
 
 
 

A PROTOTYPE FOR AN INTELLIGENT 
TUTORING SYSTEM FOR STUDENTS LEARNING 

TO PROGRAM IN JAVATM 
 

E. R. Sykes* and F. Franek** 
               

 
 

 
 

Abstract 
 

The “JavaTM Intelligent Tutoring System” (JITS) research 
project involves the development of a programming tutor 
designed for students in their first programming course in 
JavaTM at the College or University level.  This paper presents 
an overview of the architectural design including state-of-the-art 
web-based distributed architecture, the AI techniques used, and 
the programmer-optimized user interface.  This project is a 
prototype being constructed which will model the domain of a 
small subset of the JavaTM programming language in a very 
specific context.  Research is in progress and  it is hypothesized 
that the completed prototype will be sufficient to prove the 
concept and that a fully developed JavaTM Intelligent Tutoring 
System will provide an interactively-rich learning environment 
for students that will result in increased achievement.  Based on 
the success of similar Intelligent Tutoring Systems, it is also 
hypothesized that these students will be able to learn 
programming skills and gain knowledge more quickly and 
effectively than students in traditional educational settings.   
 
Key Words 
 
Web-Based Education, Programming Tutors, e-Learning, 
Intelligent Tutoring Systems 
 
 
1. Introduction 
 
Intelligent Tutoring Systems (ITS) are, in many respects, 
very similar to human tutors.  Based on cognitive science 
and Artificial Intelligence (AI), ITS have proven their 
worth in multiple ways in multiple domains in Education 
[1, 2].  Currently, ITS can be found in core Mathematics, 
 

*  School of Applied Computing and Engineering Sciences, Sheridan 
Institute of Technology and Advanced Learning, 1430 Trafalgar 
Road, Oakville, Ont., Canada, L6H 2L1; e-mail: 
ed.sykes@sheridanc.on.ca 

** Department of Computing and Software, Faculty of Science, 
McMaster University, 1280 Main Street W., Hamilton, Ont., 
Canada, L8S 4L8; e-mail: franek@mcmaster.ca 

(paper no. 202-1454)  

Physics, and Language courses in many schools across 
Canada, the United States, and various countries in 
Europe.  ITS are growing in acceptance and popularity 
for reasons including: i) increased student performance, 
ii) deepened cognitive development, and iii) reduced time 
for the student to acquire skills and knowledge [1, 2, 3]. 
 Intelligent Tutoring Systems that tutor and monitor 
programming have been developed and evaluated for 
many years in the field of Artificial Intelligence in 
Education.  In many ways, programming has been a very 
productive domain in the evolution of most aspects of the 
field including student modeling, knowledge 
representation, and the application of sound pedagogical 
principles.  Effective programming requires a range of 
problem-solving and diagnostic strategies.  The manner in 
which a student writes code provides rich insight into the 
reasoning processes of the student.  As a result, 
programming provides an interesting domain for studying 
learning and cognitive processes. 

The goal of this current research is to bring together 
recent developments in the fields of Intelligent Tutoring 
Systems, Cognitive Science, and AI to construct an 
effective intelligent tutor help students learn to program 
in JavaTM.  In addition to contributing to understanding 
the learning process in general, it is hoped that this 
research will have a positive impact on supporting 
instructors teaching JavaTM programming in their 
institution.  More than ever, this is an important area for 
institutions where there are more students wishing to 
learn to program, and where it is difficult to provide 
personalized instruction that they need [4].  Additionally, 
since there are a growing number of institutions investing 
in distance learning, this research will play a significant 
role to provide appropriate methods of teaching this key 
subject to students learning remotely.  

 



2. Java ITS Model and Architecture 
 
This section presents the model and architecture for the 
JavaTM Intelligent Tutoring System.  JITS is designed 
with two distinct mechanisms of functionality:  
 
2.1. ‘A’-Type JITS Functionality 
 
In many Intelligent Tutoring Systems, the process of 
authoring involves a professor to provide a set of 
problems, their specifications, and corresponding 
solutions.  In JITS, this type of functionality is provided 
for very straight-forward programming problems. 
 The ‘A’-type functionality is solved by a Dynamic 
Programming Algorithm (DPA) edit-distance algorithm.  
This topic is discussed in detail in section 6.1. 
 
2.2. ‘B’-Type JITS Functionality 
 
The second mechanism of functionality that JITS 
provides is a consequence of the limitations from ‘A’-
type functionality described above.  In many 
programming problems there are often many solutions.  A 
professor may provide one solution to a problem but there 
may be many other solutions that are equally as suitable.  
As a result, the most reasonable approach is to request the 
professor to author only the problem, the problem 
specification, and the output (i.e., desired results); JITS 
needs to determine the rest. 
 The ‘B’-type functionality requires much more rigor in 
terms of attempting to ascertain the ‘intent’ of the student 
by analyzing the code.  The difficulty in these types of 
problems is that there is no coded solution from which 
JITS can use as a comparison.  As a result, a specialized 
intent recognition scanner-parser algorithm prototype has 
been developed as a means of determining the intent 
behind the student’s submission.  This algorithm is 
described in greater detail in section 6.2. 
 
 
3. JITS Overview and Framework  
 
The following sections describe the JITS framework from 
a high-level perspective.  Fig. 1 presents a flowchart of 
how JITS processes the student’s submission.  Four 
distinct components are presented that support JITS: the 
curriculum design, the AI module, the distributed web-
based infrastructure, and the user interface design.   
 
4. JITS Curriculum Design 
 
This section describes the curriculum architectural model 
for JITS.  Due to the complexity involved with semantic 
parsing, it is necessary to restrict JITS to tutor a small  

Student’s source
code

Submit complete code to the Java parser

yes

no
Intent

Recognition
Module

Construct the Java Parse Tree

Compile and Execute the code

Gather information from Java Parse
Tree, Compiler, and Execution engine

Java Parser
succeed?

Student

Present appropriate feedback

1

1
Is the

problem
solved?

Select next problem or exit

no

yes

1

Present
appropriate
feedback

 
Figure 1.  Flow chart of JITS process model 

 
 
subset of the Java programming language.  The area of 
focus involves the following list of JavaTM language 
basics: 
 

a. variables (declaration, use, local vs. global), 
b. operators, and  
c. looping structures. 

 
 

Table 1 illustrates an example of a problem with a 
solution and some incorrect responses. 
 

Table 1 
JavaTM ITS Example Problem 

Problem: 
Write a program called “Summer” which adds all the 
integer numbers from 1 to a specified number (N).  For 
example, if N were assigned the value 10, then the sum of 
the numbers from 1 to 10 is 55. 
 
Program specifications: 
This program requires the use of a for-loop structure.  A 
skeleton structure of the solution is given.  Fill in the code 
to complete this program. 
OUTPUT>Sum = 55 
                                                              table continued… 



Both answers are completely correct and the system needs 
to recognize these types of responses and not merely 
respond back to the student indicating a failure.  Testing 
the correctness of a program is not an easy task, and 
cannot be achieved just by giving a set of fixed responses.  
JITS is designed to be pedagogically sound [5].  So, 
although the above formulas result in correct answers, 
this is not the final goal of the tutoring system.  Rather, 
JITS focuses on the methodology by which a student 
attempts to solve a problem [6].  Just as presented in this 
example, JITS is focusing the student on the problem on 
hand by specifying the location where code may only be 
written (i.e., the “/* student writes code here 
*/”section).  Conventions, style, and professional 
programming techniques are modeled in JITS [6].  In this 
fashion effective tutoring may take place.  These 
pedagogical issues as they are designed in JITS are 
addressed in the following sections. 

Skeleton Program   (located in Source Code area): 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution (authored by Professor): 
public class Summer { 
   public static void main(String[] args) { 
     int sum = 0; 
     for (int i = 1; i <= 10; i++) { 
         sum += i; 
     } 
     System.out.println("Sum = " + sum); 
  } 
} 
 
Incorrect response #1 (student response area): 
(no declaration of variable ‘i’) 
     for (i = 1; i <= 10; i++) { 
       
     } 

  sum += i; 

 
Incorrect response #2: 
(sum is 0, as the body of the  loop is never executed) 
     for (int i = 1;
         sum += i; 

 i > 10; i++) { 

     } 
 
Incorrect response #3: 
(adding 1 instead of variable ‘i':  results in sum being 
lower than expected) 
     for (int i = 1;

  sum += 1; 
 i <= 10; i++) { 

       
     } 
 
Incorrect response #4: 
(sum does not include last integer, i.e., ‘10’) 
     for (int i = 1;
         sum += i; 

 i < 10; i++) { 

     } 
etc. 

/* student writes code here */ 

   
  }

} 
System.out.println("Sum = " + sum);

public class Summer { 
blic static void main(String[] args) pu

 { 
   int sum = 0; 

 
 
5. JITS AI Module 
 
In order for JITS to provide intelligent feedback to the 
student the AI module relies on a collection of 
information:  the problem statement, the problem 
specification, student’s code, the established student 
model, the expert model, the JavaTM Parser, the JavaTM 
Parse Tree, the output from the JavaTM compiler, and the 
result from the JavaTM runtime engine.  Based on the 
context some of this information will not be available.  
However, the goal of this module is to carefully scrutinize 
all available information so that appropriate feedback may 
be generated for the student.  This is accomplished by the 
core component of the AI module – the Intent 
Recognition module.    
 
 
6. JITS Intent Recognition Module 
 
The purpose of the Intent Recognition (IR) module is to 
ascertain the most probable submission of code the 
student intended.  As identified in fig. 1, the IR is invoked 
when the standard JavaTM parser fails.  The IR first 
determines whether there is a solution available for the 
current problem.  If so, then the IR will employ the ‘A’-
Type JITS functionality, otherwise ‘B’-Type functionality 
will be used.  
  
 The astute reader recognizes that there are limitless 

possibilities for student responses and the system cannot 
simply list incorrect responses coupled with feedback 
messages.  For instance, the student could write: 

 
6.1. Inside the IR Module:  ‘A’-Type Functionality 
 
In this context, the IR module has an existing solution for 
the given problem.  Let the student’s submission be s1, 
and the solution s2.  The IR module performs pattern 
matching between the two strings to generate a 
transformation string and to calculate the edit distance  

 
 

 

 sum = (n+1)*(n/2);  or 
 sum = (n*n+n)/2; 
 

 



Figure 2.  A-Type JITS Functionality transformation function (i.e., T), and calculates the edit 
distance.  The cost for an insertion, deletion, transposition, 
or character change is 1.   

 
 

 between the student’s code and the solution.  The IR 
constructs a transformation function string (i.e., 

).  T involves all insertions, deletions, 
transpositions, and character changes that are required to 
transform s1 into s2.  The IR then constructs feasibly-
sound variations (ie., modified s1)  of the student’s code 
and proceeds to compile and run these.  Continuing using 
the example in table 1, consider the student’s submission 
(s1): 

21: ssT →
 
6.1.2. ‘A’-Type Tutoring Process 
 
Before the IR module makes the changes as indicated in 
the transformation function, the student is asked specific 
questions for intent clarification purposes.  In this fashion, 
only modifications that the student knows upfront about 
will be made to the code. 

     For (intt i = 1; i <= 10  i++ {  So, using example 1 in table 1, the following dialogue 
between JITS and the student would arise:          smu += i 

     }   For (intt i = 1; i <= 10 i++ { 
and the desired solution string (s2):       smu += i 
   } 
     for (int i = 1; i <= 10; i++) {  
         sum += i; JITS: “I think you meant the keyword ‘for’.  Is this correct?”      } Student: Yes  JITS continues processing presenting the modified code below… 
As shown in fig. 2, s1, s2, and modified s1 depict the 
pattern matching procedure.  The results region shows the 
transformation function indicating the insertions, 
deletions, transpositions, and character changes using 
symbols described in the Legend.  The IR module passes 
this information on to the AI module to determine the 
appropriate response to the student.  This is necessary as 
the AI module has additional information such as the 
student’s model, and the expert model, to conduct 
effective tutoring [5, 6]. 

 
 
for (intt i = 1; i <= 10 i++ { 

    
  } 

  smu += i 

 
JITS: “I see ‘intt’.  Do you mean the keyword ‘int’ ?” 
Student: Yes 
Resulting code: 
 
 
for (int i = 1; i <= 10  i++ {  

    
  } 

  smu += i  
6.1.1. Pattern Matching Algorithm  
 
The pattern matching algorithm employed in the ‘A’-type 
JITS functionality is a DPA that generates the  



JITS: “Did you mean to insert a ‘;’ between the ‘10’ and 
‘i++’?” 

Student: Yes 
Resulting code: 
 
 
for (int i = 1; i <= 10; i++ { 

      smu += i 
  } 
 
JITS: “There seems to be something missing.  I think we are 

missing a ‘)’ between ‘i++’ and ‘{’.  Do you agree?” 
Student: Yes 
Resulting code: 

 
 
for (int i = 1; i <= 10; i++) { 

      smu += i 
  } 
 
JITS: “I found ‘smu’ but there is a very similar identifier in this 

program named ‘sum’.  May I rename ‘smu’ to ‘sum’?” 
Student: Yes 
Resulting code: 
 
 
for (int i = 1; i <= 10; i++) { 
   sum += 1 

  } 
 
JITS: “I think we’re missing a ‘;’ at the end of this line.  Do 

you agree?” 
Student: Yes 
Resulting code: 
 
for (int i = 1; i <= 10; i++) { 

      sum += 1; 
  } 
 
 
 The tutoring process is dynamic.  At any time the 
student is able to interject, disagree with JITS’ 
suggestions, and modify the source code [7].  This results 
in JITS having to reiterate the IR algorithm and the 
tutoring process begins again. 
 
 
6.2. Inside the IR Module:  ‘B’-Type Functionality 
 
The IR’s responsibility is to systematically employ a 
minimum distance error-correcting scanner-parser 
algorithm with the goal of remedying the student’s code 
[8, 9].  The IR algorithm is explained in the following 
section.   
 
 
6.2.1. Syntax Error Correction Strategy 

 
Let L be a nonempty set of strings over the finite set of 
symbols used in the Java programming language (i.e., Σ).  
It is assumed that a string not in L may be derived from 
some sentence in L by a sequence of error-

transformations.  The IR module recognizes four types of 
syntax errors: 

i) the replacement of a symbol by another 
symbol, 

ii) the insertion of an extraneous symbol,  
iii) the deletion of a symbol, and 
iv) the transposition of two adjacent symbols. 

 
 These four errors can be represented by four 
transformations TR , TI , TD , and TS  from Σ’ to the 
subsets of Σ’ defined as follows.  For x and y in Σ’: 

i) xby is in TR(xay) for all a  b ≠
ii) xay is in TI(xy) for all a  Σ∈

iii) xy is in TD(xay) for all Σ∈a  
iv) xy is in TS(yx) 
 

 The goal of the IR is to select a sequence of 
intermediate strings and error transformations such that 
the result is a transformation sequence that produces an 
acceptable token for the parser. 
 For example, suppose L={cde}.  Given a string ddfe, 
the first ‘d’ is a replacement error and the ‘f’ is an 
insertion error because: 

ddfeddecde
IR TT →→

 
 
Using JavaTM for another example, consider the following 
declaration: 
 
    publik status flot TAX=5; 
 
 The IR would construct the following Transformation 
Sequence: 

publicpublik
RT→  

staticstatisstatus
R TT →→  

R

floatflot T→ , resulting in the correct syntax: 
I

 public static float TAX=5; 
 
 
 
6.2.2. IR Scanner-Parser Algorithm 
 
This section describes the Intent Recognition Scanner-
Parser Algorithm. The grammar that the scanner and 
parser operate under is the most current version of the 
J2SE – Sun Microsystem’s Java 1.4.2_02 specification.   
 The algorithm is presented as follows: 
i) The scanner examines the student’s code and 

attempts to extract a token.  Let S be the stream 
of characters to be validated as a token. 

ii) The validation process ensues in which 
comparisons are done using the reserved words 
and keywords of Java (Table 2), and the symbol 
table (Table 3). 



iii) If the scanner cannot ascertain an appropriate 
token then the transformations TR , TI , TD , and 
TS  are employed in an attempt to convert S into 

iv) recorded 

v) icient number of transformations 
n will be 

vii)  
context, has a reasonable token been accepted?” 

 if (true) 
 token by adding it to 

the current parse tree. 
else 

eds of the parser 
 complete the parse tree. 

viii) 

 completed the construction of the 
parse tree.    

 

JavaTM Reserved Words and Keywords 
 

ace 

a valid token (i.e., a reserved word, a keyword, 
or a new identifier). 
This Transformation Sequence (TS) is 
by the scanner in a special table called the 
Transformation Sequence Table (TST). 
After a suff
(i.e., k-error corrections), a toke
constructed. vi) The token is submitted to the parser. 
The parser asks the question:  “In the current

 
then 
parser ‘locks onto’ this

reject the current form of the token and 
communicate this back to the scanner so that 
the scanner can make appropriate 
modifications to the transformation 
sequence, or construct an appropriate token 
based on the context.  For example, ‘;’, 
indicating the end of a statement may need 
to be created to meet the ne
to
 

Repeat i) through vii) until all input from the 
student’s source code has been processed, and 
the parser has

 

Table 2 

abstract else interf super 
boolean extends long switch 
break **  hronized false * native sync
byte final new this 
case finally null *** throw 
catch float  package throws 
char for private transient 
class goto * d  *** protecte true
const * if public try 
continue nts  impleme return void 
default  import short volatile
do instanceof hile static w
double int strictfp **  

 
Note: 
 * indicates a keyword that is not currently used  
 ** indicates a keyword that was added for Java 2 
 *** true, false, and null are reserved words. 
 

Ta
Symb

 
Lexem Token 

ame,  
word, 

Attribute 
alues 

ble 3 
ol table 

Type 
r, e (identifie

method_n
reserved_
or keyword) 

V

int INT keyword  
for FOR keyword  
foobar ethod_name IDENTIFIER m  
sum NTIFIER tifier e: 1 IDE iden valu
true TRUE reserved_word  
= ASSIGNMENT   
… … … … 

 
 

r-parser algorithm 
ilable the 

consider a 
sion as follows: 

    

ep by step, the scanner 
rutinizes the input strings and attempts to classify each 
to a recognizable token for the parser.  Fig. 3 presents a 

ictorial view of the procedure. 
 
 

 

 
6.2.3. IR Scanner-Parser Example 1:  Forward 

Processing  
 
Based on the problem described in Table 1, the following 
example describes how the IR scanne
operates.  Suppose JITS did not have ava

d in Table 1.  Also solution as presente
nt’s code submisstude

 
For (intt i = 1; i <= 10; i++) { 

      sum += i; 
  } 

 
Based on this scenario, JITS would employ the IR 
scanner-parser algorithm.  The first string of characters are 
extracted as ‘For’.  The search commences through the 
keywords, reserved words, and symbol table for an exact 
string match.  This having failed, pattern matching ensues, 
by employing the transformation functions (TR, TI, TD, and 
TS).  The string ‘For’ in the input would be converted to 
the keyword ‘for’, and in the scanner’s Transformation 
Sequence Table would reside the details of TR.  This token 
would be passed to the parser which would ‘lock onto’ it.  
The scanner then reads the next symbol (i.e., ‘(‘ left-
parenthesis) and passes it to the parser, which in turn 
attaches it to the current parse tree.  The string ‘intt’ is 
read next which undergoes the same treatment that the 
‘For’ encountered.  However, instead of a TR 
transformation, a TD would be recorded for the 
Transformation Sequence.  St
sc
in
p



ForStatement
‘for’

ForInit
‘int’

AssignmentOp
‘i = 1’

Conditional
Expression

‘i <= 10’

ForUpdate
‘i++’

ForBody
Statements

AssignmentOp
‘sum += i'

Statement
Expression

 
Figure 3.  IR Scanner-Parser – parse tree construction 

 
 
6.2.4. IR Scanner-Parser Example 2 – Forward and 

Backward Processing  
 
In the previous example no situation arose where the 
parser rejected the token submitted by the scanner.  
Realistically, there will be times when the parser cannot 
accept the token delivered by the scanner.  Consider the 
following: 
     
For (intt i = 1; i <= 10  i++ { 

      smu += i 
  } 

 
The first string of characters would be transformed in the 
same manner as in example 1.  However, after the scanner 
successfully identifies token ‘10’ as an integer, the 
scanner would happily submit the next token, identifier 
‘i'.  It is here the parser would reject to continue.  The last 
token, ‘i’, does not fit the grammar for the for-statement 
(i.e.,   for ( initialization ; test  ; increment ) ).  The parser 
would ask the scanner to create, or revise the 
Transformation Sequence to satisfy the parser’s needs to 
complete the sentence according to the grammar.  In this 
example, several tokens representing symbols would be 
created by the scanner representing ‘;’, ‘)’, and ‘;’ for the 
three remaining syntax errors respectively.   
 
 
6.2.5. ‘B’-Type Tutoring Process 
 
The underlying mechanism for analyzing the student’s 
submission is quite different between ‘A’-type and ‘B’-
type intent recognition.  However, the tutoring process is 
virtually the same.  In the ‘B’-type mode, before the 
parser ‘locks-on’ to a token from the scanner, the IR 

module communicates the proposed changes with the 
student before actually making the change.  This dialogue 
between the student and JITS would be the same as 
discussed in section 6.1.2. 
 
 
6.3. Logic Errors 
 
The IR module and tutoring processes previously 
described do not address issues associated with logic 
errors.  So, even though the IR algorithm and tutoring 
process will result in a source program that will compile, 
there is no guarantee that it will satisfy the program 
requirements.   
 Once the IR module has completed the modification of 
the submitted code to one that parses, JITS uses 
information from the program specifications, the student 
model, the expert model, and the JavaTM run-time engine 
to extract more information regarding the correctness of 
the student’s program.   
 
 
7. JITS Distributed Web-Based Infrastructure 
 
The JITS infrastructure supports the student via a browser 
accessing information from the tutor via an HTTP 
request/response process model.  The processing is 
accomplished by Enterprise JavaBeansTM within a J2EE 
compliant server in combination with a web server 
supporting the presentation logic for the tutor.  The 
presentation layer uses JavaServer PagesTM technology 
which communicates with the home interface of the bean 
for processing and returns a simple page back to the 
student’s browser (e.g., html, xml, etc.).  During 
processing the bean gathers all the information about the 
student’s code and submits it to the AI module for 
processing.  The infrastructure architecture uses a JDBC 
connection from the Enterprise JavaBeansTM to an 
external database which stores and retrieves specific 
information about the student including student history 
and performance statistics. 
 The proposed architecture has numerous benefits.  It is 
scalable, platform-independent, and lightweight.  The 
student will never need to install software on their 
machine and will not need a high-speed network 
connection to use JITS.  Other benefits include fast 
execution as all processing is done on the J2EE server 
and the middle-tier web server which typically have much 
faster and more efficient hardware than typical PCs.  The 
net result is a product that increases the accessibility for 
JITS to many students – a vital requirement for an 
equitable and successful educational product in today’s 
Internet-ready community.  Fig. 5 presents a pictorial 
view of the JITS Distributed Web-based Infrastructure. 
 



 Client
browser

JITS Application Server

Student view
(presentation logic)
+
Enterprise JavaBeans
(business logic)

Enterprise Information System (database)

1)  Individual Student Information
(i.e., student history, statistics,
problems solved, learning style, etc.)
2)  Problem sets (statement,
specification, and solution (if authored))

http request

http response

JDBC SQL query

JDBC ResultSet

AI module:
 selects the most appropriate response

for tutoring the student using information from
Intent Recognition module

Intent
Recognition

module

‘A’-type
Functionality

‘B’-type
Functionality

 
Figure 5.  JITS Distributed Web-based Infrastructure 

 
 
8. JITS User Interface 
 
The interface for computer-based programming tutors is a 
significant factor that was given careful consideration 
during the design of JITS.  The user interface is based on 
a presentation format implemented in many popular 
Integrated Development Environments used by 
professional programmers (e.g., Visual Café, 
JDeveloper).   Upon connecting to JITS website, the student’s 

rce Code 

ed then the AI module will 
e

y time, may explicitly request a hint 
from JITS, view the solution, opt to quit the problem and  

n statistics including problems attempted, problems 

. Efficiency Considerations 

this Intelligent Tutoring 
ystem are quite demanding in terms of the time required 

 

 
select another, and view their performance history based 
o
solved, number of attempts on a problem, and problem 
difficulty.  The JITS user interface is shown in fig. 6. 
 
 
9
 
The algorithms employed in 

browser displays the working environment for JITS.  An 
appropriate skill-level problem is selected or the problem 
that last attempted is presented to the student.   
 The student types in a solution in the Sou

S
as a function of the size of input.  The Intent Recognition 
module with the ‘A’-type and ‘B’-type functionality are 
the two computationally expensive areas in JITS.  For 
instance, the ‘A’-type pattern recognition algorithm uses a 
recursive decent procedure which is requires time 
proportional to the square of the length of input.  The ‘B-
type algorithm in the IR module requires time proportional 
to the cube of the length of input [9].  That is, O(N3), 
where N is the number of characters in the source 
program.  Clearly, these are not efficient algorithms.  
However, JITS is not intended for programs of any size 
greater than 50 lines of code.  As a result, considering 
such small values of N, the time cost would not be even 
noticeable to students.  The purpose of JITS is to tutor 
beginning programming students at the College and 
University level and not to compile several hundred 
thousand lines of source code. 

Area and presses ‘Parse’.  This invokes a call to the 
corresponding Enterprise JavaBeanTM representing the 
student.  Information is gathered (i.e., student model, 
JavaTM Parser, compiler, runtime engine, etc.) and 
submitted to the AI module.   
 If the parser does not succe
d termine the appropriate response based on the diagnosis 
of the IR module.  Otherwise, JITS goes beyond the 
student and attempts to compile and execute the code.  
This yields additional information for the AI module to 
construct intelligent feedback.  This information is used 
so that specific feedback is generated and sent to the 
student’s browser.   
 The student, at an



 
 
10. Conclusions 
 
In summary, this research paper presented recent 
developments related to the JavaTM Intelligent Tutoring 
System Prototype.  The Intent Recognition module, 
comprised of the ‘A’-type DPA edit-distance pattern 
matching algorithm and the ‘B’-type IR scanner-parser, is 
based on sound theories, pattern recognition techniques, 
and error-correction strategies.  The ultimate goal of the 
Intent Recognition module in JITS is to understand the 
‘intent’ of the student by carefully analyzing the student’s 
code and to communicate this to the AI module to 
effectively tutor the student through programming 
problems.   

This research is significant since it has the potential to 
be applied to many programming courses at the College 
and University level.  This research is also quite timely 
considering the tremendous growth of web-based 
educational tools, and that JavaTM has become an 
extremely popular programming language everywhere in 
the world.  
 
Acknowledgements 
 
Edward R. Sykes would like to thank his wife, Michele 
for her tireless efforts in reviewing his papers and helping 
him in his research.  Dr. Franek would like to thank 
Edward  

 
 
Sykes for his enthusiasm and energy with which he is 
undertaking his graduate studies. 
 
 
References 
 
[1]  J. R. Anderson, A. T. Corbett, K. R. Koedinger, & R. 

Pelletier, Cognitive Tutors:  Lessons learned.  The 
Journal of the Learning Sciences, 4, 1995, 167-207.   

[2] B. P. Woolf, J. Beck, C. Eliot, & M. Stern, Growth 
and maturity of intelligent tutoring systems, in K. D. 
Forbus & P. J. Feltovich (Eds.), Smart machines in 
education, (Cambridge, MA:  MIT Press, 2001) 100-
144.  

[3] A. C. Graesser, N. K. Person, Teaching tactics and 
dialog in autotutor, International Journal of Artificial 
Intelligence in Education, 12, 2001, 12-23. 

[4] K. R. Koedinger,  Cognitive tutors, in K. D. Forbus 
& P. J. Feltovich (Eds.), Smart machines in 
education, (Cambridge, MA:  MIT Press, 2001)  145-
167.  [5] E. R. Sykes, JavaTM intelligent tutoring system model 
and architecture: Proceedings of American 
Association of Artificial Intelligence Spring 
Symposium on Human Interaction with Autonomous 
Systems in Complex Environments, Menlo Park, CA, 
2003, 187-193. 

 

Problem:  A problem of
the appropriate level and
difficulty is presented to
the student. While the student

works on a solution it
must successfully
‘Parse’, ‘Compile’, and
‘Run’

Source Code Area

Results of parsing,
compilation, and
execution.  This area is
also used for displaying
hints, the solution, and
current student statistics.

The student may select
a different question
from a bank of suitable
skill-level questions

Based on the current
problem, the student
may ask for a hint or
solution from the tutor.

The student model
based on performance
gathered statistics

 
Figure 6.  JITS User Interface  



[6]   E. R. Sykes & F. Franek, A prototype for an 
intelligent tutoring system for students learning to 
program in Java: Proceedings of the IASTED 
International Conference on Computers and 
Advanced Technology in Education, Rhodes, Greece, 
2003, 78-83. 

[7] A. C. Scott, J. E. Clayton, & E. L. Gibson, A 
Practical Guide to Knowledge Acquisition (Menlo 
Park, CA: Addison-Wesley, 1991). 

[8]   A. V. Aho, R. Sethi, J. D. Ullman, Compilers:  
principles, techniques, and tools  (Menlo Park, CA: 
Addison-Wesley, 1988). 

[9]   A. V. Aho & T. G. Peterson, A minimum distance 
error-correction parser for context-free languages, 
SIAM Journal of Computing, 1, 1972, 305-312. 

 
 
Biographies 
 

Frantisek Franek is a full 
professor of Computer Science 
and Mathematics at McMaster 
University, Hamilton, Ontario, 
Canada.  He obtained a Ph.D. in 
pure mathematics at University 
of Toronto, Toronto, Ontario, 

Edward R. Sykes
currently a Professor of 
Computer Science 
Program Coordinato
the Computer 
Technology program
the School of Appl
Computi
Engineering Sciences 
the Sheridan Institu

Technology and Advanced Learning. Currently, M
Sykes is working on his Ph.D. developing a 
Intelligent Tutoring System and conducting research as 
its effectiveness.  Since 1994, Mr. Sykes has ta
numerous courses including programming (e.g., Vi
Basic, C, C++, Perl, and Java), database (e.g., 
PL/SQL, administration, backup and recovery, tuni
and operating systems.  He is also very involved in 
Research department at Sheridan.  Currently, he 
Sheridan’s principal investigator for the Centre 
Contemporary Canadian Art project
(http://www.ccca.ca/

Canad

). 
 
 
 
 

 

 

a, and a Doctorate in 
Natural Sciences with 
specialization in Computer 
Science at Charles University of 
Prague in his native Czech 

esearch interests span set theory to 

s

 is 

and 
r of 

Science 
 in 
ied 

ng and 
at 

te of 
r. 

Java 
to 

ught 
sual 

SQL, 
ng), 
the 

is 
for 

 

 
 
 
 
 
 Republic.  His r
 
 

combinatorics to computer science.  Prof. Franek has 
published over 60 papers and has given over 80 
presentations on these topics.  Hi  book “Memory as a 
programming concept in C and C++” is to be released by 
Cambridge University Press early next year.  In Computer 
Science he specializes in algorithms on strings, however 
he always maintained a strong interest in AI and AI 
techniques.  Besides that his interests include compilers 
and compiler techniques, and databases and their 
applications. 
 
 
 

 
 
 

 

 

 
 
 
 

 
 


	Table 1
	JavaTM ITS Example Problem
	Table 2
	JavaTM Reserved Words and Keywords
	Table 3
	Symbol table

