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1. Introduction

A 2-factor of a graph G is a factor (i.e. a subgraph containing all vertices

of G) which is regular of degree 2. A 2-factorization of G is a partition (i.e.

an edge-disjoint decomposition) of the edge-set of G into 2-factors.

Let v be an odd integer, and let F = {F1, F2, . . . , F (v−1)
2

} be a 2-

factorization of the complete graph Kv. Two special well solved cases of

2-factorizations of Kv are decompositions of Kv into Hamiltonian cycles,

and Kirkman triple systems of order v. While in the former case (when

v > 3) none of the 2-factors contains a triangle, in the latter case each

component in each 2-factor is a triangle. It is the purpose of this article to

investigate the intermediate cases between these two extremes.

More precisely, we consider the following problem. Given an arbitrary

2-factorization F = {F1, . . . , F (v−1)
2

} of Kv, let δi be the number of triangles

of Fi, and let δ = δ(F) = Σδi. Then F is said to be a 2-factorization with

(exactly) δ triangles.

The triangle-spectrum for 2-factorizations of Kv is the set ∆(v) = {δ:

there exists a 2-factorization F of Kv with δ(F) = δ}.

Since we have obviously ∆(3) = {1}, ∆(5) = {0}, we assume from now

on v ≥ 7.

The existence of a Hamiltonian decomposition of Kv shows min∆(v) =

0, and an easy calculation shows that M∆(v) = max∆(v) ≤ Mv where Mv =
1



2 I.J.DEJTER,F.FRANEK,E.MENDELSOHN,A.ROSA

(v−1)(v−4)
6 if v ≡ 1(mod 6), = v(v−1)

6 if v ≡ 3(mod 6), and = (v−1)(v−5)
6 if

v ≡ 5(mod 6).

It is an easy observation that M∆(v) − 1 /∈ ∆(v) if v ≡ 3(mod 6). Let

P∆(v) = {0, 1, . . . , M∆(v)}. Then obviously ∆(v) ⊂ P∆(v).

We prove in this article that when v ≡ 1 or 3(mod 6), apart from some

small exceptions, and some additional 11 possible exceptions, actually an

equality occurs above, i.e. ∆(v) = P∆(v).

Even though some of our results pertain also to the case of v ≡ 5(mod 6),

the problem of determining the set ∆(v) when v ≡ 5(mod 6) is left largely

open.

2. Triangle spectra for small v and δ

We start with an easy result.

Lemma 2.1. . ∆(7) = {0, 1, 3}.

Proof. The existence of a solution to the Oberwolfach problem OP(7;7)

and OP(7;3,4) [A] shows {0, 3} ⊂ ∆(7). Assume now that in a

2-factorization of K7, one 2-factor is the 7-cycle (1 2 3 4 5 6 7). Then

there is, up to an isomorphism, only one way to choose in our K7 a triangle

edge-disjointly. Let this triangle be, w.l.o.g., (1 3 5); then there is a unique

quadrangle (2 6 4 7) which is vertex-disjoint from (1 3 5) and edge-disjoint

from (1 2 3 4 5 6 7). The complement of the union of the two 2-factors above

is the 7-cycle (1 4 2 5 7 3 6). This proves both 1 ∈ ∆(7) and 2 /∈ ∆(7). �

Let us call a 2-factor whose each component is a triangle a triangle-

factor or a ∆-factor. A 2-factor whose cycles have lengths c1, c2, ..., ct will

be said to be of type c1 + c2 + · · · + ct.

Lemma 2.2. . ∆(9) = {0, 1, 2, 3, 4, 5, 6, 8, 12}.

Proof. The existence of AG(2,3) (i.e., a Kirkman triple system of order

9) gives 12 ∈ ∆(9). It is easily seen that the union of (any) two parallel

classes of AG(2,3) can be decomposed into two Hamiltonian cycles, or into

two 2-factors of type 3+6, respectively. This gives {0, 2, 4, 6, 8} ⊂ ∆(9).

The well-known fact that K3,3,3 can be decomposed into Hamiltonian cycles
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implies 3 ∈ ∆(9). The two 2-factorizations F1, F2 given below show 1 ∈

∆(9), and 5 ∈ ∆(9), respectively.

F1 : (018)(273546); (021748563); (231405768); (342516078)

F2 : (012)(345678); (135)(246807); (162375048); (147)(258)(036).

On the other hand, there is, up to an isomorphism, a unique set of 3

disjoint ∆-factors; its complement is also a ∆-factor. This shows i /∈ ∆(9)

for i ∈ {9, 10, 11}. Finally, the complement of the union of two ∆-factors

cannot be decomposed into two 2-factors, one of which is a ∆-factor and

the other contains just one triangle. This shows 7 /∈ ∆(9), which completes

the proof. �

Lemma 2.3. ∆(11) = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Proof. In the Hamiltonian cycle decomposition of K11 given by F =

{Fi : i = 1, 2, 3, 4, 5}, Fi = {xy : δ(xy) = i}, replace F1 ∪ F2 with a decom-

position into two 2-factors F ′
1 and F ′

2 where F ′
1 has either exactly one, or

exactly two triangles, and F ′
2 is a Hamiltonian cycle (such a decomposition is

easily seen to exist). Since F3∪F4 ' F1∪F2, this gives {0, 1, 2, 3, 4} ⊂ ∆(11).

Furthermore (with E representing 11), G = {G1, G2, G3, G4, G5} where

G1 = (12345)(678)(90E), G2 = (1697E)(248)(350),

G3 = (46089)(137)(25E), G4 = (1470263E859),

G5 = (18392756E40) implies 6 ∈ ∆(11);

{G1, G2, G3, G
′
4, G

′
5} where G′

4 = (140)(2758E639), G′
5 = (183E4702659)

implies 7 ∈ ∆(11); {G1, G2, G3, G4”, G5”} where G4” = (14E63958)(270),

G5” = (19265740)(38E) implies 8 ∈ ∆(11); {G1, G
∗
2, G

∗
3, G

∗
4, G

∗
5} where

G∗
2 = (13964)(270)(58E), G∗

3 = (160)(24E)(38957),

G∗
4 = (350)(479)(1826E), G∗

5 = (17E36529)(480) implies 9 ∈ ∆(11). The

existence of OP(11;3,8) gives 5 ∈ ∆(11), and, finally, the nonexistence of

OP(11;3,3,5) [A] implies 10 /∈ ∆(11). �
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Lemma 2.4. ∆(13) = {0, 1, . . . , 18}.

Proof. We have {0, 1, . . . , 6} ⊂ ∆(13) by Theorem 2.5 below. Any so-

lution to OP(13;3,3,3,4) yields 18 ∈ ∆(13), and a solution to OP(13;3,3,7)

yields 12 ∈ ∆(13) (cf. [A]). Observing that in this case also G3,6 ' G1,2

(cf. proof of Theorem 2.5 below) gives {7, 8, 9} ⊂ ∆(13). The decom-

positions given below complete the proof (here T,E,D represent 10,11,12,

respectively). H1 = (358)(02T79)(146DE), H2 = ((15T )(239)(0D7E486),

H3 = (169)(03E87)(254TD), H4 = (26E)(137)(0T8D594),

H5 = (567)(9TE)(01D3428), H6 = (36T )(05E)(1274D98)

implies 10 ∈ ∆(13); H1, H2, H
′
3 = (459)(8TD)(03E2617),

H ′
4 = (25D)(04T )93196E87), H5, H6

implies 11 ∈ ∆(13); H ′
1 = (15T )(468)(7ED)(0239),

H ′
2 = (14E)(358)(06D)(297T ), H3, H4, H5, H6

implies 13 ∈ ∆(13);

H ′
1, H

′
2, H

′
3, H

′
4, H5, H6 implies 14 ∈ ∆(13);

H1, H
′
1, H3” = (26E)(459)(8TD)(0317), H4” = (25D)(169)(04T )(378E),

H ′
5 = (34D)(567)(9TE)(0128), H ′

6 = (36T )(247)(05E)(189D)

implies 15 ∈ ∆(13);

H1” = (468)(7ED)(02T1539), H2” = (14E)(06D)(2385T79),

H3”, H4”, H ′
5, H

′
6 implies 16 ∈ ∆(13); and

H∗
1 = (17T )(26E)(459)(038D), H∗

2 = (14E)(239)(58T )(06D7),

H∗
3 = (135)(468)(097EDT2), H4”, H ′

5, H
′
6

implies 17 ∈ ∆(13). �

Theorem 2.5. For each v ≡ 1(mod 2), v ≥ 9, {0, 1, . . . , (v−3)
2 } ⊂ ∆(v).

Proof. For v = 9 and 11, see Lemmas 2.2 and 2.3, so we may assume

v ≥ 13. Consider the particular 2-factorization Q = {Q1, . . . , Q (v−1)
2

} of

Kv on V = Zv given by Qi = {xy : d(xy) = i} where d(xy) = min(|x −

y|), v − |x − y|). Let Ga,b be the 4-regular subgraph of Kv with V = Zv

and E = {xy : d(xy) = aorb}. If v ≡ 1 or 5 (mod 6), the 4-regular

graph G1,2 can be decomposed into two 2-factors F1, F2 where F1 contains

j triangles (1, 2, 3), . . . , (3j − 2, 3j − 1, 3j) and one cycle (3j +1, 3j +2, 3j +

4, 3j + 6, . . . , v − 1, v, v − 2, v − 4, v − 6, . . . , 3j + 1) of length v − 3j, for any
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j ∈ {0, 1, . . . , (v−ε)
3 } (where ε = 4 or 5 according to whether v ≡ 1 or 5 (mod

6)), and F2 is a Hamiltonian cycle. The graph G4,8 if v ≥ 17, and G4,5 if
v = 13, is isomorphic to G1,2 thus j ∈ ∆(v) for any j ∈ {0, 1, . . . , 2

3 (v − ε)}.
If v ≡ 3 (mod 6), the 4-regular graph G1,v/3 can be decomposed into two

Hamiltonian cycles, one of which is (1, v/3 + 1, v/3 + 2, 2, 3, v/3 + 3, v/3 +
4, 4, 5, v/3 + 5, v/3 + 6, . . . , v/3 − 2, v/3 − 1, 2v/3, 2v/3 + 1, 2v/3 + 2, . . . , v).
The graph G2,4 is isomorphic to G1,2. Moreover, if v ≥ 33, the graph G8,16

(G5,8 if v = 21, and G8,11 if v = 27) is isomorphic to G1,2. This shows that
except when v = 15 and δ = 4, j ∈ ∆(v) for any j ∈ {0, 1, . . . , 2

3 (v − 6)}.
To handle this last remaining case, we observe that when v = 15, the
graph G1,5 can also be decomposed into two 2-factors F1, F2 where (say)
F1 = (1 6 11)(2 7 8 3 4 9 10 5 15 14 13 12) has exactly one triangle, and F2

is a Hamiltonian cycle. �

3. Main constructions

An embedding theorem of Rees and Stinson [RS] for Kirkman triple
systems (KTS) turns out to be very useful for our purposes.

Theorem 3.1. Let v ≡ w ≡ 3(mod 6), w > v. A KTS(v) can be embedded
in a KTS(w) if and only if w ≥ 3v.

Theorem 3.2. Let v ≡ w ≡ 3(mod 6), w ≥ 3v. Then δ ∈ ∆(v) implies
δ + 1

6 [w(w − 1) − v(v − 1)] ∈ ∆(w).

Proof. Consider a KTS(w) with a sub-KTS(v); replace the sub-KTS(v)
with a 2-factorization with exactly δ triangles. �

Corollary 3.3. Let v ≡ w ≡ 3(mod 6), w ≥ 3v. If ∆(v) = P∆(v) then
{w(w−1)

6 − v(v−1)
6 , w(w−1)

6 − v(v−1)
6 + 1, . . . , w(w−1)

6 − 2, w(w−1)
6 } ⊂ ∆(w).

In other words, if both v and w are congruent to 3 (mod 6), w ≥ 3v
and the triangle-spectrum ∆(v) is ”complete”, then this implies that the
”largest” values of P∆(w) do indeed belong to the triangle-spectrum ∆(w).

Let v ≥ 7. A 2-factorization F of Kv is said to be a 2∗-factorization if
there exists a vertex x which in every 2-factor of F is contained in a triangle.

Let ∆∗(v) = {δ: there exists a 2∗-factorization of Kv with exactly δ
triangles}.

If I(v) = { (v−1)
2 , (v+1)

2 , . . . , v(v−1)
6 } then clearly ∆∗(v) ⊂ I(v).

By comparison with Lemma 2.1 and Lemma 2.2, we see easily that
∆∗(v) = {3}, ∆∗(9) = {4, 6, 8, 12}.

Our main construction (the ”PBD-construction”) is a modification of
Wilson’s construction for resolvable designs [W].
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Theorem 3.4. The PBD-construction. Suppose (U, B) is a (u, L, 1)-

PBD, and for each k ∈ L, there exists a 2∗-factorization of K2k+1. Then

there exists a 2∗-factorization of K2u+1 on U×{1, 2}∪{∞}. Furthermore, if

δB ∈ ∆∗(2|B|+1) for a block B ∈ B then
∑

b∈B(δB −|B|)+u ∈ ∆∗(2u+1).

Proof. Let V = U × {1, 2} ∪ {∞}. We denote (x, i) for brevity by xi.

For a given block B ∈ B, consider the set B∗ = B × {1, 2} ∪ {∞}, and

a 2∗-factorization F of K|B∗| with δF = δB such that ∞ is the element

which occurs in every 2-factor of F in a triangle, and, moreover, that the

two other elements of this triangle are x1, x2 for some x ∈ U . Let now

B1
x, B2

x, . . . , Bx
q be all blocks of B that contain x, and let Fx

i be the cor-

responding 2∗-factorization on Bx∗
i = Bx

i × {1, 2} ∪ {∞}, i = 1, . . . , q. Each

of these 2∗-factorizations contains a 2-factor with the triangle {∞, x1, x2};

let this 2-factor of Fx
i be, say, Rx

i . Then Rx = ∪iR
x
i is a 2-factor, and

R = {Rx : x ∈ U} is a 2-factorization of K2u+1 on V . Clearly, δ(R) =
∑

b∈B(δB − |B|) + u, and the proof is complete. �

4. The sets ∆∗(15) and ∆∗(27)

In this section we determine (except for two cases that are not needed)

the above two sets as these are crucial for the proof of our main result.

Theorem 4.1. ∆∗(15) = I(15) = {7, 8, . . . , 35}.

Proof. Consider the STS(15) No.61 (cf. [MPR]) which admits a unique

Kirkman triple system. This KTS has a cyclic automorphism of order 7 act-

ing on parallel classes. Clearly, any pair of unions of two ”consecutive” par-

allel classes (i.e. δ-factors) is isomorphic, as is any pair of three consecutive

parallel classes. The union of two consecutive ∆-factors can be decomposed

into two 2-factors of type a) 3+3+3+6, 3+3+3+6, or b) 3+3+9, 3+3+9,

or c) 3+12, 3+12, in such a way that one element, say 1, always remains

in a triangle. A replacement with such a decomposition reduces the to-

tal number of triangles by 4, 6, and 8, respectively. Similarly, the union

of 3 consecutive δ-factors can be decomposed into three 2-factors of type

a) 3+3+3+6, 3+3+3+6, 3+3+9, or b)3+3+9, 3+3+9, 3+12, or c) 3+12,

3+5+7, 3+3+9, again in such a way that one element always remains in
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triangle. A replacement with such a decomposition reduces the number of

triangles by 7, 10, and 11, respectively. Combining these replacements in

all possible ways shows {7, 8, . . . , 26, 27, 29, 31} ⊂ ∆∗(15).

Next, the 2-factorization whose 2-factors are

(0 1 2)(3 4 5)(6 7 8)(9 10 11)(12 13 14)

(0 3 6)(1 4 7)(2 9 12)(5 10 13)(8 11 14)

(0 4 9)(1 8 13)(2 3 11)(5 7 14)(6 10 12)

(0 3 6)(1 4 7)(2 9 12)(5 10 13)(8 11 14)

(0 4 9)(1 8 13)(2 3 11)(5 7 14)(6 10 12)

(0 5 12)(1 6 14)(2 7 10)(3 8 9)(4 11 13)

(0 7 11)(1 5 9)(2 6 13)(3 10 14)(4 8 12)

(0 8 10)(2 4 14)(1 11 5 6 9 13 3 7 12)

(2 5 8)(0 13 7 9 14)(1 3 12 11 6 4 10)

shows 28 ∈ ∆∗(15). Replacing the last two 2-factors with

(1 11 12)(2 5 8)(3 7 13)(0 10 4 6 9 14)

(2 4 14)(5 6 11)(0 8 10 1 3 12 7 9 13)

shows 30 ∈ ∆∗(15).

Finally, the maximal sets of six ∆-factors No.21 and 28, respectively,

of [FMR] yield 32, 33 ∈ ∆∗(15). The existence of a KTS(15) implies 35 ∈

∆∗(15). This completes the proof. �

Theorem 4.2. I(27) \ {14, 16} ⊂ ∆∗(27).

Proof. Let us start with applying Theorem 3.4 to S(2,4,13). Since

the latter has 13 blocks, and ∆∗(9) = {4, 6, 8, 12} (cf. Section 3 above),

this implies {13, 15, 17, . . . , 111, 113, 117} ⊂ ∆∗(27). Next consider a re-

solvable transversal design TD(3,9) on the set V × {1, 2, 3}, where V is

any 9-set, with V × {i}, i = 1, 2, 3 as groups. Construct a 2∗-factorization

of K27 on V × {1, 2, 3} by taking the 9 parallel classes of our TD(3,9)

as triangle-factors, together with three 2-factors Fi ∪ Gi ∪ Hi, i = 1, 2, 3

where F = {F1, F2, F3} is a 2∗-factorization of K9 on V × {1}, and G =

{G1, G2, G3}, H = {H1, H2, H3} are 2-factorizations of K9 on V × {2}, and

on V × {3}, respectively. Since ∆(9) = {0, 1, 2, 3, 4, 5, 6, 8, 12} (cf. Lemma

2.2), this yields {85, 86, . . . , 110, 11, 113, 117} ⊂ ∆∗(27).
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Consider now the solution to the Oberwolfach problem

OP(27;3,3,3,3,3,4,8) on the set {0, 1, . . . , 26} ∪ {∞} obtained by developing

the base 2-factor (∞ 2 24)(1 3 9)(6 7 10)4 14 16)(13 17 25)

(0 18 11 19) (5 20 23 12 15 21 8 22) modulo 13

under the automorphism (∞)(01 . . . 12)(1314 . . . 25); clearly, this is a 2∗-

factorization. Union of this base 2-factor with a 2-factor obtained by adding

to it 1 modulo 13 can be decomposed into two 2-factors F1, F2 as follows:

(i) F1 = (∞ 2 24)(1 3 9)(6 7 10)(0 16 4 14 13 25 17 15 21 8 22 5 20 23

12 19 11 13),

F2 = (∞ 3 25)(2 4 10)(7 8 11) (0 19 1 20 12 15 5 17 13 18 14 16 22 9 23 6

21 24);

(ii) F1 = (∞ 2 24)(1 3 9)(4 14 16)(0 18 13 25 17 15 12 23 20 5 22 8 21

6 10 7 11 19),

F2 = (∞ 3 25)(2 4 10)(1 19 12 20) (0 16 22 9 23 6 7 8 11 18 14 13 17 5 15

21 24);

(iii) F1 = (∞ 2 24)(1 3 9)(4 14 16 22 8 21 15 12 23 20 5 17 25 13 18 0

19 11 7 6 10),

F2 = (∞ 3 25)(1 19 12 20) (0 16 4 2 10 7 8 11 18 14 13 17 15 5 22 9 23 6

21 24);

(iv) F1 = (∞ 2 24)(0 18 11 7 6 10 4 16 14 13 25 17 5 20 23 12 15 21 8

22 9 3 1 19),

F2 = (∞ 3 25)(0 16 22 5 15 17 13 18 14 4 2 10 7 8 11 19 12 20 1 9 23 6 21

24).

Replacing two ”consecutive” 2-factors in the way described above re-

duces the number of triangles by 4, 5, 7, and 8, respectively, while clearly

preserving the property of being a 2∗-factorization. Combining these re-

placements gives {17, 18, . . . , 58, 60, 61, 65} ⊂ ∆∗(27).

Next consider the 2∗-factorization of K27 on the set Z10 ×{1, 2}∪{∞i :

i = 1, 2, . . . , 7} whose first ten 2-factors are obtained by applying repeatedly

the mapping xj → (x + 1)j = 1, 2 (each ∞i is a fixed point) to the 2-factor

(∞1 21 62)(∞2 31 22)(∞3 51 82)(∞4 61 72)(∞5 71 92)(∞6 81 32)

(∞7 91 52)(01 11 41)(02 12 42),

and whose the remaining three 2-factors are obtained by taking a disjoint
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union of the 2-factors of the (unique) 2∗-factorization of K7 on the set

{∞i : i = 1, 2, . . . , 7}, and of the following three disjoint 2-factors on the

set Z10 × {1, 2}:

(01 21 02)((11 61 42 62 12)(31 51 71 52 81 82 32)(41 99 92 72 22);

(01 51 52 32 61 81 02 31 11 91 71 72)(21 41 12 9242 22);

(01 81 31 12 32 51 02 52 72 91 62 61 41 42 71 21 92 11 82).

It is easily verified that this is indeed a 2∗-factorization, and that it has

a total of 94 triangles.

The first two (or any two of the first ten) ”consecutive” 2-factors can be

decomposed as follows:

(i) (01 11 41 ∞2 31 22 52 91 ∞7)(∞1 21 62)(∞3 51 82)(∞4 61 72)(∞5 71 92)

(∞6 81 32)(02 12 42),

(01 41 32 ∞2 22 12 52 ∞7 62)(∞1 31 72)(∞3 61 92)(∞4 71 82)(∞5 81 02)

(∞6 91 42)(11 21 51);

(ii) (01 11 51 ∞3 82 71 92 ∞5 81 ∞6 32 41)(∞1 21 62)(∞2 31 22)(∞4 61 72)

(∞7 91 52)(02 12 42),

(11 21 51 82 ∞4 71 ∞5 02 81 32 ∞2 41)(∞1 31 72)(∞3 61 92)(∞6 91 42)

(∞7 01 62)(12 22 52);

(iii) (01 41 11 51 ∞3 82 71 92 ∞5 81 32 ∞6 91 52 ∞7)(∞1 21 62)(∞2 31 22)

(∞4 61 72)(02 12 42),

(01 11 21 51 82 ∞4 71 ∞5 02 81 ∞6 42 91 ∞7 62)(∞1 31 72)(∞2 41 32)

(∞3 61 92)(12 22 52).

Replacing two consecutive 2-factors by the decomposition (i), (ii), or

(iii) reduces the number of triangles by 6, 8, or 10, respectively. Thus

{44, 46, 48, . . . , 88} ⊂ ∆∗(27).

The following 2∗-factorization of K27 shows that 112 ∈ ∆∗(27) :

(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21) (22 23 24)(25

26 27),

(1 4 7)(2 6 8)(3 5 9)(10 13 16)(11 15 17)(12 14 18)(19 22 25) (20 24 26)(21

23 27),

(1 5 8)(2 4 9)(3 6 7)(10 14 17)(11 13 18)(12 15 16)(19 23 26) (20 22 27)(21

24 25),

(1 6 9)(2 5 7)(3 4 8)(10 15 18)(11 14 16)(12 13 17)(19 24 27) 20 23 25)(21
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22 26),

(1 15 24)(2 16 21)(3 17 22)(4 14 19)(5 12 25)(6 11 27)(7 18 23) 8 10 26)(9

13 20),

(1 16 25)(2 13 27)(3 14 24)(4 17 21)(5 10 23)(6 18 20)(7 12 26) (8 11 19)(9

15 22),

(1 17 26)(2 18 22)(3 15 23)(4 12 20)(5 13 19)(6 10 24)(7 11 21) (8 16 27)(9

14 25),

(1 18 27)(2 14 26)(3 10 21)(4 16 23)(5 11 22)(6 17 25)(7 13 24) (8 15 20)(9

12 19),

(1 10 19)(2 11 20)(3 12 27)(4 13 25)(5 15 21)(6 14 23)(7 16 22) (8 17 24)(9

18 26),

(1 12 23)(2 10 25)(3 18 19)(4 11 26)(5 17 20)(6 13 22)(7 15 27) (8 14 21)(9

16 24),

(1 13 21)(2 12 24)(3 16 20)(4 10 22)(5 14 27)(6 15 26)(7 17 19) (8 18 25)(9

11 23),

(1 14 22)(2 15 19)(3 11 25)(4 18 24)(5 16 26)(6 12 21)(7 10 20) (8 13 23)(9

17 27),

(1 11 24 5 18 21 9 10 27 4 15 25 7 14 20)(2 17 23)(3 13 16) (6 16 19)(8 12

22).

To show 114 ∈ ∆∗(27), consider the following 2∗-factorization of K21:

take the first six 2-factors and the eighth 2-factor as above, and also the

2-factors (1 13 22)(2 17 19)(3 15 23)(4 12 20)(5 18 26)(6 10 24)(7 11 21) (8

16 27)(9 14 25),

(1 10 19)(2 18 22)(3 12 27)(4 13 25)(5 16 24)(6 15 26)(7 17 20) 8 14 21)(9

11 23),

(1 11 20)(2 12 23)(3 13 26)(4 10 22)(5 15 21)(6 16 19)(7 14 27) (8 18 25)(9

17 24),

(1 12 21)(2 10 20)(3 11 25)(4 18 24)(5 17 27)(6 14 22)(7 15 19) (8 13 23)(9

16 26),

(1 17 23)(2 15 25)(3 18 19)(4 11 26)(5 14 20)(6 13 21)(7 16 22) (8 12 24)(9

10 27),

(1 14 23 6 12 22 8 17 26)(2 11 24)(3 16 20)(4 15 27)(5 13 19) (7 10 25)(9 18

21).
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Finally, to show 115 ∈ ∆∗(27), consider the following 2∗-factorization of

K21: take the first five 2-factors and the eighth 2-factor as above, and also

the 2-factors (1 14 23)(2 15 25)(3 18 19)(4 11 26)(5 16 24)(6 12 22)(7 17 20)

(8 13 21)(9 10 27),

(1 16 25)(2 10 20)(3 14 24)(4 18 21)(5 17 27)(6 13 23)(7 12 26) (8 11 19)(9

15 22),

(1 17 26)(2 18 22)(3 16 20)(4 15 27)(5 13 19)(6 14 21)(7 10 25) (8 12 23)(9

11 24),

(1 10 19)(2 11 23)(3 12 27)(4 13 25)(5 14 20)(6 15 26)(7 16 22) (8 18 24)(9

17 21),

(1 12 21)(2 13 27)(3 11 25)(4 17 24)(5 10 23)(6 18 20)(7 15 19) (8 14 22)(9

16 26),

(1 13 22)(2 17 19)(3 15 23)(4 12 20)(5 18 26)(6 10 24)(7 11 21) (8 16 27)(9

14 25),

(1 11 20)(2 12 24)(3 13 26)(4 10 22)(5 15 21)(6 16 19)(7 14 27) (8 17 23 9

18 25).

This completes the proof. �

Corollary 4.3. ∆(27) = P∆(27).

Proof. Combine Theorem 4.2 with Theorem 2.5. �

5. More triangle spectra for small v

Our first lemma in this section is auxiliary as it is needed in the proof

of Lemma 5.3.

Lemma 5.1. {6, 11, 14, 15, 16, 17, 18} ⊂ ∆∗(13).

Proof. An inspection of the proof of Lemma 2.4 shows

{11, 14, 15, 16, 17} ⊂ ∆∗(13). For 6 ∈ ∆∗(13), consider the following so-

lution to OP(13;3,10). The vertex-set of K13 is Z3 × {1, 2, 3, 4} ∪ {∞},

and the two base 2-factors are F1 = (∞0321)(01021422122313241104)F2 =

(∞0204)(01211203241413112223) (the remaining 2-factors are obtained by

developing F1, F2 modulo 3). Finally, for 18 ∈ ∆∗(13), consider the follow-

ing solution to OP(13;3,3,3,4):

(168)(45T )(7ED)(0239)

(14E)(358)(06D)(297T )

(159)(26E)(8TD)(0347)

(01T )(25D)(469)(378E)

(13D)(567)(9TE)(0428)

(127)(36T )(05E)(489D) �
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Lemma 5.2. ∆(21) = P∆(21).

Proof. When v = 21, the graph G1,2 (cf. Theorem 2.5) can be decom-

posed into a Hamiltonian cycle and a 2-factor F having i triangles where

i ∈ {0, 1, 2, 3, 4, 5, 7}. Further, the graphs G4,8 and G5,10 are isomorphic

to G1,2. Moreover, the graph G3,6,9 (defined in analogy with Ga,b in an

obvious way) can be decomposed into three 2-factors in such a way that the

total number of triangles in the three 2-factors is j where j ∈ {0, 1, . . . , 7, 9}.

Clearly, the 2-factor consisting of edges of length 7 contains exactly 5 tri-

angles. This shows {0, 1, . . . , 33, 35} ⊂ ∆(21).

Consider now a resolvable transversal design equivalent to the pair of

orthogonal cyclic latin squares of order 7. The union of two of its parallel

classes is easily seen to be decomposable into two Hamiltonian cycles, or

into two 2-factors of type 3+3+3+12, respectively. The corresponding re-

placement decreases the number of triples by 14, and by 8, respectively.

We can complete to a 2-factorization by taking a 2-factorization of K7

on each of the three groups, taking into account Lemma 2.1. This gives

{33, 34, . . . , 48, 50} ∈ ∆(21).

Next consider the set of 7 disjoint 2-factors obtained by developing mod-

ulo 20 the 2-factor

(0 5 11)(1 9 13)(2 6 15)(3 10 17)(4 14 19)(7 12 18)(8 16 20). The com-

plement of this set in K21 on Z21 is the graph G1,2,3. Since G1,2 can be

decomposed into a Hamiltonian cycle and a 2-factor containing i triangles,

i ∈ {0, 1, 2, 3, 4, 5, 7} (cf. Theorem 2.5), we get right away

{49, 50, 51, 52, 53, 54, 56} ∈ ∆(21). The graph G1,2,3 can be decomposed

into three 2-factors

(0 1 2)(3 4 5)(6 7 8)(9 10 11)(12 13 14)(15 16 18 20 19 17),

(0 18 19)(1 3 2 4 6 5 7 9 8 10 12 11 13 15 14 16 17 20),

(0 3 6 9 12 15 18 17 14 11 8 5 2 20)(1 4 7 10 13 16 19)

which shows 55 ∈ ∆(21). Another decomposition of G1,2,3 into three 2-

factors

F = (0 1 3)(2 4 5)(6 7 9)(8 10 11)(12 13 15)(14 16 17)(18 19 20), (0 20 2 1

19 17 18)(3 4 6)(5 7 10 12 9 8)(11 13 16 15 14),

(0 2 3 5 6 8 7 4 1 20 17 15 18 18 19)(9 10 13 14 12 11) shows 57 ∈ ∆(21),
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and the decomposition

(0 2 1 19 16 18 15 17 20)(3 4 7 8 6 5)(9 10 12)(11 13 14),

(0 18 17 19)(1 4 6 3 2 20)(5 7 10 13 16 15 14 12 11 9 8),

together with F as above, shows that 58 ∈ ∆(21). Yet another decomposi-

tion of G1,2,3 into three 2-factors (0 2 20)((3 5 6)(1 4 7 8 9 10 12 14 11 13

16 15 18 17 19),

(0 18 16 19)(1 2 3 4 6 8 5 7 10 13 14 15 17 20)(9 11 12),

and F as above, shows 59 ∈ ∆(21). Similarly, the decomposition

(0 2 20)((1 4 6 3 5 7 8 9 10 13 16 19)(11 12 14)(15 17 18)

(0 18 16 15 14 13 11 9 12 10 7 4 3 2 1 20 17 19)(5 6 8),

together with F as above, shows 60 ∈ ∆(21).

Consider now the set of 7 disjoint 2-factors obtained by developing mod-

ulo 21 the 2-factor

(0 2 10)(1 13 19)(3 14 16)(4 11 18)(5 8 20)(6 12 15)(7 9 17). The comple-

ment of this set in K21 on Z21 is the graph G1,4,5 which can be decomposed

into three 2-factors

(0 1 5)(2 3 7)(4 8 9)(6 10 11)(12 13 17)(14 18 19)(15 16 20)

(0 16 17)(1 2 18 13 8 12 7 11 15 19 20 3 4 5 6)(9 10 14),

(0 4 20)(1 17 18)(2 6 7 8 3 19)(5 9 13 14 15 10)(11 12 16); this shows

61 ∈ ∆(21).

The existence of a Kirkman triple system of order 21 implies 70 ∈ ∆(21).

Consider now the KTS(21) on the set Z7×{1, 2, 3} with base parallel classes

R = (011223)(112161)(310243)(412203)(514233)(325262)(135363),

S1 = {(i1(i + 2)2(i + 4)3) : i ∈ Z7}

S2 = {(i1(i + 3)2(i + 6)3) : i ∈ Z7}

S3 = {(i1i2i3) : i ∈ Z7}.

(Developing R yields 7 parallel classes while each of Si is a parallel class

on its own). The union of S1 and S3 can be decomposed into two 2-factors

each of which is of type (i) 3+3+3+3+3+6, or (ii) 3+3+3+3+9, or (iii)

3+3+3+12:

(i) (010251535203)(111213)(212223)(313233)(414243)(616263),

(012243)(113253)(214263)(315251230203)(416213)(611233);
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(ii) (010203)(111261634243416213)(212223)(313233)(515253),

(012243)(113253)(214241131233616263)(315203)(510223);

(iii) (111213624143426361333132)(010203)(212223)(515253),

(111341422163626112333253)(012243)(315203)(510223).

Replacing S1 and S3 with two 2-factors of type (i), (ii), or (iii) decreases

the number of triangles by 4,6, or 8, respectively. Thus 62, 64, 66 ∈ ∆(21).

The following 2-factorization of K21 shows 63 ∈ ∆(21).

(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21),

(1 4 7)(2 18 20)(3 6 21)(5 8 10)(9 11 13)(12 14 16)(15 17 19),

(1 9 15)(2 6 12)(3 7 18)(4 16 21)(5 11 14)(8 13 19)(10 17 20),

(1 11 21)(2 9 17)(3 8 15)(4 10 19)(5 12 18)(6 7 14)(13 16 20),

(1 12 13)(2 8 16)(3 5 20)(4 9 18)(6 11 19)(7 10 15)(14 17 21),

(1 18 19)(2 10 21)(3 9 14)(4 8 12)(5 15 16)(6 13 17)(7 11 20),

(1 5 17)(2 4 11)(3 12 19)(6 15 18)(7 13 21)(8 14 20)(9 10 16),

(1 6 8)(2 14 19)(3 11 16)(4 15 20)(5 9 21)(7 12 17)(10 13 18),

(1 10 14)(2 5 13)(3 4 17)(6 9 20)(7 16 19)(8 11 18)(12 15 21),

(1 20 12 9 19 5 7 2 15 11 17 8 21 18 14 4 13 3 10 6 16).

The following 2-factorization of K21 shows 65 ∈ ∆(21): the first two

2-factors are as in the previous case, and the remaining eight 2-factors are

(1 16 21)(2 7 13)(3 4 19)(5 9 18)(6 10 20)(8 12 15)(11 14 17),

(1 10 14)(2 8 21)(3 12 17)(4 13 18)(5 11 19)(6 7 15)(9 16 20),

(1 9 15)(2 4 11)(3 5 16)(6 12 18)(7 14 20)(8 13 19)(10 17 21),

(1 11 20)(2 5 14)(3 15 18)(4 8 16)(6 13 17)(7 12 21)(9 10 19),

(1 5 17)(2 10 15)(3 13 20)(4 9 12)(6 8 11)(7 16 19)(14 18 21),

(1 6 19)(2 9 17)(3 8 14)(4 15 21)(5 12 20)(7 11 18)(10 13 16),

(1 8 18)(2 12 19)(3 7 10)(4 17 20)(5 13 21)(6 9 14)(11 15 16),

(1 12 13)(2 6 16)(3 9 21 11)(4 10 18 19 14)(5 7 17 8 20 15).

The following 2-factorization of K21 shows 67 ∈ ∆(21):

(1 2 4)(3 8 21)(5 10 16)(6 11 17)(7 12 18)(9 13 14)(15 19 20),

(1 3 7)(2 8 19)(4 12 20)(5 14 17)(6 9 21)(10 11 13)(15 16 18),

(1 5 6)(2 12 17)(3 13 18)(4 14 19)(7 10 15)(8 9 11)(16 20 21),

(1 8 15)(2 9 16)(3 10 17)(4 5 7)(6 13 20)(11 12 14)(18 19 21),

(1 9 20)(2 14 21)(3 6 12)(4 11 15)(5 13 19)(7 16 17)(8 10 18),
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(1 11 16)(2 3 5)(4 10 21)(6 14 15)(7 9 19)(8 12 13)(17 18 20),
(1 12 21)(2 13 15)(3 14 16)(4 8 17)(5 9 18)(6 10 19)(7 11 20),
(1 13 17)(2 10 20)(3 9 15)(4 6 18)(5 11 21)(7 8 14)(12 16 19),
(1 14 18)(2 6 7)(3 11 19)(4 13 16)(5 8 20)(9 10 12)(15 17 21),
(1 10 14 20 3 4 9 17 19)(2 11 18)(5 12 15)(6 8 16)(7 13 21).

Finally, the following 2-factorization of K21 shows that 68 ∈ ∆(21):
(1 2 4)(3 10 17)(5 11 16)(6 9 18)(7 14 21)(8 12 13)(15 19 20),
(1 5 6)(2 8 20)(3 12 16)(4 11 18)(7 10 19)(9 13 14)(15 17 21),
(1 7 13)(2 9 16)(3 11 19)(4 10 15)(5 20 21)(6 12 17)(8 14 18),
(1 8 15)(2 10 18)(3 9 21)(4 14 16)(5 12 19)(6 13 20)(7 11 17),
(1 9 17)(2 11 15)(3 7 18)(4 12 20)(5 10 14)(6 8 19)(13 16 21),
(1 10 21)(2 13 19)(3 4 6)(5 8 17)(7 9 20)(11 12 14)(15 16 18),
(1 11 20)(2 3 5)(4 13 17)(6 14 15)(7 8 16)(9 10 12)(18 19 21),
(1 12 18)(2 6 7)(3 14 20)(4 8 21)(5 9 15)(10 11 13)(16 17 19),
(1 14 19)(2 12 21)(3 13 15)(4 5 7)(6 10 16)(8 9 11)(17 18 20),
(1 3 8)(10 20 16)(2 14 17)(4 9 19)(5 13 18)(6 11 21)(7 12 15). �

Lemma 5.3. If v ∈ {49, 55, 73} then ∆(v) = P∆(v).

Proof. By [RS] (cf.also [KS], [MG]), there exists a 4-GDD of type 3462.
Taking the groups of this GDD as blocks results in a PBD(24,{3,4,6},1)
where each element is in exactly one block of size 3 or 6. Apply now Theorem
3.4 while taking into account Lemma 5.1. This proves the statement for
v = 49. Taking instead a 4-GDD of type 3164 which also exists by [RS] (cf.
[KS], [MG]) and proceeding as above proves the statement for v = 55. For
v = 73, consider a 4-GDD of type 66 which exists by [BSH] (cf. also [MG]).
Taking the groups of this GDD as blocks results in a PBD(36,{4,6},1) with
a parallel class of blocks of size 6. Apply again Theorem 3.4 taking into
account Lemma 5.1. �

Lemma 5.4. If v ∈ {51, 75} then ∆(v) = P∆(v).

Proof. Extending the groups of the 4-GDD of type 3462 from the proof
of the previous lemma by a common new element ∞ yields a
PBD(25,{4,7},1). Applying now Theorem 3.4 and taking into account The-
orem 4.1 proves the statement for v = 51. Proceeding in the same fashion
but starting instead with the 4-GDD of type 66 proves the statement for
v = 75. �

Lemma 5.5. ∆(57) = P∆(57).

Proof. Apply Theorem 3.4 to a PBD(28, {4, 7}, 1) (obtained from a
transversal design TD(4,7) by simply taking the groups of size 7 as blocks),
employing also Theorem 4.1 (giving ∆∗(15)). �
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6. Main results

Theorem 6.1. For all v ≡ 3(mod 6), v ≥ 81, or v ∈ {45, 63, 69}, ∆(v) =

P∆(v).

Proof. Steiner systems S(2,4,u) with a subsystem S(2,4,13) are known

to exist for all u ≡ 1, 4(mod 12), u ≥ 40 [RS]. Taking now as our PBD in

Theorem 3.4 any PBD(u, {4, 13∗}, 1), and using it together with Theorems

2.5 and 4.2 shows that the statement holds for all v ≡ 3, 9(mod 24), v ≥ 81.

When u ≡7, 10 (mod 12), taking instead any PBD(u, {4, 7∗}, 1) known

to exist for all such u ≥ 22 (cf. [RS]), and using Theorem 3.4, together

with Theorems 2.5 and 4.1 shows that the statement holds for all v ≡

15, 21(mod24), v ≥ 45. �

Theorem 6.2. For all v ≡ 1(mod 6), v ≥ 79, or v ∈ {43, 61, 67}, ∆(v) =

P∆(v).

Proof. Consider an S(2,4,w) with a sub-S(2,4,13) from the previous

theorem, and delete an element not in the subsystem. This results in a

{4, 13}-GDD of type 3(w−1)/3 with a unique block of size 13, or, equivalently,

in a PBD(u = w − 1, {3, 4, 13∗}, 1) with a parallel class of blocks of size 3.

Such a PBD exists for all v ≡ 0, 3(mod 12), v ≥ 39. It is essential to note

that every element of this PBD occurs in a unique block of size 3. Applying

now Theorem 3.4 to this PBD, together with Theorems 2.5 and 4.2, shows

that the statement holds for all v ≡ 1, 7(mod 24), v ≥ 79. Similarly, deleting

an element of the PBD(w, {4, 7∗}, 1) not in the unique block of size 7 (cf.

Theorem 6.1) results in a PBD(u, {3, 4, 7∗}, 1) with a parallel class of blocks

of size 3; such a PBD exists for all u ≡ 6, 9(mod 12), v ≥ 21. Applying

Theorem 3.4, together with Theorems 2.5 and 4.1, shows that the statement

holds for all v ≡ 13, 19(mod 24), v ≥ 43. �

Combining now Theorems 6.1 and 6.2 with the lemmas of Section 5

gives our main result.
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Theorem 6.3. Let v ≡ 1, 3(mod 6), v ≥ 43 or v ∈ {13, 15, 21, 27}. Then

∆(v) = P∆(v).

For the ”remaining” orders v = 19, 25, 31, 33, 37, 39, we were so far un-

able to determine the set ∆(v) completely. We were able to show, however,

the following.

(i) P∆(19) \ {43, 44} ⊂ ∆(19).

(ii) P∆(25) \ {83} ⊂ ∆(25).

(iii) P∆(31) \ {134} ⊂ ∆(31).

(iv) P∆(33) \ {171, 173, 174} ⊂ ∆(33).

(v) P∆(37) \ {197} ⊂ ∆(37).

(vi) P∆(39) \ {242, 244, 245} ⊂ ∆(39).

More precisely, there are 11 pairs (v, δ) for which we could not decide

whether v ∈ ∆(v). These are the pairs (v, δ) = (19, 43), (19, 44), (25, 83),

(31,134),(33,171),(33,173),(33,174),(37,197),(39,242), (39,244),(39,245).

The proof of (i)-(vi) above is fairly complicated and would necessitate

introducing tools, such as frames, not needed in the proof of the main results;

it is therefore omitted at present.

As mentioned in the introduction, determining the sets ∆(v) for v ≡

5(mod 6) remains an open problem.

References

[A] B.Alspach, The Oberwolfach problem, Handbook of Combinatorial Designs (C.J.

Colbourn, J.H.Dinitz, eds.), CRC Press, 1996, pp. 394–395.

[BSH] A.E.Brouwer, A.Schrijver, H.Hanani, Group divisible designs with block size 4,

Discrete Math. 20 (1977), 1–10.

[FMR] F.Franek, R.Mathon, A.Rosa, Maximal sets of triangle-factors in K15, J. Com-

bin. Math. Combin. Comput. 17 (1995), 111–124.

[KS] D.L.Kreher, D.R.Stinson, Small group divisible designs with block size four, J.

Stat. Plann. Infer. (to appear).

[MPR] R.Mathon, K.T.Phelps, A.Rosa, Small Steiner triple systems and their proper-

ties, Ars Combinat. 15 (1983), 3–100.

[MG] R.C.Mullin, H.-D.O.F.Gronau, PBDs and GDDs: The basics, Handbook of

Combinatorial Designs (C.J. Colbourn, J.H. Dinitz, eds.), CRC Press, 1996,

pp. 185–193.

[RS] R.Rees, D.R.Stinson, On the existence of incomplete designs of block size four

having one hole, Utilitas Math. 35 (1989), 119–152.

[W] R.M.Wilson, Constructions and uses of pairwise balanced designs, Combina-

torics, Proc. NATO Adv.Study Inst., Nijenrode 1974, D.Reidel, 1975, pp. 19–

42.


