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ABSTRACT. We construct 2-chromatic S(2,4,v) for v = 37,40, and 73. This completes
the proof of the existence of 2-chromatic Steiner systems S(2,4,v) [equivalently, of
Steiner systems S(2,4,v) with a blocking set] for all v =1 or 4 (mod 12).

INTRODUCTION

A Steiner system S(2,4,v) is a pair (V, B) where V is a v-set, and B is a collection
of 4-element subsets of V' called blocks such that each 2-subset of V is contained in
exactly one block. Thus S(2,4,v) is a BIBD with &k = 4 and A = 1, or a linear space
having all lines of size 4. It is well known that a Steiner system S(2,4,v) exists if
and only if v = 1,4 (mod 12).

If we replace in the above definition “in exactly one block” with “in exactly A
blocks”, we get a definition of the design Sx(2,4,v).

A colouring of an S(2,4,v) (V,B) [also called a weak colouring] is a mapping
¢ : V. — C such that for all B € B, [¢(B)| > 1 where ¢(B) = [J,cp @(v). The
elements of C are called colours; if |C| = k, we have a k-colouring. For each colour
c € C, the set ¢~ (c) = {x : ¢(x) = ¢} is a colour class.

In a colouring, each colour class is an independent set (i.e. contains no block),
and no block is monochromatic (i.e. no block has all elements the same colour).
The chromatic number y(V,B) of (V,B) is the smallest integer k& for which there
exists a k-colouring of (V, B).

Any S(2,4,v) with a 2-colouring is necessarily 2-chromatic. In this case, each of
the two colour classes is a blocking set (cf. [HLP]), i.e. a set having a nonempty

intersection with each block but containing no block.
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Hoffman, Lindner, and Phelps [HLP] were apparently the first to investigate the
existence of 2-chromatic S(2,4,v). They proved that a 2-chromatic S(2,4,v) exists
for all v = 1,4 (mod 12), except possibly when v € {37,40,73}. In the same paper
it is proved that a 2-chromatic S9(2, 4, v) exists for all v = 1 (mod 3) except possibly
when v € {19, 34,37,46,58}. These exceptions were subsequently removed in [RC].
In a sequel paper [HLPa], the existence of 2-chromatic Sx(2,4,v) was settled for all
A > 2.

The purpose of this note is to settle the remaining three exceptional cases when
A =1 (cf. Problem 2.4 in [RC]) by providing constructions of 2-chromatic Steiner
systems S(2,4,v) for v € {37,40,73}. Of the three designs, two were constructed by
hand but the construction of the 2-chromatic S(2,4,40) required a fairly substantial

computer assistance.

v =37

Neither of the two cyclic $(2,4,37) [CM] is 2-chromatic. However, assuming an
automorphism of order 9 leads to the following 2-chromatic S(2,4,37):
Elements: V = (Zy x {1,2,3,4}) U {c0}.
Blocks: orbits generated by base blocks
01137484, 01537383, 31712203, 01316204,61814204, 71820204, 01114354, 02135344,
02232474, 02436484, 12326203, 0007105035, 00043464
(the last orbit is the “short” orbit). The colour classes are (Zg x {1,2})U {oco} and
Zg x {3,4}.

v = 40

None of the 10 cyclic 5(2,4,40) [CM] is 2-chromatic, nor is any of the 1-rotational
S(2,4,40), nor is the S(2,4,40) with a maximal arc given in [MRV]. Constructing a
2-chromatic S(2,4,40) was by far the most difficult of the three cases dealt with in
this note.

We first attempted a construction of a 2-chromatic S(2,4,40), say S, with a
subsystem S(2,4,13). Since in any 2-colouring of the latter the colour classes must
have sizes 7 and 6, respectively, a construction of S would require the existence of a
Kirkman triple system (KTS) of order 27 with a certain specified 2-colouring (not
proper: some blocks would be monochromatic). Although we cannot completely
rule out the existence of such a 2-coloured KTS(27), an extensive computational
effort in this direction was unsuccessful, and so we suspect that this object simply

may not exist.
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Next we assumed an automorphism of order 5, i.e. an automorphism consisting
of 8 disjoint 5-cycles (0;1,2;3;4;),7 = 1,2,...,8, and proceeded to “combine” two
4-rotational STS(21) (with the fixed element removed, of course), one of them on
the set X = Z5 x {1,2,3,4}, and the other on the set Y = Z5 x {5,6,7,8}. The 4-
rotational STS(21) were enumerated in [MR]; there are exactly 1772 nonisomorphic
ones. Our 2-chromatic S(2,4,40) to be constructed would consist of 26 block orbits,
12 of which would be of type 341 (i.e. each block would have 3 elements of X and
1 element of V'), 12 would have type 143, and 2 would have type 242.

Our search proceeded as follows: we chose a particular 4-rotational STS(21),
deleted its fixed element, thereby obtaining a maximum packing of triples on 20
elements, generated by 12 base blocks of triples under the action of the cyclic group
of order 5. These 12 base blocks of triples were combined into 4 sets of three such
that within each set the three base blocks were disjoint (shifting a block within an
orbit if necessary to attain disjointness). The 3 disjoint base blocks of each of the
4 sets were associated with an element of one of the remaining 4 element orbits
(Zs5 x{i},i =5,6,7,8). This yielded all 12 block orbits of type 3+1 (which we term
here a “starter”) of the total of 26 orbits of our S(2,4,40) to be constructed.

For each starter, we next examined all possibilities left for the two orbits of type
242. For each of the latter, we attempted to complete the remaining 12 orbits of
type 143 to an S(2,4,40), by employing a complete backtrack. In this we were, in
effect, trying to find another 4-rotational STS(21), to “fit” with the starter.

To initiate a systematic search of possible starters, we first examined the set
of 48 nonisomorphic KTS(21), as given in [MR]. For each such KTS, one may
consider a subset of all possible starters by dividing the 6 disjoint triples of a base
parallel class (the triple contaning the element oo is discarded) into two sets of three
disjoint triples. Doing this in all possible ways independently for each of the two
base parallel classes gives <§>2/4 = 100 starters. The solution (i.e a 2-chromatic
S(2,4,40)) given below was obtained for the sixth starter corresponding to the KTS
No.F26 (numbering as in [MR]). It may be that other 2-chromatic S(2,4,40) can be
found by this method.

Elements: V = Z5 x {1,2,...,8}.

Blocks: orbits generated by base blocks

21312505, 41052405, 11041405, 22153306, 32424406, 12433406, 01311207, 11334507,
02222507, 41321405, 2142340s, 13244405, 01160525, 01263637, 01461745, 02152733,
02251708, 02354545, 03254715, 03154536, 03062535, 04250636, 04151747, 04462737,
01020506, 03040705. The colour classes are Z5 x {1,2,3,4} and Z5 x {5,6,7,8}.



v =713

Here we utilize a skew Room frame of type 2° (for definiton of a skew Room
frame, see [S]) which is known to exist by [CZ], and the well known fact that the
unique S(2,4,13) has a 2-colouring with colour classes of sizes 7 and 6. Let R
be such a skew Room frame on the elements X = {1,2,...,12} with the holes
{h1,ha,... he}, each of size 2. Let V = (X x Zg) U {oc}. Let B be the following
collection of blocks:

(1) for each hole h;,1 = 1,2,...,6, place the blocks of a 2-coloured S(2,4,13) on the
element set (h; x Zg) U {oo} in B where {oco} U (h; x {0,1,2}) and (h; x {3,4,5})
are the two colour classes in a 2-colouring of S(2,4,13).

(2) For any two elements x,y € V belonging to different holes, place the 6 blocks
{(z,2), (y,0), (r,1 4+4),(c, 4+ 1)}, i € Zg, (the second coordinates reduced mod 6)
in B whenever {x,y} is in the cell (r,¢) of R.

[The above construction is essentially The 12n + 1 Construction of [LR].]

It is easily seen that (X x {0,1,2}) U {oo} and X x {3,4,5} are the two colour
classes of a 2-chromatic S(2,4,73) (V, B).

MAIN RESULT
Thus we have:

Theorem. A 2-chromatic Steiner system S(2,4,v) ezists if and only if
v=1,4 (mod 12).

Equivalently, a Steiner system S(2,4,v) with a blocking set exists if and only if
v =1,4 (mod 12).
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