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Abstract. We establish that for each of the 5005 possible types of 2-

factorizations of the complete graph K13, there exists at least one solution.

We also enumerate all nonisomorphic solutions to the Oberwolfach problem

OP(13;3,3,3,4).

1. Introduction

A 2-factor of a graph G is a spanning subgraph of G which is regular
of degree 2. A 2-factorization of G is an edge-disjoint decomposition of G

into 2-factors.
The type of a 2-factor F in an n-vertex graph is a partition π whose

parts are the lengths of the components of F . The type of a 2-factorization
F of K2m+1 is a sequence T = (t1, t2, . . . , tm) of types of 2-factors which
we assume to be nondecreasing with respect to some ordering of types of
2-factors (usually lexicographic).

If the number of types of 2-factors of K2m+1 is x, it is easily seen that
the number of distinct types of 2-factorizations of K2m+1 is

(

m+x−1

m

)

.
The main existence problem for 2-factorizations of K2m+1 is to char-

acterize those types T for which a 2-factorization of type T exists. If all
2-factors in a 2-factorization have the same type π = (π1, . . . , πs), we have
an instance of the well known Oberwolfach problem OP(2m+1; π1, . . . , πs)
first formulated by G. Ringel in a meeting in Oberwolfach in 1967 (see [1]).

In [3], all nonisomorphic 2-factorizations were enumerated by types for
n ≤ 9. There are 252 types of 2-factorizations for K11, and it was shown in
[3] that at least one 2-factorization exists of each type, with the exception
of a single type T = (3, 3, 5) for which no 2-factorization exists.
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In this note we continue the investigations of [3] for the case of the com-
plete graph K13. There are 5005 types of 2-factorizations in this case. We
establish that at least one solution exists for each type. Also, we enumerate
all nonisomorphic solutions to the Oberwolfach problem OP(13; 3, 3, 3, 4).

2. Two-factorizations of K13

There are 10 distinct types of 2-factors in K13:
a = (3, 3, 3, 4), b = (3, 3, 7), c = (3, 4, 6), d = (3, 5, 5), e = (4, 4, 5), f =
(3, 10), g = (4, 9), h = (5, 8), i = (6, 7), j = (13). There are

(

6+10−1

6

)

=
5005 possible types of 2-factorizations.

It has been known previously that there is at least one solution for
each instance of the Oberwolfach problem when n = 13, i.e. for types
aaaaaa, bbbbbb, . . . , jjjjjj. We have used the computer to establish that
for each of the 5005 types of two-factorizations of K13, there is at least one
solution. A list of sample solutions for each type can be found at
http://www.cas.mcmaster.ca/˜franek.

We search for solutions using an exhaustive recursion-based backtrack-
ing algorithm avoiding redundant tests. At the beginning we generate
all nonisomorphic types of 2-factorizations T = (t1, t2, t3, t4, t5, t6), ti ∈
{a, b, c, d, e, f} such that ti ≤ ti+1, 1 ≤ i < 6. For each of these types we
search for a solution that is stored.

In order to avoid testing isomorphic partial 2-factorizations that cannot
be extended to full ones we introduce the following rules: (i) The first vertex
of the first cycle of the first 2-factor is always 1. (ii) The lowest vertices of
the first cycles of all 2-factors form a nondecreasing sequence. (iii) For each
triangle (i.e. 3-cycle) τ = (v1, v2, v3), v1 < v2 < v3. (iv) For all triangles
τi = (vi,1, vi,2, vi,3) in a 2-factor of type a (i ∈ {1, 2, 3}) or b (i ∈ {1, 2})
we enforce vi,1 < vi+1,1. (v) For each cycle u = (v1, v2, . . . , vj), j > 3 we
require that v1 < vi, 1 < i ≤ j and v2 < vj (which prevents tracing of the
same cycle in two different directions).

We achieved a significant speed-up of the execution of the program
when we started from the largest cycles in each 2-factor (i.e. in order
t6, t5, . . . , t1).

It might be tempting to conjecture that for sufficiently large orders
n > n0 the situation is similar to that for n = 13. However, the number
of possible types of 2-factorizations increases very rapidly, and already for
n = 15 there are

(

17+7−1

7

)

= 245, 157 possible types of 2-factorizations. On
the other hand, surely n0 > 13: by [2], there are at least 5 types of 2-
factorizations of K15 for which no solution exists. In each of these 5 types,
there are six triangle-factors (i.e. 2-factors of type (3, 3, 3, 3, 3)) and the
seventh 2-factor is of one of the following types:
(3, 3, 4, 5), (3, 5, 7), (4, 4, 7), (5, 5, 5), (7, 8) (cf. [2]).
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3. Solutions to OP(13; 3, 3, 3, 4)

Enumerating all solutions to the Oberwolfach problem OP(13; 3, 3, 3, 4)
is of some interest, for the similarity of this instance of the Oberwolfach
problem to the famous Kirkman’s 15-schoolgirls problem. We established
that there are exactly 8 nonisomorphic solutions.

To obtain an exhaustive list of solutions of OP(13; 3, 3, 3, 4) we uti-
lized basically the same program as for finding the individual solutions (see
above). The lexicographic ordering of the generated solutions together with
the rules used to prevent the repeating of unsuccessful tests with permuta-
tions of 2-factors in a partial 2-factorization guarantee a small number of
isomorphic solutions is generated. We proceeded as follows. If F, G are two
disjoint 2-factors in K13 (each of type (3, 3, 3, 4), of course), let H = HFG

be the graph which is their union. Starting in turn with each of the 12
nonisomorphic graphs H, we generated in an orderly manner all solutions
to OP(13; 3, 3, 3, 4) corresponding to the particular graph H. Only 7 of
the 12 nonisomorphic graphs H actually lead to at least one solution. The
duplicates obtained from different starts were then eliminated using simple
invariants, to be described below.

Suppose F = {F1, F2, . . . , F6} is a solution to OP(13; 3, 3, 3, 4). The
first invariant is based on the graph ΓF which is the union of the six 4-
gons in F : it is the vector V = (v0, v1, v2, v3, v4) where vi is the number of
vertices of degree 2i in ΓF . This invariant turned out to be complete (see
Table 1).

The second invariant is based on the graph Qij that is formed by the
union of the 4-gons of two distinct 2-factors Fi, Fj in F . The two 4-gons
may have either two (types 1 and 2), or one (type 3), or zero (type 4)
vertices in common, and if they have two vertices in common, then either
the two vertices are adjacent in one of the 4-gons (type 1), or they are
nonadjacent in both 4-gons (type 2). The invariant is then the vector
B = (b1, b2, b3, b4) where bj is the number of pairs of 2-factors of type j,
and where b1 + b2 + b3 + b4 = 15, of course. This invariant also turned out
to be complete (see Table 1).

Table 1 which contains also the information about the order of the
automorphism group of each of the solutions, is followed by the complete
listing of the 8 nonisomorphic solutions.

Table 1

Type v0 v1 v2 v3 v4 b1 b2 b3 b4 |G|
No. 1 4 0 6 0 3 0 6 9 0 6
No. 2 2 4 4 0 3 0 8 5 2 2
No. 3 3 3 0 7 0 0 9 6 0 3
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No. 4 1 6 3 0 3 0 9 3 3 6
No. 5 2 2 7 0 2 1 9 5 0 2
No. 6 2 2 6 2 1 2 8 3 2 2
No. 7 1 4 4 4 0 3 8 4 0 4
No. 8 1 0 12 0 0 3 12 0 0 24

Each solution contains the 2-factor (0 1 2 3)(4 5 6)(7 8 9)(10 11 12) and
the following five 2-factors:

No. 1 (0 2 7 4)(1 9 12)(3 6 11)(5 8 10)
(0 5 11 7)(1 6 8)(2 4 12)(3 9 10)
(0 10 1 11)(2 5 9)(3 4 8)(6 7 12)
(1 3 7 5)(0 8 12)(2 6 10)(4 9 11)
(1 4 10 7)(0 6 9)(2 8 11)(3 5 12)

No. 2 (0 2 7 4)(1 9 12)(3 6 11)(5 8 10)
(0 6 12 8)(1 4 10)(2 9 11)(3 5 7)
(0 10 7 12)(1 5 11)(2 6 8)(3 4 9)
(2 4 12 5)(0 7 11)(1 3 8)(6 9 10)
(2 10 3 12)(0 5 9)(1 6 7)(4 8 11)

No. 3 (0 2 7 4)(1 9 12)(3 6 11)(5 8 10)
(0 5 1 11)(2 4 8)(3 9 10)(6 7 12)
(1 3 5 7)(0 8 12)(2 6 10)(4 9 11)
(2 9 5 11)(0 7 10)(1 6 8)(3 4 12)
(3 7 11 8)(0 6 9)(1 4 10)(2 5 12)

No. 4 (0 5 2 8)(1 4 10)(3 7 12)(6 9 11)
(1 5 3 8)(0 6 12)(2 9 10)(4 7 11)
(2 4 3 6)(0 7 10)(1 9 12)(5 8 11)
(2 7 5 12)(0 4 9)(1 3 11)(4 8 12)
(3 9 5 10)(0 2 11)(1 6 7)(4 8 12)

No. 5 (0 2 7 4)(1 9 12)(3 6 11)(5 8 10)
(0 5 9 11)(1 3 8)(2 4 10)(6 7 12)
(0 9 4 12)(1 6 10)(2 8 11)(3 5 7)
(1 4 11 7)(0 6 8)(2 5 12)(3 9 10)
(3 4 8 12)(0 7 10)(1 5 11)(2 6 9)

No. 6 (0 2 7 4)(1 9 12)(3 6 11)(5 8 10)
(0 5 9 10)(1 4 11)(2 6 8)(3 7 12)
(0 9 6 12)(1 3 8)(2 4 10)(5 7 11)
(1 5 3 10)(0 6 7)(2 9 11)(4 8 12)
(1 6 10 7)(0 8 11)(2 5 12)(3 4 9)

No. 7 (0 2 7 4)(1 9 12)(3 6 11)(5 8 10)
(0 6 8 12)(1 4 10)(2 9 11)(3 5 7)
(3 4 9 10)(0 8 11)(1 6 7)(2 5 12)
(3 9 6 12)(0 7 10)(1 5 11)(2 4 8)
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(4 11 7 12)(0 5 9)(1 3 8)(2 6 10)
No. 8 (0 4 8 10)(1 5 7)(3 6 11)(2 9 12)

(1 6 7 11)(0 8 12)(2 4 10)(3 5 9)
(2 5 8 11)(0 6 9)(1 4 12)(3 7 10)
(3 4 7 12)(0 5 11)(1 9 10)(2 6 8)
(5 10 6 12)(0 2 7)(1 3 8)(4 9 11)

Let us note that W. Piotrowski in his extensive unpublished manuscript
[4] gives two solutions to OP(13; 3, 3, 3, 4); these are isomorphic to No. 3
and No. 4 above, respectively.
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