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1. INTRODUCTION

A 2-factor of a graph G is a factor (i.e. a subgraph containing all vertices
of G)) which is regular of degree 2. A 2-factorization of G is a partition (i.e.
an edge-disjoint decomposition) of the edge-set of G into 2-factors.

Let v be an odd integer, and let F = {Fy,Fs,...,Fw_1} be a 2-
factorization of the complete graph K,. Two special well soived cases of
2-factorizations of K, are decompositions of K, into Hamiltonian cycles,
and Kirkman triple systems of order v. While in the former case (when
v > 3) none of the 2-factors contains a triangle, in the latter case each
component in each 2-factor is a triangle. It is the purpose of this article to
investigate the intermediate cases between these two extremes.

More precisely, we consider the following problem. Given an arbitrary
2-factorization F = {F1y,..., Fun_-1 } of K,, let §; be the number of triangles
of F;, and let § = §(F) = X9;. ’fhen F is said to be a 2-factorization with
(exactly) § triangles.

The triangle-spectrum for 2-factorizations of K, is the set A(v) = {0:
there exists a 2-factorization F of K, with §(F) = d}.

Since we have obviously A(3) = {1}, A(5) = {0}, we assume from now
onv>"1.

The existence of a Hamiltonian decomposition of K, shows minA(v) =

0, and an easy calculation shows that Ma (v) = mazA(v) < M, where M, =
1
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% if v = 1(mod 6),= % if v = 3(mod 6), and = %6(1)_5) if
v = 5(mod 6).

It is an easy observation that Ma(v) — 1 ¢ A(v) if v = 3(mod 6). Let
Pa(v) ={0,1,..., Ma(v)}. Then obviously A(v) C Pa(v).

We prove in this article that when v = 1 or 3(mod 6), apart from some
small exceptions, and some additional 11 possible exceptions, actually an
equality occurs above, i.e. A(v) = Pa(v).

Even though some of our results pertain also to the case of v = 5(mod 6),
the problem of determining the set A(v) when v = 5(mod 6) is left largely

open.

2. TRIANGLE SPECTRA FOR SMALL v AND §

We start with an easy result.
Lemma 2.1. . A(7) ={0,1,3}.

Proof. The existence of a solution to the Oberwolfach problem OP(7;7)
and OP(7;3,4) [A] shows {0,3} C A(7). Assume now that in a
2-factorization of K7, one 2-factor is the 7-cycle (1 2 3 4 5 6 7). Then
there is, up to an isomorphism, only one way to choose in our K7 a triangle
edge-disjointly. Let this triangle be, w.l.o.g., (1 3 5); then there is a unique
quadrangle (2 6 4 7) which is vertex-disjoint from (1 3 5) and edge-disjoint
from (123456 7). The complement of the union of the two 2-factors above
is the 7-cycle (1 4 2 57 3 6). This proves both 1 € A(7) and 2 ¢ A(7). O

Let us call a 2-factor whose each component is a triangle a triangle-
factor or a A-factor. A 2-factor whose cycles have lengths ¢y, ca, ..., ¢; will
be said to be of type ¢c1 +c¢co + -+ + ¢4

Lemma 2.2. . A(9) ={0,1,2,3,4,5,6,8,12}.

Proof. The existence of AG(2,3) (i.e., a Kirkman triple system of order
9) gives 12 € A(9). It is easily seen that the union of (any) two parallel
classes of AG(2,3) can be decomposed into two Hamiltonian cycles, or into
two 2-factors of type 346, respectively. This gives {0,2,4,6,8} C A(9).

The well-known fact that K3 3 3 can be decomposed into Hamiltonian cycles
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implies 3 € A(9). The two 2-factorizations Fi, Fs given below show 1 €
A(9), and 5 € A(9), respectively.

F1 : (018)(273546); (021748563); (231405768); (342516078)

Fo : (012)(345678); (135)(246807); (162375048); (147)(258)(036).

On the other hand, there is, up to an isomorphism, a unique set of 3
disjoint A-factors; its complement is also a A-factor. This shows i ¢ A(9)
for : € {9,10,11}. Finally, the complement of the union of two A-factors
cannot be decomposed into two 2-factors, one of which is a A-factor and
the other contains just one triangle. This shows 7 ¢ A(9), which completes
the proof. [J

Lemma 2.3. A(11) ={0,1,2,3,4,5,6,7,8,9}.

Proof. In the Hamiltonian cycle decomposition of K;1 given by F =
{F; :i=1,2,3,4,5}, F; = {xy : 6(zy) = i}, replace F} U Fy with a decom-
position into two 2-factors F] and Fj where F| has either exactly one, or
exactly two triangles, and F} is a Hamiltonian cycle (such a decomposition is
easily seen to exist). Since F3UF, ~ FjUFy, this gives {0, 1,2, 3,4} C A(11).
Furthermore (with E representing 11), G = {G1,G2,G3,G4, G5} where
Gy = (12345)(678)(90E), Go = (1697E)(248)(350),

G3 = (46089)(137)(25F), G4 = (1470263 E859),

Gs = (18392756 £40) implies 6 € A(11);

(G4, G, G5, G, GL} where G, = (140)(2758639), GL = (183E4702659)
implies 7 € A(11); {G1,G2,G3,G4”,G5” } where G4 = (14FE63958)(270),
G5” = (19265740)(38F) implies 8 € A(11); {G1,G5, G5, Gy, GE} where
G3 = (13964)(270)(58E), G = (160)(24E)(38957),

G = (350)(479)(1826 ), G% = (17E£36529)(480) implies 9 € A(11). The
existence of OP(11;3,8) gives 5 € A(11), and, finally, the nonexistence of
OP(11;3,3,5) [A] implies 10 ¢ A(11). O
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Lemma 2.4. A(13) ={0,1,...,18}.

Proof. We have {0,1,...,6} C A(13) by Theorem 2.5 below. Any so-
lution to OP(13:3,3,3,4) yields 18 € A(13), and a solution to OP(13;3,3,7)
yields 12 € A(13) (cf. [A]). Observing that in this case also G36 ~ Gi2
(cf. proof of Theorem 2.5 below) gives {7,8,9} C A(13). The decom-
positions given below complete the proof (here T,E,D represent 10,11,12,
respectively). H; = (358)(027'79)(146DE), Hy = ((157)(239)(0D7E486),
H; = (169)(03E87)(254T D), Hy = (26E)(137)(0T8D594),

Hy = (567)(9TE)(01D3428), Hg = (36T)(05E)(1274D98)

implies 10 € A(13); Hy, Ho, H} = (459)(3TD)(03E2617),

H, = (25D)(04AT)93196 EST), Hs, H

implies 11 € A(13); H; = (15T)(468)(7ED)(0239),

H), = (14E)(358)(06D)(297T), Hs, Hy, Hs, Hg

implies 13 € A(13);

H{,H,, H}, Hj, Hs, Hg implies 14 € A(13);

Hy, H!, Hy" = (26E)(459)(STD)(0317), Hy” = (25D)(169)(04T)(378E),
H! = (34D)(567)(9TE)(0128), H}, = (36T)(247)(05E)(189D)

implies 15 € A(13);

H,” = (468)(TED)(02T1539), Hy” = (14E)(06D)(2385T79),
Hy, Hy”, H., HY implies 16 € A(13); and

H; = (17T)(26 E)(459)(038D), Hi = (14E)(239)(58T)(06D7),
H; = (135)(468)(097TEDT?2), Hy”, HY, H!

implies 17 € A(13). O

Theorem 2.5. For each v = 1(mod 2),v >9,{0,1,..., @} C A(v).

Proof. For v =9 and 11, see Lemmas 2.2 and 2.3, so we may assume
v > 13. Consider the particular 2-factorization Q@ = {Q1,...,Q w-1 } of
K, on V = Z, given by Q; = {xy : d(zy) = i} where d(zy) = mz2n(|ac —
yl),v — |x — y|). Let G4 be the 4-regular subgraph of K, with V = Z,
and £ = {xy : d(xy) = aorb}. If v =1 or 5 (mod 6), the 4-regular
graph G 2 can be decomposed into two 2-factors Fy, F» where F) contains
Jj triangles (1,2,3),...,(3j —2,3j —1,3j) and one cycle (35+1,35+2,3j +
4,3j4+6,...,v—1Lv,v—2,v—4,v—06,...,37+ 1) of length v — 33, for any
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jed{o,1,..., (vge)} (where € = 4 or 5 according to whether v = 1 or 5 (mod
6)), and F5 is a Hamiltonian cycle. The graph G4 g if v > 17, and Gy 5 if
v = 13, is isomorphic to G5 thus j € A(v) for any j € {0,1,...,2(v—¢)}.

If v = 3 (mod 6), the 4-regular graph G, , /3 can be decomposed into two
Hamiltonian cycles, one of which is (1,v/3 4+ 1,v/3 4+ 2,2,3,v/3 +3,v/3 +
4,4,5,v/3+5,v/34+6,...,v/3—-2,v/3—-1,2v/3,2v/3+1,2v/3+2,...,v).
The graph Gy 4 is isomorphic to G 2. Moreover, if v > 33, the graph Gg 16
(Gs g if v =21, and Gy 11 if v = 27) is isomorphic to G 2. This shows that
except when v = 15 and § = 4, j € A(v) for any j € {0,1,...,2(v —6)}.
To handle this last remaining case, we observe that when v = 15, the
graph (1 5 can also be decomposed into two 2-factors Fi, F» where (say)
Fi=(1611)(278349105 15 14 13 12) has exactly one triangle, and F

is a Hamiltonian cycle. [

3. MAIN CONSTRUCTIONS

An embedding theorem of Rees and Stinson [RS] for Kirkman triple
systems (KTS) turns out to be very useful for our purposes.

Theorem 3.1. Let v=w = 3(mod 6),w >v. A KTS(v) can be embedded
in a KTS(w) if and only if w > 3v.

Theorem 3.2. Let v = w = 3(mod 6),w > 3v. Then § € A(v) implies
6+ tlw(w—1) —v(v—1)] € Aw).

Proof. Consider a KTS(w) with a sub-KTS(v); replace the sub-KTS(v)
with a 2-factorization with exactly ¢ triangles. [J

Corollary 3.3. Let v = w = 3(mod 6),w > 3v. If Aév) = Pa(v) then
w(w—1 v(v—1) w(w—1 v(v—1 w(w—1 w(w—1
{ ( ) u( )’ ( ) (6 )+17_”, (6 )_27 a )}CA(w).

6 6 6

In other words, if both v and w are congruent to 3 (mod 6), w > 3v
and the triangle-spectrum A(v) is ”complete”, then this implies that the
"largest” values of Pa(w) do indeed belong to the triangle-spectrum A(w).

Let v > 7. A 2-factorization F of K, is said to be a 2*-factorization if
there exists a vertex x which in every 2-factor of F is contained in a triangle.

Let A*(v) = {d: there exists a 2*-factorization of K, with exactly §
triangles}.

If I(v) = {(Ugl), (U_QH), ce U(Ugl)} then clearly A*(v) C I(v).

By comparison with Lemma 2.1 and Lemma 2.2, we see easily that
A*(v) = {3}, A*(9) = {4,6,8,12}.

Our main construction (the ”PBD-construction”) is a modification of
Wilson’s construction for resolvable designs [W].
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Theorem 3.4. The PBD-construction. Suppose (U,B) is a (u,L,1)-
PBD, and for each k € L, there exists a 2*-factorization of Koi+1. Then
there exists a 2*-factorization of Ko, 1 on U x{1,2}U{cc}. Furthermore, if
dp € A*(2|B|+1) for a block B € B then ) ,.z(dp —|B|)+u € A*(2u+1).

Proof. Let V =U x {1,2} U {oco}. We denote (z,i) for brevity by x;.
For a given block B € B, consider the set B* = B x {1,2} U {0}, and
a 2*-factorization F of K g« with dx = dp such that oo is the element
which occurs in every 2-factor of F in a triangle, and, moreover, that the
two other elements of this triangle are x1,xzo for some z € U. Let now
B1*, By", ..., By be all blocks of B that contain x, and let F}* be the cor-
responding 2*-factorization on BY* = B¥ x {1,2} U{oco},i =1,...,q. Each
of these 2*-factorizations contains a 2-factor with the triangle {oco, x1, z2};
let this 2-factor of F}* be, say, RY. Then R, = U;R} is a 2-factor, and
R = {R, : x € U} is a 2-factorization of Ko,4+1 on V. Clearly, §(R) =
> pen(0B — |B|) 4 u, and the proof is complete. [

4. THE SETS A*(15) AND A*(27)

In this section we determine (except for two cases that are not needed)

the above two sets as these are crucial for the proof of our main result.
Theorem 4.1. A*(15) = I(15) ={7,8,...,35}.
Proof. Consider the STS(15) No.61 (cf. [MPR]) which admits a unique

Kirkman triple system. This KTS has a cyclic automorphism of order 7 act-
ing on parallel classes. Clearly, any pair of unions of two ”consecutive” par-
allel classes (i.e. d-factors) is isomorphic, as is any pair of three consecutive
parallel classes. The union of two consecutive A-factors can be decomposed
into two 2-factors of type a) 34+3+3+6, 3+343+6, or b) 3+3+9, 3+3+9,
or ¢) 3+12, 3+12, in such a way that one element, say 1, always remains
in a triangle. A replacement with such a decomposition reduces the to-
tal number of triangles by 4, 6, and 8, respectively. Similarly, the union
of 3 consecutive d-factors can be decomposed into three 2-factors of type
a) 3434346, 3+3+3+6, 3+3+9, or b)3+3+9, 3+349, 3+12, or ¢) 3+12,
34+5+7, 3+349, again in such a way that one element always remains in
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triangle. A replacement with such a decomposition reduces the number of
triangles by 7, 10, and 11, respectively. Combining these replacements in
all possible ways shows {7,8,...,26,27,29,31} C A*(15).

Next, the 2-factorization whose 2-factors are
(012)(345)(678)(910 11)(12 13 14)
(036)(147)(2912)(510 13)(8 11 14)
(04 9)(1 8 13)(2 3 11)(5 7 14)(6 10 12)
(036)(147)(2912)(5 10 13)(8 11 14)
(04 9)(1 8 13)(2 3 11)(5 7 14)(6 10 12)
(05 12)(1 6 14)(2 7 10)(3 8 9)(4 11 13)
(0711)(159)(2613)(31014)(4 8 12)
(0810)(2414)(1 11569 133 7 12)
(258)(0 1379 14)(1 3 12 11 6 4 10)
shows 28 € A*(15). Replacing the last two 2-factors with
(11112)(258)(3713)(010469 14)
(2414)(5611)(081013127913)
shows 30 € A*(15).

Finally, the maximal sets of six A-factors No.21 and 28, respectively,
of [FMR] yield 32,33 € A*(15). The existence of a KTS(15) implies 35 €
A*(15). This completes the proof. [J

Theorem 4.2. 1(27)\ {14,16} C A*(27).

Proof. Let us start with applying Theorem 3.4 to S(2,4,13). Since
the latter has 13 blocks, and A*(9) = {4,6,8,12} (cf. Section 3 above),
this implies {13,15,17,...,111,113,117} C A*(27). Next consider a re-
solvable transversal design TD(3,9) on the set V' x {1,2,3}, where V is
any 9-set, with V' x {i},7 = 1,2,3 as groups. Construct a 2*-factorization
of Ko7 on V x {1,2,3} by taking the 9 parallel classes of our TD(3,9)
as triangle-factors, together with three 2-factors F; U G; U H;,i = 1,2,3
where F = {F}, F5, F3} is a 2*-factorization of Kg on V x {1}, and G =
{G1,G2,Gs},H = {H1, H2, H3} are 2-factorizations of K9 on V' x {2}, and
on V x {3}, respectively. Since A(9) ={0,1,2,3,4,5,6,8,12} (cf. Lemma
2.2), this yields {85,86,...,110,11,113, 117} ¢ A*(27).
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Consider now the solution to the Oberwolfach problem
0OP(27;3,3,3,3,3,4,8) on the set {0,1,...,26} U{oco} obtained by developing
the base 2-factor (oo 2 24)(1 3 9)(6 7 10)4 14 16)(13 17 25)

(018 11 19) (520 23 12 15 21 8 22) modulo 13

under the automorphism (c0)(01...12)(1314...25); clearly, this is a 2*-
factorization. Union of this base 2-factor with a 2-factor obtained by adding
to it 1 modulo 13 can be decomposed into two 2-factors Fy, Fy as follows:

(i) F1 = (00 224)(139)(6 710)(0 16 4 14 13 25 17 15 21 8 22 5 20 23
12 19 11 13),

F=(00325)(2410)(7811) (0191201215517 13 18 14 16 22 9 23 6
21 24);
(il)) F1 = (00 224)(139)(4 14 16)(0 18 1325 17 151223 20 5 22 8 21

6107 11 19),
Fy = (00325)(2410)(1191220) (0162292367811 18 1413175 15
21 24);

(iii) Fy = (00 2 24)(139)(4 14 16 22 8 21 15 12 23 20 5 17 25 13 18 0
19 11 7 6 10),
Fy=(00325)(1191220) (0164210781118 14 1317155229236
21 24);

(iv) Fy = (00 224)(0 18 11 76 10 4 16 14 13 25 17 5 20 23 12 15 21 8
229 31 19),
Fy=(00325)(0162251517131814421078 1119122019 23 6 21
24).

Replacing two ”consecutive” 2-factors in the way described above re-
duces the number of triangles by 4, 5, 7, and 8, respectively, while clearly
preserving the property of being a 2*-factorization. Combining these re-
placements gives {17,18,...,58,60,61,65} C A*(27).

Next consider the 2*-factorization of K7 on the set Z1o x {1,2} U {o0; :
i=1,2,...,7} whose first ten 2-factors are obtained by applying repeatedly
the mapping z; — (z+1); = 1,2 (each oo; is a fixed point) to the 2-factor
(001 21 62)(002 31 22)(003 51 82) (004 61 T2) (005 71 92) (006 81 32)

(007 91 52)(01 11 41)(02 15 49),
and whose the remaining three 2-factors are obtained by taking a disjoint
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union of the 2-factors of the (unique) 2*-factorization of K7 on the set
{o0; : 1 =1,2,...,7}, and of the following three disjoint 2-factors on the
set Z19 x {1,2}:

(01 21 02)((11 61 42 62 12)(31 51 71 52 81 82 32)(41 99 92 T2 22);

(01 51 52 32 61 81 02 31 11 91 71 72)(21 41 12 9242 22);

(01 81 31 1332 51 02 5o 73 91 62 61 41 45 71 21 92 17 83).

It is easily verified that this is indeed a 2*-factorization, and that it has
a total of 94 triangles.

The first two (or any two of the first ten) ”consecutive” 2-factors can be
decomposed as follows:

(i) (01 11 41 002 31 22 52 91 007)(001 21 62) (003 By 82) (004 61 72)(005 71 92)
(006 81 32)(02 12 49),

(01 41 32 003 29 19 5o 007 62)(001 31 T2)(003 61 92) (004 71 82)(005 81 02)
(006 91 42)(11 21 51);

(ii) (01 11 51 003 83 71 92 005 81 006 32 41) (001 21 62)(002 31 22) (004 61 72)
(007 91 52)(02 12 42),

(17 21 51 83 004 71 005 02 81 32 009 41)(001 31 T2)(003 61 92) (006 91 42)
(007 01 62)(12 22 52);

(iii) (01 41 11 51 003 85 71 92 005 81 32 006 91 5o 007) (001 21 62)(002 31 29)
(004 61 T2)(02 15 45),

(01 11 21 51 83 004 71 005 02 81 00g 42 91 007 62)(001 31 72)(002 41 32)
(003 61 92)(12 22 52).

Replacing two consecutive 2-factors by the decomposition (i), (ii), or
(iii) reduces the number of triangles by 6, 8, or 10, respectively. Thus
{44,46,48, ...,88} C A*(27).

The following 2*-factorization of Ks7 shows that 112 € A*(27) :
(123)(456)(789)(10 11 12)(13 14 15)(16 17 18)(19 20 21) (22 23 24)(25
26 27),

(147)(268)(359)(10 13 16)(11 15 17)(12 14 18)(19 22 25) (20 24 26)(21
23 27),
(158)(249)(367)(10 14 17)(11 13 18)(12 15 16)(19 23 26) (20 22 27)(21
24 25),
(169)(257)(348)(10 15 18)(11 14 16)(12 13 17)(19 24 27) 20 23 25)(21
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22 26),

(115 24)(2 16 21)(3 17 22)(4 14 19)(5 12 25)(6 11 27)(7 18 23) 8 10 26)(9
13 20),

(116 25)(2 13 27)(3 14 24)(4 17 21)(5 10 23)(6 18 20)(7 12 26) (8 11 19)(9
15 22),

(117 26)(2 18 22)(3 15 23)(4 12 20)(5 13 19)(6 10 24)(7 11 21) (8 16 27)(9
14 25),

(118 27)(2 14 26)(3 10 21)(4 16 23)(5 11 22)(6 17 25)(7 13 24) (8 15 20)(9
12 19),

(110 19)(2 11 20)(3 12 27)(4 13 25)(5 15 21)(6 14 23)(7 16 22) (8 17 24)(9
18 26),

(112 23)(2 10 25)(3 18 19)(4 11 26)(5 17 20)(6 13 22)(7 15 27) (8 14 21)(9
16 24),

(113 21)(2 12 24)(3 16 20)(4 10 22)(5 14 27)(6 15 26)(7 17 19) (8 18 25)(9
11 23),

(114 22)(2 15 19)(3 11 25)(4 18 24)(5 16 26)(6 12 21)(7 10 20) (8 13 23)(9
17 27),

(1112451821 91027415257 14 20)(2 17 23)(3 13 16) (6 16 19)(8 12
22).

To show 114 € A*(27), consider the following 2*-factorization of Ko;:
take the first six 2-factors and the eighth 2-factor as above, and also the
2-factors (1 13 22)(2 17 19)(3 15 23)(4 12 20)(5 18 26)(6 10 24)(7 11 21) (8
16 27)(9 14 25),

(110 19)(2 18 22)(3 12 27)(4 13 25)(5 16 24)(6 15 26)(7 17 20) 8 14 21)(9
11 23),

(111 20)(2 12 23)(3 13 26)(4 10 22)(5 15 21)(6 16 19)(7 14 27) (8 18 25)(9
17 24),

(112 21)(2 10 20)(3 11 25)(4 18 24)(5 17 27)(6 14 22)(7 15 19) (8 13 23)(9
16 26),

(117 23)(2 15 25)(3 18 19)(4 11 26)(5 14 20)(6 13 21)(7 16 22) (8 12 24)(9
10 27),

(1142361222817 26)(2 11 24)(3 16 20)(4 15 27)(5 13 19) (7 10 25)(9 18
21).
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Finally, to show 115 € A*(27), consider the following 2*-factorization of
K51: take the first five 2-factors and the eighth 2-factor as above, and also
the 2-factors (1 14 23)(2 15 25)(3 18 19)(4 11 26)(5 16 24)(6 12 22)(7 17 20)
(8 13 21)(9 10 27),

(116 25)(2 10 20)(3 14 24)(4 18 21)(5 17 27)(6 13 23)(7 12 26) (8 11 19)(9
15 22),
(117 26)(2 18 22)(3 16 20)(4 15 27)(5 13 19)(6 14 21)(7 10 25) (8 12 23)(9
11 24),
(110 19)(2 11 23)(3 12 27)(4 13 25)(5 14 20)(6 15 26)(7 16 22) (8 18 24)(9
17 21),
(112 21)(2 13 27)(3 11 25)(4 17 24)(5 10 23)(6 18 20)(7 15 19) (8 14 22)(9
16 26),
(113 22)(2 17 19)(3 15 23)(4 12 20)(5 18 26)(6 10 24)(7 11 21) (8 16 27)(9
14 25),
(1 11 20)(2 12 24)(3 13 26)(4 10 22)(5 15 21)(6 16 19)(7 14 27) (8 1723 9
18 25).
This completes the proof. [

Corollary 4.3. A(27) = Pa(27).
Proof. Combine Theorem 4.2 with Theorem 2.5. [J

5. MORE TRIANGLE SPECTRA FOR SMALL v

Our first lemma in this section is auxiliary as it is needed in the proof
of Lemma 5.3.

Lemma 5.1. {6,11,14,15,16,17,18} C A*(13).

Proof. An inspection of the proof of Lemma 2.4 shows
{11,14,15,16,17} C A*(13). For 6 € A*(13), consider the following so-
lution to OP(13;3,10). The vertex-set of Ki3 is Z3 x {1,2,3,4} U {oo},
and the two base 2-factors are F; = (000321)(01021422152313241104)F5 =
(000204)(01211203241413112923) (the remaining 2-factors are obtained by
developing Fi, F5 modulo 3). Finally, for 18 € A*(13), consider the follow-
ing solution to OP(13;3,3,3,4):

(168)(45T)(7ED)(0239)
(14E)(358)(06D)(297T
(159)(26E)(8T' D) (0347
(017)(25D)(469)(378E
(13D)(567) (9T E) (0428
(127)(36T)(05E) (489D

— — — N —

O
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Lemma 5.2. A(21) = Pa(21).

Proof. When v = 21, the graph G 5 (cf. Theorem 2.5) can be decom-
posed into a Hamiltonian cycle and a 2-factor F' having ¢ triangles where
i €{0,1,2,3,4,5,7}. Further, the graphs G4 s and G519 are isomorphic
to G12. Moreover, the graph Gz 9 (defined in analogy with G, in an
obvious way) can be decomposed into three 2-factors in such a way that the
total number of triangles in the three 2-factors is j where j € {0,1,...,7,9}.
Clearly, the 2-factor consisting of edges of length 7 contains exactly 5 tri-
angles. This shows {0,1,...,33,35} C A(21).

Consider now a resolvable transversal design equivalent to the pair of
orthogonal cyclic latin squares of order 7. The union of two of its parallel
classes is easily seen to be decomposable into two Hamiltonian cycles, or
into two 2-factors of type 34343412, respectively. The corresponding re-
placement decreases the number of triples by 14, and by 8, respectively.
We can complete to a 2-factorization by taking a 2-factorization of K-
on each of the three groups, taking into account Lemma 2.1. This gives
{33,34,...,48,50} € A(21).

Next consider the set of 7 disjoint 2-factors obtained by developing mod-
ulo 20 the 2-factor
(05 11)(1 9 13)(2 6 15)(3 10 17)(4 14 19)(7 12 18)(8 16 20). The com-
plement of this set in Ky; on Za; is the graph Gi23. Since G712 can be
decomposed into a Hamiltonian cycle and a 2-factor containing ¢ triangles,
i€{0,1,2,3,4,5,7} (cf. Theorem 2.5), we get right away
{49,50,51,52,53,54,56} € A(21). The graph G123 can be decomposed
into three 2-factors
(012)(345)(678)(91011)(12 13 14)(15 16 18 20 19 17),
(01819)(1324657981012 1113 1514 16 17 20),

(0369121518 17141185220)(14710131619)

which shows 55 € A(21). Another decomposition of Gy 23 into three 2-
factors

F=(013)(245)(679)(81011)(12 13 15)(14 16 17)(18 19 20), (020 2 1
1917 18)(3 4 6)(5 7 10 12 9 8)(11 13 16 15 14),

(0235687412017 1518 18 19)(9 10 13 14 12 11) shows 57 € A(21),
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and the decomposition

(0211916 18 1517 20)(34 786 5)(9 10 12)(11 13 14),

(01817 19)(146 3220)(57101316 1514 12 11 9 8),

together with F' as above, shows that 58 € A(21). Yet another decomposi-
tion of Gy 2,3 into three 2-factors (0 2 20)((3 56)(1 4789 10 12 14 11 13
16 15 18 17 19),

(01816 19)(1 2346 8 5710 13 14 15 17 20)(9 11 12),

and F' as above, shows 59 € A(21). Similarly, the decomposition
(0220)((146357891013 16 19)(11 12 14)(15 17 18)

(018161514 131191210743 2120 17 19)(5 6 8),

together with F' as above, shows 60 € A(21).

Consider now the set of 7 disjoint 2-factors obtained by developing mod-
ulo 21 the 2-factor
(0 2 10)(1 13 19)(3 14 16)(4 11 18)(5 8 20)(6 12 15)(7 9 17). The comple-
ment of this set in K5 on Zs; is the graph G 4,5 which can be decomposed
into three 2-factors
(015)(237)(489)(610 11)(12 13 17)(14 18 19)(15 16 20)

(016 17)(1218138 1271115192034 56)(9 10 14),
(04 20)(1 17 18)(2 6 7 8 3 19)(5 9 13 14 15 10)(11 12 16); this shows
61 € A(21).

The existence of a Kirkman triple system of order 21 implies 70 € A(21).
Consider now the KTS(21) on the set Z7 x {1, 2, 3} with base parallel classes
R = (011523)(112161)(310243)(412203)(514233)(325262)(135363),
S1={(i1(i+2)2(: +4)3) :i € Z7}

So ={(i1(1+3)2(i +6)3) : i € Z7}

Ss = {(i1iqi3) 11 € Z7}.

(Developing R yields 7 parallel classes while each of S; is a parallel class
on its own). The union of S; and S5 can be decomposed into two 2-factors
each of which is of type (i) 3+3+3+3+3+6, or (ii) 343434349, or (iii)
3+3+3+12:

(i) (010251535203)(111213)(212223)(313233)(414243)(616263),
(012243)(113253)(214263)(315251230203)(416213)(611233);
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(ii) (010203)(111261634243416213)(212225)(313233)(515253),
(012043) (113955 ) (214241 151533616265 ) (315203) (510225 ):
(iif) (1112136241 45426561353132)(010203) (212225 ) (515253).
(111341422165626112333253)(012243)(315203)(510223).
Replacing S; and S3 with two 2-factors of type (i), (ii), or (iii) decreases
the number of triangles by 4,6, or 8, respectively. Thus 62, 64,66 € A(21).
The following 2-factorization of Ky shows 63 € A(21).
123)(456)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21),
14 7)(2 18 20)(3 6 21)(5 8 10)(9 11 13)(12 14 16)(15 17 19),
19 15)(2 6 12)(3 7 18)(4 16 21)(5 11 14)(8 13 19)(10 17 20),
111 21)(2 9 17)(3 8 15)(4 10 19)(5 12 18)(6 7 14)(13 16 20),
)

(
1517)(24 11)(3 12 19)(6 15 18)(7 13 21)(8 14 20)(9 10 16),
168)(21419)(3 11 16)(4 1520)(59 21)(7 12 17)(10 13 18),
110 14)(2513)(3417)(6 9 20)(7 16 19)(8 11 18)(12 15 21),
120129195721511 178211814413 310 6 16).

The following 2-factorization of K shows 65 € A(21): the first two

2-factors are as in the previous case, and the remaining eight 2-factors are
11621)(2713)(3419)(59 18)(6 10 20)(8 12 15)(11 14 17),
110 14)(2 8 21)(3 12 17)(4 13 18)(5 11 19)(6 7 15)(9 16 20),
1915)(24 11)(3 5 16)(6 12 18)(7 14 20)(8 13 19)(10 17 21),
11120)(2514)(31518)(4 8 16)(6 13 17)(7 12 21)(9 10 19),
1517)(21015)(3 1320)(4 9 12)(6 8 11)(7 16 19)(14 18 21),
1619)(2917)(3 8 14)(4 15 21)(5 12 20)(7 11 18)(10 13 16),
1818)(21219)(3 710)(4 17 20)(5 13 21)(6 9 14)(11 15 16),
11213)(2616)(3921 11)(4 10 18 19 14)(5 7 17 8 20 15).

The following 2-factorization of Ko shows 67 € A(21):
)(3821)(5 10 16)(6 11 17)(7 12 18)(9 13 14)(15 19 20),
)(2819)(4 12 20)(5 14 17)(6 9 21)(10 11 13)(15 16 18),
6)(2 12 17)(3 13 18)(4 14 19)(7 10 15)(8 9 11)(16 20 21),

( )
)

)

( )

) )

) ) ) ) )

112 13)(2 8 16)(3 5 20)(4 9 18)(6 11 19)(7 10 15)(14 17 21),
118 19)(2 10 21)(3 9 14)(4 8 12)(5 15 16)(6 13 17)(7 11 20),
) ) ) )

) ( ( )

(7 ( )

o~~~ o~ o~ o~ o~ o~ o~ o~

~—

o~ o~ o~ o~ o~ o~ o~ o~
e e T

24
37

~—

1
1
1815)(2 9 16)(3 10 17)(4 5 7)(6 13 20)(11 12 14)(18 19 21),

(
(
(15
(
(1920)(2 14 21)(3 6 12)(4 11 15)(5 13 19)(7 16 17)(8 10 18),

~— N~ TN T
— —t ~—



TRIANGLES IN 2-FACTORIZATIONS 15
(111 16)(2 3 5)(4 10 21)(6 14 15)(7 9 19)(8 12 13)(17 18 20
(112 21)(2 13 15)(3 14 16)(4 8 17)(5 9 18)(6 10 19)(7 11 20
(113 17)(2 10 20)(3 9 15)(4 6 18)(5 11 21)(7 8 14)(12 16 19
E ) ) )

)
bl

Y

S— N N
— — — —

114 18)(2 6 7)(3 11 19)(4 13 16)(5 8 20)(9 10 12)(15 17 21
11014203 49 17 19)(2 11 18)(5 12 15)(6 8 16)(7 13 21).
Finally, the following 2-factorization of K5, shows that 68 € A(21):
(124)(31017)(51116)(6 9 18)(7 14 21)(8 12 13)(15 19 20),
(156)(2820)(31216)(4 11 18)(7 10 19)(9 13 14)(15 17 21),
(1713)(2916)(3 11 19)(4 10 15)(5 20 21)(6 12 17)(8 14 18),
(18 15)(2 10 18)(3921)(4 14 16)(5 12 19)(6 13 20)(7 11 17),
(1917)(2 11 15)(3 7 18)(4 12 20)(5 10 14)(6 8 19)(13 16 21),
( 9 )( (
( )( )
( (
(
(

b

112 18)(2 6 7)(3 14 20)(4 8 21)(5 9 15)(10 11 13)(16 17 19),
114 19)(2 12 21)(3 13 15)(4 5 7)(6 10 16)(8 9 11)(17 18 20),
13 8)(10 20 16)(2 14 17)(4 9 19)(5 13 18)(6 11 21)(7 12 15).

Lemma 5.3. If v € {49,55,73} then A(v) = Pa(v).

Proof. By [RS] (cf.also [KS], [MG]), there exists a 4-GDD of type 3162.
Taking the groups of this GDD as blocks results in a PBD(24,{3,4,6},1)
where each element is in exactly one block of size 3 or 6. Apply now Theorem
3.4 while taking into account Lemma 5.1. This proves the statement for
v = 49. Taking instead a 4-GDD of type 3'6* which also exists by [RS] (cf.
[KS], [MG]) and proceeding as above proves the statement for v = 55. For
v = 73, consider a 4-GDD of type 6° which exists by [BSH] (cf. also [MG]).
Taking the groups of this GDD as blocks results in a PBD(36,{4,6},1) with
a parallel class of blocks of size 6. Apply again Theorem 3.4 taking into
account Lemma 5.1. [J

Lemma 5.4. Ifv € {51,75} then A(v) = Pa(v).

Proof. Extending the groups of the 4-GDD of type 362 from the proof
of the previous lemma by a common new element oo yields a
PBD(25,{4,7},1). Applying now Theorem 3.4 and taking into account The-
orem 4.1 proves the statement for v = 51. Proceeding in the same fashion
but starting instead with the 4-GDD of type 6° proves the statement for
v="75.0

Lemma 5.5. A(57) = Pa(57).

Proof. Apply Theorem 3.4 to a PBD(28,{4,7},1) (obtained from a
transversal design TD(4,7) by simply taking the groups of size 7 as blocks),
employing also Theorem 4.1 (giving A*(15)). O

( )
) )
( ( ) )
( ( ( ( )
110 21)(2 13 19)(3 4 6)(5 8 17)(7 9 20)(11 12 14)(15 16 18),
111 20)(2 3 5)(4 13 17)(6 14 15)(7 8 16)(9 10 12)(18 19 21),
) 5 ) )

( )( )

) )

O
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6. MAIN RESULTS

Theorem 6.1. For all v = 3(mod 6),v > 81, or v € {45,63,69}, A(v) =
P (v).

Proof. Steiner systems S(2,4,u) with a subsystem S(2,4,13) are known
to exist for all u = 1,4(mod 12),u > 40 [RS]. Taking now as our PBD in
Theorem 3.4 any PBD(u, {4,13*},1), and using it together with Theorems
2.5 and 4.2 shows that the statement holds for all v = 3,9(mod 24),v > 81.
When v =7, 10 (mod 12), taking instead any PBD(u, {4,7*},1) known
to exist for all such u > 22 (cf. [RS]), and using Theorem 3.4, together
with Theorems 2.5 and 4.1 shows that the statement holds for all v =
15,21(mod24),v > 45. O

Theorem 6.2. For all v = 1(mod 6),v > 79, or v € {43,61,67}, A(v) =
P (v).

Proof. Consider an S(2,4,w) with a sub-S(2,4,13) from the previous
theorem, and delete an element not in the subsystem. This results in a
{4,13}-GDD of type 3(*~1/3 with a unique block of size 13, or, equivalently,
in a PBD(u = w — 1,{3,4,13*},1) with a parallel class of blocks of size 3.
Such a PBD exists for all v = 0,3(mod 12),v > 39. It is essential to note
that every element of this PBD occurs in a unique block of size 3. Applying
now Theorem 3.4 to this PBD, together with Theorems 2.5 and 4.2, shows
that the statement holds for all v = 1, 7(mod 24),v > 79. Similarly, deleting
an element of the PBD(w, {4,7*},1) not in the unique block of size 7 (cf.
Theorem 6.1) results in a PBD(u, {3,4, 7*}, 1) with a parallel class of blocks
of size 3; such a PBD exists for all u = 6,9(mod 12),v > 21. Applying
Theorem 3.4, together with Theorems 2.5 and 4.1, shows that the statement
holds for all v = 13,19(mod 24),v > 43. O

Combining now Theorems 6.1 and 6.2 with the lemmas of Section 5

gives our main result.
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Theorem 6.3. Let v = 1,3(mod 6),v > 43 or v € {13,15,21,27}. Then
A(v) = Pa(v).
For the "remaining” orders v = 19,25, 31, 33, 37,39, we were so far un-

able to determine the set A(v) completely. We were able to show, however,
the following.

(i) Pa(19)\ {43,44} c A(19).
(i) Pa(25)\ {83} C A(25).
(iii) Pa(31)\ {134} C A(31).
(iv) Pa(33)\ {171,173,174} C A(33).
(v) Pa(37)\ {197} € A(37).

(vi) Pa(39)\ {242,244,245} C A(39).

More precisely, there are 11 pairs (v, d) for which we could not decide
whether v € A(v). These are the pairs (v,d) = (19,43), (19,44), (25, 83),
(31,134),(33,171),(33,173),(33,174),(37,197),(39,242), (39,244),(39,245).

The proof of (i)-(vi) above is fairly complicated and would necessitate
introducing tools, such as frames, not needed in the proof of the main results;
it is therefore omitted at present.

As mentioned in the introduction, determining the sets A(v) for v =
5(mod 6) remains an open problem.
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