TRIANGLES IN 2-FACTORIZATIONS

I.J.Dejter, University of Puerto Rico F.Franek, McMaster University
E.Mendelsohn, University of Toronto
A.Rosa, McMaster University

1. Introduction

A 2-factor of a graph G is a factor (i.e. a subgraph containing all vertices of G) which is regular of degree 2. A 2-factorization of G is a partition (i.e. an edge-disjoint decomposition) of the edge-set of G into 2 -factors.

Let v be an odd integer, and let $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots, F_{\frac{(v-1)}{2}}\right\}$ be a 2 factorization of the complete graph K_{v}. Two special well solved cases of 2-factorizations of K_{v} are decompositions of K_{v} into Hamiltonian cycles, and Kirkman triple systems of order v. While in the former case (when $v>3)$ none of the 2 -factors contains a triangle, in the latter case each component in each 2-factor is a triangle. It is the purpose of this article to investigate the intermediate cases between these two extremes.

More precisely, we consider the following problem. Given an arbitrary 2-factorization $\mathcal{F}=\left\{F_{1}, \ldots, F_{\frac{(v-1)}{2}}\right\}$ of K_{v}, let δ_{i} be the number of triangles of F_{i}, and let $\delta=\delta(\mathcal{F})=\Sigma \delta_{i}$. Then \mathcal{F} is said to be a 2-factorization with (exactly) δ triangles.

The triangle-spectrum for 2-factorizations of K_{v} is the set $\Delta(v)=\{\delta$: there exists a 2-factorization \mathcal{F} of K_{v} with $\left.\delta(\mathcal{F})=\delta\right\}$.

Since we have obviously $\Delta(3)=\{1\}, \Delta(5)=\{0\}$, we assume from now on $v \geq 7$.

The existence of a Hamiltonian decomposition of K_{v} shows $\min \Delta(v)=$ 0 , and an easy calculation shows that $M_{\Delta}(v)=\max \Delta(v) \leq M_{v}$ where $M_{v}=$
$\frac{(v-1)(v-4)}{6}$ if $v \equiv 1(\bmod 6),=\frac{v(v-1)}{6}$ if $v \equiv 3(\bmod 6)$, and $=\frac{(v-1)(v-5)}{6}$ if $v \equiv 5(\bmod 6)$.

It is an easy observation that $M_{\Delta}(v)-1 \notin \Delta(v)$ if $v \equiv 3(\bmod 6)$. Let $P_{\Delta}(v)=\left\{0,1, \ldots, M_{\Delta}(v)\right\}$. Then obviously $\Delta(v) \subset P_{\Delta}(v)$.

We prove in this article that when $v \equiv 1$ or $3(\bmod 6)$, apart from some small exceptions, and some additional 11 possible exceptions, actually an equality occurs above, i.e. $\Delta(v)=P_{\Delta}(v)$.

Even though some of our results pertain also to the case of $v \equiv 5(\bmod 6)$, the problem of determining the set $\Delta(v)$ when $v \equiv 5(\bmod 6)$ is left largely open.

2. Triangle spectra for small v and δ

We start with an easy result.
Lemma 2.1. . $\Delta(7)=\{0,1,3\}$.
Proof. The existence of a solution to the Oberwolfach problem $\operatorname{OP}(7 ; 7)$ and $\operatorname{OP}(7 ; 3,4)[\mathrm{A}]$ shows $\{0,3\} \subset \Delta(7)$. Assume now that in a 2-factorization of K_{7}, one 2 -factor is the 7 -cycle ($\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$ 7). Then there is, up to an isomorphism, only one way to choose in our K_{7} a triangle edge-disjointly. Let this triangle be, w.l.o.g., (135); then there is a unique quadrangle (2647) which is vertex-disjoint from (135) and edge-disjoint from (1234567). The complement of the union of the two 2-factors above is the 7 -cycle (1425736). This proves both $1 \in \Delta(7)$ and $2 \notin \Delta(7)$.

Let us call a 2 -factor whose each component is a triangle a trianglefactor or a Δ-factor. A 2 -factor whose cycles have lengths $c_{1}, c_{2}, \ldots, c_{t}$ will be said to be of type $c_{1}+c_{2}+\cdots+c_{t}$.

Lemma 2.2. . $\Delta(9)=\{0,1,2,3,4,5,6,8,12\}$.
Proof. The existence of $\operatorname{AG}(2,3)$ (i.e., a Kirkman triple system of order $9)$ gives $12 \in \Delta(9)$. It is easily seen that the union of (any) two parallel classes of $\mathrm{AG}(2,3)$ can be decomposed into two Hamiltonian cycles, or into two 2 -factors of type $3+6$, respectively. This gives $\{0,2,4,6,8\} \subset \Delta(9)$. The well-known fact that $K_{3,3,3}$ can be decomposed into Hamiltonian cycles
implies $3 \in \Delta(9)$. The two 2-factorizations $\mathcal{F}_{1}, \mathcal{F}_{2}$ given below show $1 \in$ $\Delta(9)$, and $5 \in \Delta(9)$, respectively.
$\mathcal{F}_{1}:(018)(273546) ;(021748563) ;(231405768) ;(342516078)$
$\mathcal{F}_{2}:(012)(345678) ;(135)(246807) ;(162375048) ;(147)(258)(036)$.
On the other hand, there is, up to an isomorphism, a unique set of 3 disjoint Δ-factors; its complement is also a Δ-factor. This shows $i \notin \Delta(9)$ for $i \in\{9,10,11\}$. Finally, the complement of the union of two Δ-factors cannot be decomposed into two 2 -factors, one of which is a Δ-factor and the other contains just one triangle. This shows $7 \notin \Delta(9)$, which completes the proof.

Lemma 2.3. $\Delta(11)=\{0,1,2,3,4,5,6,7,8,9\}$.
Proof. In the Hamiltonian cycle decomposition of $K_{1} 1$ given by $\mathcal{F}=$ $\left\{F_{i}: i=1,2,3,4,5\right\}, F_{i}=\{x y: \delta(x y)=i\}$, replace $F_{1} \cup F_{2}$ with a decomposition into two 2-factors F_{1}^{\prime} and F_{2}^{\prime} where F_{1}^{\prime} has either exactly one, or exactly two triangles, and F_{2}^{\prime} is a Hamiltonian cycle (such a decomposition is easily seen to exist). Since $F_{3} \cup F_{4} \simeq F_{1} \cup F_{2}$, this gives $\{0,1,2,3,4\} \subset \Delta(11)$. Furthermore (with E representing 11), $\mathcal{G}=\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right\}$ where $G_{1}=(12345)(678)(90 E), G_{2}=(1697 E)(248)(350)$, $G_{3}=(46089)(137)(25 E), G_{4}=(1470263 E 859)$, $G_{5}=(18392756 E 40)$ implies $6 \in \Delta(11)$; $\left\{G_{1}, G_{2}, G_{3}, G_{4}^{\prime}, G_{5}^{\prime}\right\}$ where $G_{4}^{\prime}=(140)(2758 E 639), G_{5}^{\prime}=(183 E 4702659)$ implies $7 \in \Delta(11) ;\left\{G_{1}, G_{2}, G_{3}, G_{4} ", G_{5} "\right\}$ where $G_{4} "=(14 E 63958)(270)$, $G_{5} "=(19265740)(38 E)$ implies $8 \in \Delta(11) ;\left\{G_{1}, G_{2}^{*}, G_{3}^{*}, G_{4}^{*}, G_{5}^{*}\right\}$ where $G_{2}^{*}=(13964)(270)(58 E), G_{3}^{*}=(160)(24 E)(38957)$, $G_{4}^{*}=(350)(479)(1826 E), G_{5}^{*}=(17 E 36529)(480)$ implies $9 \in \Delta(11)$. The existence of $\operatorname{OP}(11 ; 3,8)$ gives $5 \in \Delta(11)$, and, finally, the nonexistence of $\mathrm{OP}(11 ; 3,3,5)[\mathrm{A}]$ implies $10 \notin \Delta(11)$.

Lemma 2.4. $\Delta(13)=\{0,1, \ldots, 18\}$.
Proof. We have $\{0,1, \ldots, 6\} \subset \Delta(13)$ by Theorem 2.5 below. Any solution to $\mathrm{OP}(13 ; 3,3,3,4)$ yields $18 \in \Delta(13)$, and a solution to $\mathrm{OP}(13 ; 3,3,7)$ yields $12 \in \Delta(13)$ (cf. [A]). Observing that in this case also $G_{3,6} \simeq G_{1,2}$ (cf. proof of Theorem 2.5 below) gives $\{7,8,9\} \subset \Delta(13)$. The decompositions given below complete the proof (here T,E,D represent 10,11,12, respectively). $H_{1}=(358)(02 T 79)(146 D E), H_{2}=((15 T)(239)(0 D 7 E 486)$,
$H_{3}=(169)(03 E 87)(254 T D), H_{4}=(26 E)(137)(0 T 8 D 594)$,
$H_{5}=(567)(9 T E)(01 D 3428), H_{6}=(36 T)(05 E)(1274 D 98)$
implies $10 \in \Delta(13) ; H_{1}, H_{2}, H_{3}^{\prime}=(459)(8 T D)(03 E 2617)$,
$\left.H_{4}^{\prime}=(25 D)(04 T) 93196 E 87\right), H_{5}, H_{6}$
implies $11 \in \Delta(13) ; H_{1}^{\prime}=(15 T)(468)(7 E D)(0239)$,
$H_{2}^{\prime}=(14 E)(358)(06 D)(297 T), H_{3}, H_{4}, H_{5}, H_{6}$
implies $13 \in \Delta(13)$;
$H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}, H_{4}^{\prime}, H_{5}, H_{6}$ implies $14 \in \Delta(13)$;
$H_{1}, H_{1}^{\prime}, H_{3} "=(26 E)(459)(8 T D)(0317), H_{4} "=(25 D)(169)(04 T)(378 E)$,
$H_{5}^{\prime}=(34 D)(567)(9 T E)(0128), H_{6}^{\prime}=(36 T)(247)(05 E)(189 D)$
implies $15 \in \Delta(13)$;
$H_{1} "=(468)(7 E D)(02 T 1539), H_{2} "=(14 E)(06 D)(2385 T 79)$,
$H_{3}{ }^{"}, H_{4} ", H_{5}^{\prime}, H_{6}^{\prime}$ implies $16 \in \Delta(13)$; and
$H_{1}^{*}=(17 T)(26 E)(459)(038 D), H_{2}^{*}=(14 E)(239)(58 T)(06 D 7)$,
$H_{3}^{*}=(135)(468)(097 E D T 2), H_{4}{ }^{\prime \prime}, H_{5}^{\prime}, H_{6}^{\prime}$
implies $17 \in \Delta(13)$.
Theorem 2.5. For each $v \equiv 1(\bmod 2), v \geq 9,\left\{0,1, \ldots, \frac{(v-3)}{2}\right\} \subset \Delta(v)$.
Proof. For $v=9$ and 11, see Lemmas 2.2 and 2.3 , so we may assume $v \geq 13$. Consider the particular 2-factorization $\mathcal{Q}=\left\{Q_{1}, \ldots, Q_{\frac{(v-1)}{2}}\right\}$ of K_{v} on $V=Z_{v}$ given by $Q_{i}=\{x y: d(x y)=i\}$ where $d(x y)=\min (\mid x-$ $y \mid), v-|x-y|)$. Let $G_{a, b}$ be the 4-regular subgraph of K_{v} with $V=Z_{v}$ and $E=\{x y: d(x y)=a o r b\}$. If $v \equiv 1$ or $5(\bmod 6)$, the 4 -regular graph $G_{1,2}$ can be decomposed into two 2-factors F_{1}, F_{2} where F_{1} contains j triangles $(1,2,3), \ldots,(3 j-2,3 j-1,3 j)$ and one cycle $(3 j+1,3 j+2,3 j+$ $4,3 j+6, \ldots, v-1, v, v-2, v-4, v-6, \ldots, 3 j+1)$ of length $v-3 j$, for any
$j \in\left\{0,1, \ldots, \frac{(v-\epsilon)}{3}\right\}$ (where $\epsilon=4$ or 5 according to whether $v \equiv 1$ or $5(\bmod$ $6)$), and F_{2} is a Hamiltonian cycle. The graph $G_{4,8}$ if $v \geq 17$, and $G_{4,5}$ if $v=13$, is isomorphic to $G_{1,2}$ thus $j \in \Delta(v)$ for any $j \in\left\{0,1, \ldots, \frac{2}{3}(v-\epsilon)\right\}$. If $v \equiv 3(\bmod 6)$, the 4 -regular graph $G_{1, v / 3}$ can be decomposed into two Hamiltonian cycles, one of which is $(1, v / 3+1, v / 3+2,2,3, v / 3+3, v / 3+$ $4,4,5, v / 3+5, v / 3+6, \ldots, v / 3-2, v / 3-1,2 v / 3,2 v / 3+1,2 v / 3+2, \ldots, v)$. The graph $G_{2,4}$ is isomorphic to $G_{1,2}$. Moreover, if $v \geq 33$, the graph $G_{8,16}$ ($G_{5,8}$ if $v=21$, and $G_{8,11}$ if $v=27$) is isomorphic to $G_{1,2}$. This shows that except when $v=15$ and $\delta=4, j \in \Delta(v)$ for any $j \in\left\{0,1, \ldots, \frac{2}{3}(v-6)\right\}$. To handle this last remaining case, we observe that when $v=15$, the graph $G_{1,5}$ can also be decomposed into two 2-factors F_{1}, F_{2} where (say) $F_{1}=(1611)(27834910515141312)$ has exactly one triangle, and F_{2} is a Hamiltonian cycle.

3. Main constructions

An embedding theorem of Rees and Stinson [RS] for Kirkman triple systems (KTS) turns out to be very useful for our purposes.

Theorem 3.1. Let $v \equiv w \equiv 3(\bmod 6), w>v$. A KTS(v) can be embedded in a KTS(w) if and only if $w \geq 3 v$.
Theorem 3.2. Let $v \equiv w \equiv 3(\bmod 6), w \geq 3 v$. Then $\delta \in \Delta(v)$ implies $\delta+\frac{1}{6}[w(w-1)-v(v-1)] \in \Delta(w)$.

Proof. Consider a $\operatorname{KTS}(w)$ with a sub-KTS (v); replace the sub-KTS (v) with a 2 -factorization with exactly δ triangles.

Corollary 3.3. Let $v \equiv w \equiv 3(\bmod 6), w \geq 3 v$. If $\Delta(v)=P_{\Delta}(v)$ then $\left\{\frac{w(w-1)}{6}-\frac{v(v-1)}{6}, \frac{w(w-1)}{6}-\frac{v(v-1)}{6}+1, \ldots, \frac{w(w-1)}{6}-2, \frac{w(w-1)}{6}\right\} \subset \Delta(w)$.

In other words, if both v and w are congruent to $3(\bmod 6), w \geq 3 v$ and the triangle-spectrum $\Delta(v)$ is "complete", then this implies that the "largest" values of $P_{\Delta}(w)$ do indeed belong to the triangle-spectrum $\Delta(w)$.

Let $v \geq 7$. A 2-factorization \mathcal{F} of K_{v} is said to be a 2^{*}-factorization if there exists a vertex x which in every 2 -factor of \mathcal{F} is contained in a triangle.

Let $\Delta^{*}(v)=\left\{\delta\right.$: there exists a 2^{*}-factorization of K_{v} with exactly δ triangles $\}$.

If $I(v)=\left\{\frac{(v-1)}{2}, \frac{(v+1)}{2}, \ldots, \frac{v(v-1)}{6}\right\}$ then clearly $\Delta^{*}(v) \subset I(v)$.
By comparison with Lemma 2.1 and Lemma 2.2, we see easily that $\Delta^{*}(v)=\{3\}, \Delta^{*}(9)=\{4,6,8,12\}$.

Our main construction (the "PBD-construction") is a modification of Wilson's construction for resolvable designs [W].

Theorem 3.4. The PBD-construction. Suppose (U, \mathcal{B}) is a (u,L,1)$P B D$, and for each $k \in L$, there exists a 2^{*}-factorization of $K_{2 k+1}$. Then there exists a 2^{*}-factorization of $K_{2 u+1}$ on $U \times\{1,2\} \cup\{\infty\}$. Furthermore, if $\delta_{B} \in \Delta^{*}(2|B|+1)$ for a block $B \in \mathcal{B}$ then $\sum_{b \in \mathcal{B}}\left(\delta_{B}-|B|\right)+u \in \Delta^{*}(2 u+1)$.

Proof. Let $V=U \times\{1,2\} \cup\{\infty\}$. We denote (x, i) for brevity by x_{i}. For a given block $B \in \mathcal{B}$, consider the set $B^{*}=B \times\{1,2\} \cup\{\infty\}$, and a 2^{*}-factorization \mathcal{F} of $K_{\left|B^{*}\right|}$ with $\delta_{\mathcal{F}}=\delta_{B}$ such that ∞ is the element which occurs in every 2 -factor of \mathcal{F} in a triangle, and, moreover, that the two other elements of this triangle are x_{1}, x_{2} for some $x \in U$. Let now $B_{1}{ }^{x}, B_{2}{ }^{x}, \ldots, B_{q}^{x}$ be all blocks of \mathcal{B} that contain x, and let \mathcal{F}_{i}^{x} be the corresponding 2^{*}-factorization on $B_{i}^{x *}=B_{i}^{x} \times\{1,2\} \cup\{\infty\}, i=1, \ldots, q$. Each of these 2^{*}-factorizations contains a 2 -factor with the triangle $\left\{\infty, x_{1}, x_{2}\right\}$; let this 2-factor of \mathcal{F}_{i}^{x} be, say, R_{i}^{x}. Then $R_{x}=\cup_{i} R_{i}^{x}$ is a 2-factor, and $\mathcal{R}=\left\{R_{x}: x \in U\right\}$ is a 2-factorization of $K_{2 u+1}$ on V. Clearly, $\delta(\mathcal{R})=$ $\sum_{b \in \mathcal{B}}\left(\delta_{B}-|B|\right)+u$, and the proof is complete.

4. The sets $\Delta^{*}(15)$ and $\Delta^{*}(27)$

In this section we determine (except for two cases that are not needed) the above two sets as these are crucial for the proof of our main result.

Theorem 4.1. $\Delta^{*}(15)=I(15)=\{7,8, \ldots, 35\}$.
Proof. Consider the STS(15) No. 61 (cf. [MPR]) which admits a unique Kirkman triple system. This KTS has a cyclic automorphism of order 7 acting on parallel classes. Clearly, any pair of unions of two "consecutive" parallel classes (i.e. δ-factors) is isomorphic, as is any pair of three consecutive parallel classes. The union of two consecutive Δ-factors can be decomposed into two 2 -factors of type a) $3+3+3+6,3+3+3+6$, or b) $3+3+9,3+3+9$, or c) $3+12,3+12$, in such a way that one element, say 1 , always remains in a triangle. A replacement with such a decomposition reduces the total number of triangles by 4,6 , and 8 , respectively. Similarly, the union of 3 consecutive δ-factors can be decomposed into three 2 -factors of type a) $3+3+3+6,3+3+3+6,3+3+9$, or b) $3+3+9,3+3+9,3+12$, or c) $3+12$, $3+5+7,3+3+9$, again in such a way that one element always remains in
triangle. A replacement with such a decomposition reduces the number of triangles by 7,10 , and 11 , respectively. Combining these replacements in all possible ways shows $\{7,8, \ldots, 26,27,29,31\} \subset \Delta^{*}(15)$.

Next, the 2 -factorization whose 2 -factors are
$(012)(345)(678)(91011)(121314)$
$(036)(147)(2912)(51013)(81114)$
$(049)(1813)(2311)(5714)(61012)$
$(036)(147)(2912)(51013)(81114)$
$(049)(1813)(2311)(5714)(61012)$
$(0512)(1614)(2710)(389)(41113)$
$(0711)(159)(2613)(31014)(4812)$
$(0810)(2414)(111569133712)$
$(258)(0137914)(1312116410)$
shows $28 \in \Delta^{*}(15)$. Replacing the last two 2 -factors with
$(11112)(258)(3713)(01046914)$
$(2414)(5611)(081013127913)$
shows $30 \in \Delta^{*}(15)$.
Finally, the maximal sets of six Δ-factors No. 21 and 28 , respectively, of [FMR] yield $32,33 \in \Delta^{*}(15)$. The existence of a $\operatorname{KTS}(15)$ implies $35 \in$ $\Delta^{*}(15)$. This completes the proof.

Theorem 4.2. $I(27) \backslash\{14,16\} \subset \Delta^{*}(27)$.
Proof. Let us start with applying Theorem 3.4 to $\mathrm{S}(2,4,13)$. Since the latter has 13 blocks, and $\Delta^{*}(9)=\{4,6,8,12\}$ (cf. Section 3 above), this implies $\{13,15,17, \ldots, 111,113,117\} \subset \Delta^{*}(27)$. Next consider a resolvable transversal design $\mathrm{TD}(3,9)$ on the set $V \times\{1,2,3\}$, where V is any 9 -set, with $V \times\{i\}, i=1,2,3$ as groups. Construct a 2^{*}-factorization of K_{27} on $V \times\{1,2,3\}$ by taking the 9 parallel classes of our $\mathrm{TD}(3,9)$ as triangle-factors, together with three 2-factors $F_{i} \cup G_{i} \cup H_{i}, i=1,2,3$ where $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}\right\}$ is a 2^{*}-factorization of K_{9} on $V \times\{1\}$, and $\mathcal{G}=$ $\left\{G_{1}, G_{2}, G_{3}\right\}, \mathcal{H}=\left\{H_{1}, H_{2}, H_{3}\right\}$ are 2-factorizations of K_{9} on $V \times\{2\}$, and on $V \times\{3\}$, respectively. Since $\Delta(9)=\{0,1,2,3,4,5,6,8,12\}$ (cf. Lemma $2.2)$, this yields $\{85,86, \ldots, 110,11,113,117\} \subset \Delta^{*}(27)$.

Consider now the solution to the Oberwolfach problem
$\mathrm{OP}(27 ; 3,3,3,3,3,4,8)$ on the set $\{0,1, \ldots, 26\} \cup\{\infty\}$ obtained by developing the base 2 -factor $(\infty 224)(139)(6710) 41416)(131725)$
(0 1811 19) (5 2023121521822) modulo 13
under the automorphism $(\infty)(01 \ldots 12)(1314 \ldots 25)$; clearly, this is a 2^{*} factorization. Union of this base 2 -factor with a 2 -factor obtained by adding to it 1 modulo 13 can be decomposed into two 2 -factors F_{1}, F_{2} as follows:
(i) $F_{1}=(\infty 224)(139)(6710)(016414132517152182252023$ 121911 13),
$F_{2}=(\infty 325)(2410)(7811)(019120121551713181416229236$ 2124);
(ii) $F_{1}=(\infty 224)(139)(41416)(01813251715122320522821$ 610711 19),
$F_{2}=(\infty 325)(2410)(1191220)(016229236781118141317515$ 2124);
(iii) $F_{1}=(\infty 224)(139)(4141622821151223205172513180$ 19117610),
$F_{2}=(\infty 325)(1191220)(0164210781118141317155229236$ 2124);
(iv) $F_{1}=(\infty 224)(01811761041614132517520231215218$ 22931 19) ,
$F_{2}=(\infty 325)(0162251517131814421078111912201923621$ 24).

Replacing two "consecutive" 2-factors in the way described above reduces the number of triangles by $4,5,7$, and 8 , respectively, while clearly preserving the property of being a 2^{*}-factorization. Combining these replacements gives $\{17,18, \ldots, 58,60,61,65\} \subset \Delta^{*}(27)$.

Next consider the 2^{*}-factorization of K_{27} on the set $Z_{10} \times\{1,2\} \cup\left\{\infty_{i}\right.$: $i=1,2, \ldots, 7\}$ whose first ten 2 -factors are obtained by applying repeatedly the mapping $x_{j} \rightarrow(x+1)_{j}=1,2$ (each ∞_{i} is a fixed point) to the 2 -factor $\left(\infty_{1} 2_{1} 6_{2}\right)\left(\infty_{2} 3_{1} 2_{2}\right)\left(\infty_{3} 5_{1} 8_{2}\right)\left(\infty_{4} 6_{1} 7_{2}\right)\left(\infty_{5} 7_{1} 9_{2}\right)\left(\infty_{6} 8_{1} 3_{2}\right)$ $\left(\infty_{7} 9_{1} 5_{2}\right)\left(0_{1} 1_{1} 4_{1}\right)\left(0_{2} 1_{2} 4_{2}\right)$,
and whose the remaining three 2-factors are obtained by taking a disjoint
union of the 2 -factors of the (unique) 2^{*}-factorization of K_{7} on the set $\left\{\infty_{i}: i=1,2, \ldots, 7\right\}$, and of the following three disjoint 2 -factors on the set $Z_{10} \times\{1,2\}$:
$\left(0_{1} 2_{1} 0_{2}\right)\left(\left(1_{1} 6_{1} 4_{2} 6_{2} 1_{2}\right)\left(3_{1} 5_{1} 7_{1} 5_{2} 8_{1} 8_{2} 3_{2}\right)\left(4_{1} 9_{9} 9_{2} 7_{2} 2_{2}\right)\right.$;
$\left(0_{1} 5_{1} 5_{2} 3_{2} 6_{1} 8_{1} 0_{2} 3_{1} 1_{1} 9_{1} 7_{1} 7_{2}\right)\left(2_{1} 4_{1} 1_{2} 9_{2} 4_{2} 2_{2}\right)$;
$\left(0_{1} 8_{1} 3_{1} 1_{2} 3_{2} 5_{1} 0_{2} 5_{2} 7_{2} 9_{1} 6_{2} 6_{1} 4_{1} 4_{2} 7_{1} 2_{1} 9_{2} 1_{1} 8_{2}\right)$.
It is easily verified that this is indeed a 2^{*}-factorization, and that it has a total of 94 triangles.

The first two (or any two of the first ten) "consecutive" 2-factors can be decomposed as follows:
(i) $\left(0_{1} 1_{1} 4_{1} \infty_{2} 3_{1} 2_{2} 5_{2} 9_{1} \infty_{7}\right)\left(\infty_{1} 2_{1} 6_{2}\right)\left(\infty_{3} 5_{1} 8_{2}\right)\left(\infty_{4} 6_{1} 7_{2}\right)\left(\infty_{5} 7_{1} 9_{2}\right)$ $\left(\infty_{6} 8_{1} 3_{2}\right)\left(0_{2} 1_{2} 4_{2}\right)$,
$\left(0_{1} 4_{1} 3_{2} \infty_{2} 2_{2} 1_{2} 5_{2} \infty_{7} 6_{2}\right)\left(\infty_{1} 3_{1} 7_{2}\right)\left(\infty_{3} 6_{1} 9_{2}\right)\left(\infty_{4} 7_{1} 8_{2}\right)\left(\infty_{5} 8_{1} 0_{2}\right)$ $\left(\infty_{6} 9_{1} 4_{2}\right)\left(1_{1} 2_{1} 5_{1}\right)$;
(ii) $\left(0_{1} 1_{1} 5_{1} \infty_{3} 8_{2} 7_{1} 9_{2} \infty_{5} 8_{1} \infty_{6} 3_{2} 4_{1}\right)\left(\infty_{1} 2_{1} 6_{2}\right)\left(\infty_{2} 3_{1} 2_{2}\right)\left(\infty_{4} 6_{1} 7_{2}\right)$ $\left(\infty_{7} 9_{1} 5_{2}\right)\left(0_{2} 1_{2} 4_{2}\right)$,
$\left(1_{1} 2_{1} 5_{1} 8_{2} \infty_{4} 7_{1} \infty_{5} 0_{2} 8_{1} 3_{2} \infty_{2} 4_{1}\right)\left(\infty_{1} 3_{1} 7_{2}\right)\left(\infty_{3} 6_{1} 9_{2}\right)\left(\infty_{6} 9_{1} 4_{2}\right)$
$\left(\infty_{7} 0_{1} 6_{2}\right)\left(1_{2} 2_{2} 5_{2}\right)$;
(iii) $\left(0_{1} 4_{1} 1_{1} 5_{1} \infty_{3} 8_{2} 7_{1} 9_{2} \infty_{5} 8_{1} 3_{2} \infty_{6} 9_{1} 5_{2} \infty_{7}\right)\left(\infty_{1} 2_{1} 6_{2}\right)\left(\infty_{2} 3_{1} 2_{2}\right)$ $\left(\infty_{4} 6_{1} 7_{2}\right)\left(0_{2} 1_{2} 4_{2}\right)$,
$\left(0_{1} 1_{1} 2_{1} 5_{1} 8_{2} \infty_{4} 7_{1} \infty_{5} 0_{2} 8_{1} \infty_{6} 4_{2} 9_{1} \infty_{7} 6_{2}\right)\left(\infty_{1} 3_{1} 7_{2}\right)\left(\infty_{2} 4_{1} 3_{2}\right)$
$\left(\infty_{3} 6_{1} 9_{2}\right)\left(1_{2} 2_{2} 5_{2}\right)$.
Replacing two consecutive 2 -factors by the decomposition (i), (ii), or (iii) reduces the number of triangles by 6,8 , or 10 , respectively. Thus $\{44,46,48, \ldots, 88\} \subset \Delta^{*}(27)$.

The following 2^{*}-factorization of K_{27} shows that $112 \in \Delta^{*}(27)$:
$(123)(456)(789)(101112)(131415)(161718)(192021)(222324)(25$ 26 27),
$(147)(268)(359)(101316)(111517)(121418)(192225)(202426)(21$ 23 27),
$(158)(249)(367)(101417)(111318)(121516)(192326)(202227)(21$ $2425)$,
$(169)(257)(348)(101518)(111416)(121317)(192427) 202325)(21$

22 26),
$(11524)(21621)(31722)(41419)(51225)(61127)(71823) 81026)(9$ 1320),
$(11625)(21327)(31424)(41721)(51023)(61820)(71226)(81119)(9$ 1522),
$(11726)(21822)(31523)(41220)(51319)(61024)(71121)(81627)(9$ 14 25),
$(11827)(21426)(31021)(41623)(51122)(61725)(71324)(81520)(9$ 12 19),
$(11019)(21120)(31227)(41325)(51521)(61423)(71622)(81724)(9$ 1826),
$(11223)(21025)(31819)(41126)(51720)(61322)(71527)(81421)(9$ $1624)$,
$(11321)(21224)(31620)(41022)(51427)(61526)(71719)(81825)(9$ 1123),
$(11422)(21519)(31125)(41824)(51626)(61221)(71020)(81323)(9$ 17 27),
$(1112451821910274152571420)(21723)(31316)(61619)(812$ 22).

To show $114 \in \Delta^{*}(27)$, consider the following 2^{*}-factorization of K_{21} : take the first six 2 -factors and the eighth 2 -factor as above, and also the 2-factors $(11322)(21719)(31523)(41220)(51826)(61024)(71121)(8$ $1627)(91425)$,
$(11019)(21822)(31227)(41325)(51624)(61526)(71720) 81421)(9$ $1123)$,
$(11120)(21223)(31326)(41022)(51521)(61619)(71427)(81825)(9$ 17 24),
$(11221)(21020)(31125)(41824)(51727)(61422)(71519)(81323)(9$ 1626),
$(11723)(21525)(31819)(41126)(51420)(61321)(71622)(81224)(9$ 10 27),
$(114236122281726)(21124)(31620)(41527)(51319)(71025)(918$ 21).

Finally, to show $115 \in \Delta^{*}(27)$, consider the following 2^{*}-factorization of K_{21} : take the first five 2-factors and the eighth 2-factor as above, and also the 2-factors $(11423)(21525)(31819)(41126)(51624)(61222)(71720)$ (813 21)(9 10 27),
$(11625)(21020)(31424)(41821)(51727)(61323)(71226)(81119)(9$ 1522),
$(11726)(21822)(31620)(41527)(51319)(61421)(71025)(81223)(9$ 1124),
$(11019)(21123)(31227)(41325)(51420)(61526)(71622)(81824)(9$ 17 21),
$(11221)(21327)(31125)(41724)(51023)(61820)(71519)(81422)(9$ 1626),
$(11322)(21719)(31523)(41220)(51826)(61024)(71121)(81627)(9$ $1425)$,
$(11120)(21224)(31326)(41022)(51521)(61619)(71427)(817239$ $1825)$.

This completes the proof.
Corollary 4.3. $\Delta(27)=P_{\Delta}(27)$.
Proof. Combine Theorem 4.2 with Theorem 2.5.
5. More triangle spectra for small v

Our first lemma in this section is auxiliary as it is needed in the proof of Lemma 5.3.
Lemma 5.1. $\{6,11,14,15,16,17,18\} \subset \Delta^{*}(13)$.
Proof. An inspection of the proof of Lemma 2.4 shows
$\{11,14,15,16,17\} \subset \Delta^{*}(13)$. For $6 \in \Delta^{*}(13)$, consider the following solution to $\operatorname{OP}(13 ; 3,10)$. The vertex-set of K_{13} is $Z_{3} \times\{1,2,3,4\} \cup\{\infty\}$, and the two base 2-factors are $F_{1}=\left(\infty 0_{3} 2_{1}\right)\left(0_{1} 0_{2} 1_{4} 2_{2} 1_{2} 2_{3} 1_{3} 2_{4} 1_{1} 0_{4}\right) F_{2}=$ $\left(\infty 0_{2} 0_{4}\right)\left(0_{1} 2_{1} 1_{2} 0_{3} 2_{4} 1_{4} 1_{3} 1_{1} 2_{2} 2_{3}\right)$ (the remaining 2 -factors are obtained by developing F_{1}, F_{2} modulo 3). Finally, for $18 \in \Delta^{*}(13)$, consider the following solution to $\operatorname{OP}(13 ; 3,3,3,4)$:
(168)(45T)(7ED)(0239)
$(14 E)(358)(06 D)(297 T)$
(159) (26E)(8TD)(0347)
$(01 T)(25 D)(469)(378 E)$
$(13 D)(567)(9 T E)(0428)$
(127)(36T)(05E)(489D)

Lemma 5.2. $\Delta(21)=P_{\Delta}(21)$.
Proof. When $v=21$, the graph $G_{1,2}$ (cf. Theorem 2.5) can be decomposed into a Hamiltonian cycle and a 2-factor F having i triangles where $i \in\{0,1,2,3,4,5,7\}$. Further, the graphs $G_{4,8}$ and $G_{5,10}$ are isomorphic to $G_{1,2}$. Moreover, the graph $G_{3,6,9}$ (defined in analogy with $G_{a, b}$ in an obvious way) can be decomposed into three 2 -factors in such a way that the total number of triangles in the three 2 -factors is j where $j \in\{0,1, \ldots, 7,9\}$. Clearly, the 2 -factor consisting of edges of length 7 contains exactly 5 triangles. This shows $\{0,1, \ldots, 33,35\} \subset \Delta(21)$.

Consider now a resolvable transversal design equivalent to the pair of orthogonal cyclic latin squares of order 7. The union of two of its parallel classes is easily seen to be decomposable into two Hamiltonian cycles, or into two 2 -factors of type $3+3+3+12$, respectively. The corresponding replacement decreases the number of triples by 14 , and by 8 , respectively. We can complete to a 2-factorization by taking a 2-factorization of K_{7} on each of the three groups, taking into account Lemma 2.1. This gives $\{33,34, \ldots, 48,50\} \in \Delta(21)$.

Next consider the set of 7 disjoint 2-factors obtained by developing modulo 20 the 2 -factor
$\left(\begin{array}{lll}0 & 5 & 11\end{array}\right)\left(\begin{array}{lll}1 & 9 & 13\end{array}\right)\left(\begin{array}{lll}2 & 6 & 15\end{array}\right)(31017)(41419)(71218)(81620)$. The complement of this set in K_{21} on Z_{21} is the graph $G_{1,2,3}$. Since $G_{1,2}$ can be decomposed into a Hamiltonian cycle and a 2 -factor containing i triangles, $i \in\{0,1,2,3,4,5,7\}$ (cf. Theorem 2.5), we get right away $\{49,50,51,52,53,54,56\} \in \Delta(21)$. The graph $G_{1,2,3}$ can be decomposed into three 2 -factors
$(012)(345)(678)(91011)(121314)(151618201917)$,
(01819)(132465798101211131514161720),
(036912151817141185220)(14710131619)
which shows $55 \in \Delta(21)$. Another decomposition of $G_{1,2,3}$ into three 2factors
$F=(013)(245)(679)(81011)(121315)(141617)(181920),(02021$ $191718)(346)(57101298)(1113161514)$,
$(023568741201715181819)(91013141211)$ shows $57 \in \Delta(21)$,
and the decomposition
$(021191618151720)(347865)(91012)(111314)$,
(0 1817 19) (146320)(571013161514121198),
together with F as above, shows that $58 \in \Delta(21)$. Yet another decomposition of $G_{1,2,3}$ into three 2-factors $(0220)((356)(147891012141113$ 16151817 19),
(0181619)(12346857101314151720)(91112),
and F as above, shows $59 \in \Delta(21)$. Similarly, the decomposition
$(0220)((1463578910131619)(111214)(151718)$
(01816151413119121074321201719)(568),
together with F as above, shows $60 \in \Delta(21)$.
Consider now the set of 7 disjoint 2-factors obtained by developing modulo 21 the 2-factor
$(0210)(11319)(31416)(41118)(5820)(61215)(7917)$. The complement of this set in K_{21} on Z_{21} is the graph $G_{1,4,5}$ which can be decomposed into three 2 -factors
$(015)(237)(489)(61011)(121317)(141819)(151620)$
$(01617)(1218138127111519203456)(91014)$,
$(0420)(11718)\left(\begin{array}{llllll}2 & 6 & 7 & 3 & 19\end{array}\right)\left(\begin{array}{llllll}5 & 9 & 13 & 15 & 10\end{array}\right)(111216)$; this shows $61 \in \Delta(21)$.

The existence of a Kirkman triple system of order 21 implies $70 \in \Delta(21)$.
Consider now the $\operatorname{KTS}(21)$ on the set $Z_{7} \times\{1,2,3\}$ with base parallel classes
$R=\left(0_{1} 1_{2} 2_{3}\right)\left(1_{1} 2_{1} 6_{1}\right)\left(3_{1} 0_{2} 4_{3}\right)\left(4_{1} 2_{2} 0_{3}\right)\left(5_{1} 4_{2} 3_{3}\right)\left(3_{2} 5_{2} 6_{2}\right)\left(1_{3} 5_{3} 6_{3}\right)$,
$S_{1}=\left\{\left(i_{1}(i+2)_{2}(i+4)_{3}\right): i \in Z_{7}\right\}$
$S_{2}=\left\{\left(i_{1}(i+3)_{2}(i+6)_{3}\right): i \in Z_{7}\right\}$
$S_{3}=\left\{\left(i_{1} i_{2} i_{3}\right): i \in Z_{7}\right\}$.
(Developing R yields 7 parallel classes while each of S_{i} is a parallel class on its own). The union of S_{1} and S_{3} can be decomposed into two 2-factors each of which is of type (i) $3+3+3+3+3+6$, or (ii) $3+3+3+3+9$, or (iii) $3+3+3+12$:
(i) $\left(0_{1} 0_{2} 5_{1} 5_{3} 5_{2} 0_{3}\right)\left(1_{1} 1_{2} 1_{3}\right)\left(2_{1} 2_{2} 2_{3}\right)\left(3_{1} 3_{2} 3_{3}\right)\left(4_{1} 4_{2} 4_{3}\right)\left(6_{1} 6_{2} 6_{3}\right)$, $\left(0_{1} 2_{2} 4_{3}\right)\left(1_{1} 3_{2} 5_{3}\right)\left(2_{1} 4_{2} 6_{3}\right)\left(3_{1} 5_{2} 5_{1} 2_{3} 0_{2} 0_{3}\right)\left(4_{1} 6_{2} 1_{3}\right)\left(6_{1} 1_{2} 3_{3}\right)$;
(ii) $\left(0_{1} 0_{2} 0_{3}\right)\left(1_{1} 1_{2} 6_{1} 6_{3} 4_{2} 4_{3} 4_{1} 6_{2} 1_{3}\right)\left(2_{1} 2_{2} 2_{3}\right)\left(3_{1} 3_{2} 3_{3}\right)\left(5_{1} 5_{2} 5_{3}\right)$, $\left(0_{1} 2_{2} 4_{3}\right)\left(1_{1} 3_{2} 5_{3}\right)\left(2_{1} 4_{2} 4_{1} 1_{3} 1_{2} 3_{3} 6_{1} 6_{2} 6_{3}\right)\left(3_{1} 5_{2} 0_{3}\right)\left(5_{1} 0_{2} 2_{3}\right)$;
(iii) $\left(1_{1} 1_{2} 1_{3} 6_{2} 4_{1} 4_{3} 4_{2} 6_{3} 6_{1} 3_{3} 3_{1} 3_{2}\right)\left(0_{1} 0_{2} 0_{3}\right)\left(2_{1} 2_{2} 2_{3}\right)\left(5_{1} 5_{2} 5_{3}\right)$, $\left(1_{1} 1_{3} 4_{1} 4_{2} 2_{1} 6_{3} 6_{2} 6_{1} 1_{2} 3_{3} 3_{2} 5_{3}\right)\left(0_{1} 2_{2} 4_{3}\right)\left(3_{1} 5_{2} 0_{3}\right)\left(5_{1} 0_{2} 2_{3}\right)$.

Replacing S_{1} and S_{3} with two 2-factors of type (i), (ii), or (iii) decreases the number of triangles by 4,6 , or 8 , respectively. Thus $62,64,66 \in \Delta(21)$.

The following 2 -factorization of K_{21} shows $63 \in \Delta(21)$.
$(123)(456)(789)(101112)(131415)(161718)(192021)$, $(147)(21820)(3621)(5810)(91113)(121416)(151719)$, $(1915)(2612)(3718)(41621)(51114)(81319)(101720)$, $(11121)(2917)(3815)(41019)(51218)(6714)(131620)$, $(11213)(2816)(3520)(4918)(61119)(71015)(141721)$, $(11819)(21021)(3914)(4812)(51516)(61317)(71120)$, $(1517)(2411)(31219)(61518)(71321)(81420)(91016)$, $(168)(21419)(31116)(41520)(5921)(71217)(101318)$, $(11014)(2513)(3417)(6920)(71619)(81118)(121521)$, (120129195721511178211814413310616).

The following 2-factorization of K_{21} shows $65 \in \Delta(21)$: the first two 2 -factors are as in the previous case, and the remaining eight 2 -factors are $(11621)(2713)(3419)(5918)(61020)(81215)(111417)$, $(11014)(2821)(31217)(41318)(51119)(6715)(91620)$, $(1915)(2411)(3516)(61218)(71420)(81319)(101721)$, $(11120)(2514)(31518)(4816)(61317)(71221)(91019)$, $(1517)(21015)(31320)(4912)(6811)(71619)(141821)$, $(1619)(2917)(3814)(41521)(51220)(71118)(101316)$, $(1818)(21219)(3710)(41720)(51321)(6914)(111516)$, $(11213)(2616)(392111)(410181914)(571782015)$.

The following 2-factorization of K_{21} shows $67 \in \Delta(21)$: $(124)(3821)(51016)(61117)(71218)(91314)(151920)$, $(137)(2819)(41220)(51417)(6921)(101113)(151618)$, $(156)(21217)(31318)(41419)(71015)(8911)(162021)$, $(1815)(2916)(31017)(457)(61320)(111214)(181921)$, $(1920)(21421)(3612)(41115)(51319)(71617)(81018)$,
$(11116)(235)(41021)(61415)(7919)(81213)(171820)$, (1 12 21) (2 1315) (3 1416) (4 817$)(5918)(61019)(71120)$, $(11317)(21020)(3915)(4618)(51121)(7814)(121619)$, $(11418)(267)(31119)(41316)(5820)(91012)(151721)$, $(11014203491719)(21118)(51215)(6816)(71321)$.

Finally, the following 2-factorization of K_{21} shows that $68 \in \Delta(21)$:
$(124)(31017)(51116)(6918)(71421)(81213)(151920)$,
$(156)(2820)(31216)(41118)(71019)(91314)(151721)$,
$(1713)(2916)(31119)(41015)(52021)(61217)(81418)$,
$(1815)(21018)(3921)(41416)(51219)(61320)(71117)$,
$(1917)(21115)(3718)(41220)(51014)(6819)(131621)$,
(1 10 21) (2 1319) (3 46$)(5817)(7920)(111214)(151618)$,
(1 11 20) (2 35) (4 1317) (61415) (7816)(9 1012)(18 19 21),
$(11218)(267)(31420)(4821)(5915)(101113)(161719)$,
$(11419)(21221)(31315)(457)(61016)(8911)(171820)$,
$(138)(102016)(21417)(4919)(51318)(61121)(71215)$.
Lemma 5.3. If $v \in\{49,55,73\}$ then $\Delta(v)=P_{\Delta}(v)$.
Proof. By [RS] (cf.also [KS], [MG]), there exists a 4-GDD of type $3^{4} 6^{2}$. Taking the groups of this GDD as blocks results in a $\operatorname{PBD}(24,\{3,4,6\}, 1)$ where each element is in exactly one block of size 3 or 6 . Apply now Theorem 3.4 while taking into account Lemma 5.1. This proves the statement for $v=49$. Taking instead a 4-GDD of type $3^{1} 6^{4}$ which also exists by [RS] (cf. [KS], [MG]) and proceeding as above proves the statement for $v=55$. For $v=73$, consider a 4-GDD of type 6^{6} which exists by [BSH] (cf. also [MG]). Taking the groups of this GDD as blocks results in a $\operatorname{PBD}(36,\{4,6\}, 1)$ with a parallel class of blocks of size 6. Apply again Theorem 3.4 taking into account Lemma 5.1.
Lemma 5.4. If $v \in\{51,75\}$ then $\Delta(v)=P_{\Delta}(v)$.
Proof. Extending the groups of the 4 -GDD of type $3^{4} 6^{2}$ from the proof of the previous lemma by a common new element ∞ yields a $\operatorname{PBD}(25,\{4,7\}, 1)$. Applying now Theorem 3.4 and taking into account Theorem 4.1 proves the statement for $v=51$. Proceeding in the same fashion but starting instead with the 4-GDD of type 6^{6} proves the statement for $v=75$.
Lemma 5.5. $\Delta(57)=P_{\Delta}(57)$.
Proof. Apply Theorem 3.4 to a $\operatorname{PBD}(28,\{4,7\}, 1)$ (obtained from a transversal design $\mathrm{TD}(4,7)$ by simply taking the groups of size 7 as blocks), employing also Theorem 4.1 (giving $\Delta^{*}(15)$).

6. Main Results

Theorem 6.1. For all $v \equiv 3(\bmod 6), v \geq 81$, or $v \in\{45,63,69\}, \Delta(v)=$ $P_{\Delta}(v)$.

Proof. Steiner systems $\mathrm{S}(2,4, u)$ with a subsystem $\mathrm{S}(2,4,13)$ are known to exist for all $u \equiv 1,4(\bmod 12), u \geq 40[\mathrm{RS}]$. Taking now as our PBD in Theorem 3.4 any $\operatorname{PBD}\left(u,\left\{4,13^{*}\right\}, 1\right)$, and using it together with Theorems 2.5 and 4.2 shows that the statement holds for all $v \equiv 3,9(\bmod 24), v \geq 81$. When $u \equiv 7,10(\bmod 12)$, taking instead any $\operatorname{PBD}\left(u,\left\{4,7^{*}\right\}, 1\right)$ known to exist for all such $u \geq 22$ (cf. [RS]), and using Theorem 3.4, together with Theorems 2.5 and 4.1 shows that the statement holds for all $v \equiv$ $15,21(\bmod 24), v \geq 45$.

Theorem 6.2. For all $v \equiv 1(\bmod 6), v \geq 79$, or $v \in\{43,61,67\}, \Delta(v)=$ $P_{\Delta}(v)$.

Proof. Consider an $S(2,4, w)$ with a sub-S $(2,4,13)$ from the previous theorem, and delete an element not in the subsystem. This results in a $\{4,13\}$-GDD of type $3^{(w-1) / 3}$ with a unique block of size 13 , or, equivalently, in a $\operatorname{PBD}\left(u=w-1,\left\{3,4,13^{*}\right\}, 1\right)$ with a parallel class of blocks of size 3 . Such a PBD exists for all $v \equiv 0,3(\bmod 12), v \geq 39$. It is essential to note that every element of this PBD occurs in a unique block of size 3. Applying now Theorem 3.4 to this PBD, together with Theorems 2.5 and 4.2, shows that the statement holds for all $v \equiv 1,7(\bmod 24), v \geq 79$. Similarly, deleting an element of the $\operatorname{PBD}\left(w,\left\{4,7^{*}\right\}, 1\right)$ not in the unique block of size 7 (cf. Theorem 6.1) results in a $\operatorname{PBD}\left(u,\left\{3,4,7^{*}\right\}, 1\right)$ with a parallel class of blocks of size 3 ; such a PBD exists for all $u \equiv 6,9(\bmod 12), v \geq 21$. Applying Theorem 3.4, together with Theorems 2.5 and 4.1, shows that the statement holds for all $v \equiv 13,19(\bmod 24), v \geq 43$.

Combining now Theorems 6.1 and 6.2 with the lemmas of Section 5 gives our main result.

Theorem 6.3. Let $v \equiv 1,3(\bmod 6), v \geq 43$ or $v \in\{13,15,21,27\}$. Then $\Delta(v)=P_{\Delta}(v)$.

For the "remaining" orders $v=19,25,31,33,37,39$, we were so far unable to determine the set $\Delta(v)$ completely. We were able to show, however, the following.
(i) $P_{\Delta}(19) \backslash\{43,44\} \subset \Delta(19)$.
(ii) $P_{\Delta}(25) \backslash\{83\} \subset \Delta(25)$.
(iii) $P_{\Delta}(31) \backslash\{134\} \subset \Delta(31)$.
(iv) $P_{\Delta}(33) \backslash\{171,173,174\} \subset \Delta(33)$.
(v) $P_{\Delta}(37) \backslash\{197\} \subset \Delta(37)$.
(vi) $P_{\Delta}(39) \backslash\{242,244,245\} \subset \Delta(39)$.

More precisely, there are 11 pairs (v, δ) for which we could not decide whether $v \in \Delta(v)$. These are the pairs $(v, \delta)=(19,43),(19,44),(25,83)$, $(31,134),(33,171),(33,173),(33,174),(37,197),(39,242),(39,244),(39,245)$.

The proof of (i)-(vi) above is fairly complicated and would necessitate introducing tools, such as frames, not needed in the proof of the main results; it is therefore omitted at present.

As mentioned in the introduction, determining the sets $\Delta(v)$ for $v \equiv$ $5(\bmod 6)$ remains an open problem.

References

[A] B.Alspach, The Oberwolfach problem, Handbook of Combinatorial Designs (C.J. Colbourn, J.H.Dinitz, eds.), CRC Press, 1996, pp. 394-395.
[BSH] A.E.Brouwer, A.Schrijver, H.Hanani, Group divisible designs with block size 4, Discrete Math. 20 (1977), 1-10.
[FMR] F.Franek, R.Mathon, A.Rosa, Maximal sets of triangle-factors in K_{15}, J. Combin. Math. Combin. Comput. 17 (1995), 111-124.
[KS] D.L.Kreher, D.R.Stinson, Small group divisible designs with block size four, J. Stat. Plann. Infer. (to appear).
[MPR] R.Mathon, K.T.Phelps, A.Rosa, Small Steiner triple systems and their properties, Ars Combinat. 15 (1983), 3-100.
[MG] R.C.Mullin, H.-D.O.F.Gronau, $P B D s$ and GDDs: The basics, Handbook of Combinatorial Designs (C.J. Colbourn, J.H. Dinitz, eds.), CRC Press, 1996, pp. 185-193.
[RS] R.Rees, D.R.Stinson, On the existence of incomplete designs of block size four having one hole, Utilitas Math. 35 (1989), 119-152.
[W] R.M.Wilson, Constructions and uses of pairwise balanced designs, Combinatorics, Proc. NATO Adv.Study Inst., Nijenrode 1974, D.Reidel, 1975, pp. 1942.

