem it follows that for some i < 2 there exists
{yn : n ∈ ω} ⊆ Ai so that

∑

n∈F yn ∈ Ai for any finite F ⊂ ω. We can select a

subsequence {zn : n ∈ ω} ⊆ {yn : n ∈ ω} so that zn ≥ 4
∑n−1

j=0 zj for any n ≥ 1.

Define xn = 4zn, for any n ∈ ω. Then {xn : n ∈ ω} ⊆ Bi as {zn : n ∈ ω} ⊆
Ai. Since for any finite F ⊂ ω,

∑

n∈F xn =
∑

n∈F 4zn = 4
∑

n∈F zn, and since
∑

n∈F zn ∈ Ai,
∑

n∈F xn ∈ Bi. Also, for any n ≥ 1, xn = 4zn ≥ 16
∑n−1

j=0 zj =

4
∑n−1

j=0 4zj = 4
∑n−1

j=0 xj . �

Lemma 4. Given k so that 2 ≤ k < ω. Assume that g(k, r) exists for any k ≤
r < ω. Then for any r, k ≤ r < ω, and any infinite well-ordered set (X,4), and

any G, a spanning graph of S(Pfin(X)), either G contains a clique of size r or a

4-guarded clique of size k+1.

Proof. Fix r. Fix (X,4). Without loss of generality we may assume that X = ω

and that 4 is ≤. Fix G. Assume that G does not contain a clique of size r. Our
goal is to show that it must contain a guared clique of size k+1.

By induction construct X0 ⊇ X1 ⊇ ... so that

(i) X0 = X = ω.
(ii) for any n ∈ ω, |Xn| = ω.
(iii) for any n ∈ ω, Pfin(Xn) is 4n-homogenized.

For an n ∈ ω, consider a0≺≺a1≺≺...≺≺a2r+1, where each ai ∈ [Xn]n. Consider a
triple {a0∪a2∪a3∪a4, a0∪a1∪a4∪a5, a1∪a2∪a3∪a5}, that is a block S(Pfin(Xn)).

If {a0∪a2∪a3∪a4, a1∪a2∪a3∪a5} is an edge of G�S(Pfin(Xn)), so is
{al∪ar∪ar+1∪ar+2+l, ap∪ar∪ar+1∪ar+2+p} for any 0 ≤ l < p < r, as
(a0∪a2∪a3∪a4):(a1∪a2∪a3∪a5) = (al∪ar∪ar+1∪ar+2+l):(ap∪ar∪ar+1∪ar+2+p)
and Pfin(Xn) is 4n-homogenized. Thus {al∪ar∪ar+1∪ar+2+l : 0 ≤ l < r} is a
clique of size r, a contradiction.

Thus for any n ∈ ω either

(I) for any a0, a1, a2, a3, a4, a5 ∈ [Xn]n so that a0≺≺a1≺≺a2≺≺a3≺≺a4≺≺a5,
{a0∪a2∪a3∪a4, a0∪a1∪a4∪a5} is an edge,

or
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(II) for any a0, a1, a2, a3, a4, a5 ∈ [Xn]n so that a0≺≺a1≺≺a2≺≺a3≺≺a4≺≺a5,
{a0∪a1∪a4∪a5, a1∪a2∪a3∪a5} is an edge.

Define BI = {4n : (I) holds for n}, and BII = {4n : (II) holds for n}. By Lemma 3,
either

(1) there exists {hn : n ∈ ω} ⊆ BI so that
∑

n∈F hn ∈ BI for any finite F ⊂ ω

and hn ≥ 4
∑n−1

i=0 hi for any n ≥ 1,
or

(2) there exists {hn : n ∈ ω} ⊆ BII so that
∑

n∈F hn ∈ BII for any finite F ⊂ ω

and hn ≥ 4
∑n−1

i=0 hi for any n ≥ 1.

We have to discuss both cases separately.

Case (1).

Set t = g(k, r). Choose l ≥ g(k, r)·ht−1. Let Xl = {xn : n ∈ ω} be an enumeration
of Xl in its natural order (i.e. xn ≤ xm iff n ≤ m). Define u0 = {xn : n < h0}
and ui+1 = {xh0+···hi+n : n < hi+1} for i < t−1. Then u0≺≺u1≺≺...≺≺ut−1 and
|un| = hn for any n < t. Let U = {un : n < t}. There is a natural bijection φ :
P(U)→{

⋃

F : F ⊆ U} defined by φ(u) =
⋃

u for any u ⊆ U . Since φ(u4v) =
⋃

(u4v) = (
⋃

u)4(
⋃

v) = φ(u)4φ(v) for any u, v ⊆ U , we can define G̃, a

spanning graph of S(P(U)), by {u, v} is an edge of G̃ iff {
⋃

u,
⋃

v} is an edge

of G�S(Pfin(Xl)). Since |U| = t = g(k, r), either G̃ contains a clique of size r or
a guarded clique of size k. If it is the former and {d0, ..., dr−1} is the clique, then
{
⋃

d0, ...,
⋃

dr−1} is a a clique of G�S(Pfin(Xl)), a contradiction.

Hence G̃ contains a guarded clique {d0, ..., dk−1}. Without loss of generality we
may assume that d0 is its right-guard and d1 its left-guard. Then {

⋃

d0, ...,
⋃

dk−1}
is a guarded clique of G�S(Pfin(Xl)),

⋃

d0 its right-guard, and
⋃

d1 its left-guard.
Since |d0| is a multiple of 4, so is |

⋃

d0| and thus there are y0, y1, y2, y3 ⊂ Xl so
that y0≺≺y1≺≺y2≺≺y3 and |y0| = |y1| = |y2| = |y3| and d0 = y0∪y1∪y2∪y3.

Moreover, |
⋃

d0| ∈ BI . Since hn ≥ 4
∑n−1

i=0 hi for any n ≥ 1,
⋃

di∩
⋃

d0 ⊆ y0 for any
1 ≤ i < k.

Let n = |y0|. Let a0, a1, a2, a3, a4, a5 ∈ [Xl]
n so that

a0≺≺a1≺≺a2≺≺a3≺≺a4≺≺a5 and a0 = y0. Since |
⋃

d0| ∈ BI , (I) holds for
n. Since |d0∪...∪dk−1| ≤ g(k, r), |

⋃

d0∪...∪
⋃

dk−1| ≤ g(k, r)·ht−1 ≤ l. Thus
n ≤ l and so Xn ⊇ Xl. It follows that a0, a1, a2, a3, a4, a5 ∈ [Xn]n and by (I)
{a0∪a2∪a3∪a4, a0∪a1∪a4∪a5} is an edge of G.

For any 1 ≤ i < k, {
⋃

di, a0∪a2∪a3∪a4} is an edge of G, as (
⋃

di):(y0∪y1∪y2∪y3) =
(
⋃

di):(a0∪a2∪a3∪a4) and Pfin(Xl) is 4l-homogenized.

For any 1 ≤ i < k, {
⋃

di, a0∪a1∪a4∪a5} is an edge of G, as (
⋃

di):(y0∪y1∪y2∪y3) =
(
⋃

di):(a0∪a1∪a4∪a5) and Pfin(Xl) is 4l-homogenized.

Thus G contains a guarded clique {
⋃

d1, ...,
⋃

dk−1, (a0∪a2∪a3∪a4), (a0∪a1∪a4∪a5)}
of size k+1, where

⋃

d1 is its left-guard and (a0∪a1∪a4∪a5) its right-guard.
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Case (2). This case is rather similar to Case (1), nevertheless with some small but
necessary changes.

Set t = g(k, r). Choose l ≥ g(k, r)·ht−1. Let Xl = {xn : n ∈ ω}. Define u0 =
{xht+n : n < ht−1} and ui = {xht+ht−1+···ht−i+n

: n < ht−1−i} for 1 ≤ i < t. Also
define ū = {xn : n < ht}. Then ū≺≺u0≺≺...≺≺ut−1, ū, u0, ..., ut−1 ⊂ Xl, |ū| = ht

and |un| = ht−1−n for any n < t. Let U = {un : n < t}. As in case (1) define G̃,

a spanning graph of S(P(U)), by {u, v} is an edge of G̃ iff {
⋃

u,
⋃

v} is an edge

in G�S(Pfin(Xl)). G̃ either contains a clique of size r (which is a contradiction, for
in that case G would contain a clique of size r), or a guarded clique {d0, ..., dk−1}.
Without loss of generality we may assume that d0 is its left-guard and d1 its right-
guard. It follows that {

⋃

d0, ...,
⋃

dk−1} is a guarded clique of G�S(Pfin(Xl)),
⋃

d0

its left-guard and
⋃

d1 its right-guard. Since |d0| is a multiple of 4, so is |
⋃

d0|.
Hence there are y0, y1, y2, y3 ⊂ Xl, |y0| = |y1| = |y2| = |y3|, y0≺≺y1≺≺y2≺≺y3,

so that
⋃

d0 = y0∪y1∪y2∪y3. Moreover |
⋃

d0| ∈ BII . Since hn ≥ 4
∑n−1

i=0 hi for any
n ≥ 1, (

⋃

di)∩(
⋃

d0) ⊆ y3, for any 1 ≤ i < k.

Let a0, a1, a2, a3, a4 ⊂ ū and a5 = y3 so that a0≺≺a1≺≺a2≺≺a3≺≺a4≺≺a5 and
|a0| = |a1| = |a2| = |a3| = |a4| = |a5|. Since |

⋃

d0| ∈ BII , (II) holds for n = |y3|.
Since |d0∪...∪dk−1| ≤ g(k, r), |

⋃

d0∪...∪
⋃

dk−1| ≤ g(k, r)·ht−1 ≤ l.

Thus n ≤ l and so Xl ⊆ Xn, a0, a1, a2, a3, a4, a5 ∈ [Xn]n, and from (II) it fol-
lows that {a0∪a1∪a4∪a5, a1∪a2∪a3∪a5} is an edge of G�S(Pfin(Xn)), and so of
G�S(Pfin(Xl)).

For 1 ≤ i < k, {
⋃

di, a0∪a1∪a4∪a5} is an edge of G�S(Pfin(Xl)), for
(
⋃

di):(y0∪y1∪y2∪y3) = (
⋃

di):(a0∪a1∪a4∪a5) and Pfin(Xl) is 4l-homogenized.

For 1 ≤ i < k, {
⋃

di, a1∪a2∪a3∪a5} is an edge of G�S(Pfin(Xl)), for
(
⋃

di):(y0∪y1∪y2∪y3) = (
⋃

di):(a1∪a2∪a3∪a5) and Pfin(Xl) is 4l-homogenized.

Thus, {
⋃

d1, ...,
⋃

dk−1, a0∪a1∪a4∪a5, a1∪a2∪a3∪a5} is a guarded clique of
G�S(Pfin(Xl)), where

⋃

d1 is its right-guard and a0∪a1∪a4∪a5 its left-guard. �

Lemma 5. 2 ≤ k < ω, k ≤ r < ω. Assume that for any infinite well-ordered

(X,4) and any G, a spanning graph of S(Pfin(X)), G contains either a clique of

size r or a guarded clique of size k. Then g(k, r) exists.

Proof. Follows from the Compactness Theorem, see e.g. [J],[KC]. �

Lemma 6. For any 2 ≤ k < ω and any k ≤ r < ω, g(k, r) exists.

Proof. By Lemma 2, g(2, r) exist for every 2 ≤ r < ω. Assume, by induction on
k ≥ 2, that g(k, r) exist for every 2 ≤ r < ω. Then by Lemmas 4 and 5, g(k+1, r)
exists for every 2 ≤ r < ω. �

Lemma 7. For any positive integer k there is a positive integer n so that for any

finite set X of size ≥ n and any G, a spanning graph of S(P(X)), G contains a

clique of size k.
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Proof. Set n = g(k, k). �

Corollary 8. For any infinite Boolean algebra A, any infinite A1 ⊆ A closed under

4, and any G, a spanning graph of S(A1), G contains cliques of all finite sizes.

Proof. Follows directly from Lemma 7 as P(X) for any finite X can be embedded
into A1. �

Theorem. For any positive integer k there exists a positive integer n(k) so that

for any n ≥ n(k), every spanning graph of the projective STS PG(n, 2) contains a

clique of size k.

Proof. Just a simple reformulation of Lemma 7. �
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