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Abstract. The aim of the paper is to describe the necessary and sufficient con-

ditions for a Boolean algebra to admit the largest possible sequential convergence

structure. We present examples of complete algebras, known from construction of

various generic extensions of set theory, carrying such converegence structures.

1. Introduction.

In this section we review some basic notions and facts concerning sequential
convergence structures and continuity of submeasures on a Boolean algbera B. The
motivation for the research described in this paper comes from [Ja] and [Ja1], where
it is shown that the maximal possible convergence structure is attained for (ω, 2)-
distributive Boolean algebras. We give the necessary and sufficient conditions for
a Boolean algebra to admit the largest possible sequential convergence structure.
Furthermore, we prove that for any algebra B and any sequential convergence
structure s on the algebra, the join s ∨ os in the semilattice of all convergence
structures on B exists. os is the classical order convergence structure on B. Jakub́ık
in [Ja] proved this for the convergence structure induced by D (see 2.2 below). We
would like to thank Zbigniew Lipecki for many valuable comments.

Throughout this paper we consider only non-degenerate Boolean algebras with
0 6= 1. For a Boolean algebra B, we view infinite sequences of elements of B as
elements of Bω, the product of ω copies of B. Bω is also a Boolean algebra.

The fundamental reference concerning Boolean algebras is [K] and concerning
convergence structures on Boolean algberas Vladimirov’s book [Vl]. Some useful
information pertaining the topic of converegence structures and submeasures on
rings and fields of subsets can be found in [De].

Let us first introduce the largest possible zero convergence structure on B, Z(B).
Z(B) = {f : ω → B : (∀I ∈ [ω]ω)

∧

{f(n) : n ∈ I} = 0}. Clearly, ∅ 6= Z(B) ⊆ Bω.
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OGP0025112 (Franek). Franek and Hruška both acknowledge the hospitality of the Center for

Theoretical Study in Prague, Balcar acknowledges the hospitality of McMaster University.

1991 Mathematics Subject Classification. Primary 28A60, 06E10; Secondary 03E55, 54A20,

54A25. Key words and phrases. Boolean algebra, convergence structure, sequential topology,

exhaustive submeasures.

1



2 BOHUSLAV BALCAR, FRANTISEK FRANEK, AND JAN HRUŠKA

When clear from the context, we drop the reference toB and use just Z, including
other structures defined on Boolean algebras that will be introduced later.

We shall denote by ϕ ∈ ωω↑ the fact that ϕ is a strictly increasing sequence of
non-negative integers.

1.1 Definition. Let B be a Boolean algebra and let I be an ideal on Bω. I is
said to be a zero-convergence structure on B if

(i) I ⊆ Z,
(ii) I is closed under subsequences, i.e. whenever f ∈ I and ϕ ∈ ωω↑ , then

f ◦ ϕ ∈ I.

Note that Z need not be a zero-convergence structure on B. Consider a Cantor
algebra A, i.e. A ≈ Clop(2ω), the algebra of clopen subsets of the Cantor space
2ω. Equivalently, A is a free algebra with countably many independent generators,
say 〈xn : n ∈ ω〉. Then f defined by f(n) = xn belongs to Z(A), and so does
−f = 〈−xn : n ∈ ω〉. Since f ∨ −f = 1Aω , Z(A) cannot be an ideal.

Therefore, the largest possible zero-convergence structure with respect to ⊆ need
not be a zero-converegence structure at all, nevertheless the maximality principle
is applicable, hence each zero-convergence structure on B can be extended to a
maximal one.

Conditions under which Z(B) itself is a zero-convergence structure are discussed
in section 3.

1.2 Definition. Let B be a Boolean algebra and let A ⊆ Bω. Urysohn closure of
A, U(A), is a subset of Bω with the property that every subsequence of a sequence
from U(A) has a subsequence that belongs to A, i.e. U(A) = {f ∈ Bω : (∀ϕ ∈
ωω↑)(∃ψ ∈ ωω↑)(f ◦ ϕ ◦ ψ) ∈ A}.

The following are easy observations.

1.3 Fact. (i) for any A ⊆ Bω, U(U(A)) = U(A),
(ii) Z is Urysohn closed,
(iii) if I is a zero-convergence structure, then U(I) is a zero-convergence struc-

ture, too.

Let s ⊆ Bω × B. If (〈xn : n ∈ ω〉, x) ∈ s, we write xn −→
s

x. x is said to be an

s-limit of the sequence 〈xn : n ∈ ω〉. For a ∈ B, ka donotes the constant sequence
ka(n) = a. Thus k is a natural embedding of B into Bω.

If I is a zero-convergence structure on B, we consider the elements of I as
sequences converging to 0. We can extend this to a notion of convergence s(I) of
sequences on B by defining xn −→

s(I)
x whenever 〈xn4x : n ∈ ω〉 ∈ I, where 4

denotes the Boolean operation of symmetric difference. It is easy to verify that the
following holds.
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1.4 Fact. (i) every sequence has at most one limit, i.e. if xn −→
s(I)

x and

xn −→
s(I)

y, then x = y,

(ii) if x ∈ B, then the constant sequence 〈x : n ∈ ω〉 has x as its limit,
(iii) if xn −→

s(I)
x and 〈yn : n ∈ ω〉 is a subsequence of 〈xn : n ∈ ω〉, then

yn −→
s(I)

x,

(iv) if xn ≤ yn ≤ zn for every n and xn −→
s(I)

x and zn −→
s(I)

x, then yn −→
s(I)

x,

(v) the convergence respects Boolean operations, i.e. if xn −→
s(I)

x and yn −→
s(I)

y,

then xn∨yn −→
s(I)

x∨y and −xn −→
s(I)

−x.

The notions of zero convergence and convergence are really identical in the sense
that a convergence structure s(I) induced by a zero-convergence structure I is a
convergence structure on B, i.e. a structure satisfying 1.4 (i) - (v), while for a
convergence structure s on B , s0 = {f ∈ Bω : f(n) −→

s
0} is s0 ⊆ Z and a

zero-convergence structure on B.

Let us recall some of the basic notions concerning sequential topologies.

1.5 Definition. Let (X, τ) be a topological space. X is said to be

(i) sequential if any A ⊆ X is closed whenever it contains all limits of τ -
convergent sequences of elements of A,

(ii) Fréchet if for any A ⊆ X,

clτ (A) = {x ∈ X : (∃〈xn : n ∈ ω〉 ⊆ A) xn −→
τ

x}

It is clear that every Fréchet space is sequential.

A convergence structure s on a Boolen algebra B gives rise to a sequential topol-
ogy on B in the following way: consider all topologies τ on B so that whenever
xn −→

s
x, then xn −→

τ
x. There is a largest topology with respect to inclusion

among all such topologies, and we denote it by τ(s) and call it sequential topology
determined by s.

Alternatively, the topology τ(s) can be described through the closure oper-
ation: for A ⊆ B, let u(A) = {x : x is the s-limit of a sequence 〈xn〉 of

elements ofA}. Then clτ(s)(A) =
⋃

α<ω1

u(α)(A), where u(α+1)(A) = u(u(α)(A))

and u(α)(A) =
⋃

{u(β)(A) : β < α} for a limit α.

It follows from 1.4 (ii) that every singleton is a closed set, i.e. τ(s) is a T1

topology. Moreover, (B, τ(s)) is a sequential topological space, and it is Fréchet if
and only if clτ(s)(A) = u(A) for every A ⊆ B.

1.6 Fact. A sequence 〈xn〉 converges to x in the topology τ(s), xn −→
τ(s)

x, if and

only if any subsequence of 〈xn〉 has a subsequence that converges to x in s.
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Le I be a zero-convergence structure on a Boolean algebra B. In the way de-
scribed above, the convergence structure s(I) determines a sequential topology,
which we denote by τ(I). It follows that the Urysohn closure of I, U(I), is the set
of all sequences of elements of B that converge to 0 in the topology τ(I). Moreover,
if I is Urysohn closed, then xn −→

s(I)
x iff xn −→

τ(I)
x.

The following characterisation of continuity of mappings is well known.

1.7 Fact. Let τ(s) be a topology on B determined by a convergence structure s
and let (Y, τ) be an arbitrary topological space. Then a mapping f : B → Y is
continuous if and only if xn −→

s
x implies f(xn) −→

τ
f(x).

Let B be a Boolean algebra. A submeasure on B is a function µ : B → R+ with
the properties

(i) µ(0) = 0,
(ii) µ(a) ≤ µ(b) whenever a ≤ b (monotone),
(iii) µ(a ∨ b) ≤ µ(a) + µ(b) (subadditive).

A submeasure µ on B is

(iv) exhaustive if limµ(an) = 0 for every sequence {an : n ∈ ω} of disjoint
elements,

(v) strictly positive if µ(a) = 0 only if a = 0,
(vi) a (finitely additive) measure if for any disjoint a and b, µ(a∨b) = µ(a)+µ(b).

Any measure is a (uniformly) exhaustive submeasure, since it has a finite norm; for
more on submeasures see [Fr].

If B is a Boolen algebra, B+ denotes the set of all non-zero elements of B, i.e.
B+ = B − {0}.

1.8 Fact. (i) Let I be a zero-convergence structure on B. Then for any
submeasure µ on B, µ is continuous in τ(I) if and only if (∀f ∈ I)
µ(f(n)) −→ 0.

(ii) Let S be a non-empty set of submeasures on B such that for any a ∈
B+ there is some µ ∈ S with µ(a) > 0, then {f ∈ Bω : (∀µ ∈ S)
lim µ(f(n)) = 0} is a Urysohn closed zero-convergence structure.

1.9 Example. Let B = P(X) for an infinite set X. A sequence 〈Xn : n ∈
ω〉, Xn ⊆ X, belongs to Z if and only if {Xn : n ∈ ω} is point-finite family of
sets. Moreover, Z is a zero-convergence structure. For this example let s denote
the convergence structure induced by Z. When we identify P(X) with 2X via
characteristic functions, then the convergence in the topology τ(s) is exactly the
pointwise convergence of sequences on 2X . It is well known that the corresponding
sequential topology τ(s) on 2X is a product topology if and only if X is countable,
see [Ba]. For an uncountable X, the sequential space (2X , τ(s)) is a Hausdorff, but
not a regular, topological space, see [Gl] or [BGJ]. Moreover, the topology τ(s) is
stronger than the usual product topology τ on 2X . If we consider the spaces of
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continuous real-valued functions on 2X with respect to those two topologies, it is
shown in [BH] that C(2X , τ))  C(2X , τ(s)) iff size of X is at least as large as the
first submeasurable cardinal.

2. Exhaustive zero-convergence.

In this section we discuss a hierarchy of (zero) convergence structures on B. We
define exhaustive convergence structures motivated by exhaustive submeasures and
their continuity. We introduce and characterize a zero-convergence structure E that
is an intersection of all maximal zero-convergence structures.

In the following we will discuss some examples of zero-convergence structures
reaching examples when the whole of Z is a zero-convergence.

2.1 Example. For f ∈ Bω , the set {n : f(n) 6= 0} is a support of f . We shall call
f a finite element of Bω if its support is finite. Set

Fin(B) = {f ∈ Bω : f has a finite support}.

F in is the least Urysohn closed zero-convergence and the topology τ(Fin) it
determines is discrete.

Although the ideal Fin is not very interesting from the convergence point of
view, it becomes more interesting in the context of quotiens algebras. For any B,
the quotient algebra Bω/F in is σ-closed, i.e. any descending sequence of non-zero
elements has a non-zero lower bound. If B has a dense subset of size ≤ 2ω, then
B has a base tree (not necessarily homogeneous in height). For the basic case
when B = {0,1} and hence Bω/F in = P(ω)/fin, see [BPS]. Let A be the Cantor
algebra. Under the CH, the completions of Aω/F in and P(ω)/fin are the same.
Recently Dow [Do] solved the long-standing problem and showed that consistently
the completions of those two algebras may be different. Moreover, the height of
Aω/F in can be smaller than that of P(ω)/fin.

2.2 Example. Let k be a positive integer, d ∈ Bω is called a k-disjoint sequence,
if for any X ⊂ ω of size k,

∧

{d(n) : n ∈ X} = 0. We use the term disjoint sequence
for a 2-disjoint sequence. Set

D(B) = {f ∈ Bω : (∃m ∈ ω)(∀X ∈ [ω]m)
∧

{f(i) : i ∈ X} = 0}.

It is clear that Fin ⊆ D.

2.3 Proposition. D is a zero-convergence structure generated by all disjoint se-
quences, i.e. for any f ∈ D there are disjoint sequences d1, ..., dk so that f ≤
d1 ∨ ... ∨ dk.

Proof. When d1, ..., dk are disjoint sequences, then for anyX ⊆ ω, |X| = k+1, using

the usual distributivity and the pigeon hole principle,
∧

i∈X

d1(i) ∨ ... ∨ dk(i) = 0.

We shall argue the opposite direction using induction. Let f ∈ D be an m-
disjoint sequence. If m = 2, f is disjoint, and so we assume that m > 2. Put
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f1(n) = f(n) ∧ (f(n+1) ∨
∧

i<n−1

f(i)) for every n ∈ ω. Then it can be shown that

the disjointness number of f1 is m−1 and the sequence d = f − f1 is disjoint. Thus
f ≤ d ∨ f1. �

2.4 Definition. Let I be a zero-convergence structure. I is said to be exhaustive if
D ⊆ I. The induced convergence structure s(I) and the topology τ(I) it determines
are said to be exhaustive if I is.

The following fact gives the motivation and justification of the term ”exhaustive
zero-convergence” introduced in 2.4. It follows immediately from the definition of
exhaustivity and Fact 1.8 (i).

2.5 Fact. For any submeasure µ on B, µ is exhaustive if and only if it is continuous
in the τ(D) topology.

We can ask about the description of the largest zero-convergence structure in
which all exhaustive submeasures are continuous.

2.6 Example. Put

L(B) = {f ∈ Bω : (∀X ⊆ ω, infinite)(∃Y ⊆ X, finite)
∧

{f(i) : i ∈ Y } = 0}.

The following theorem is a modification of the result of R. Frič, [Fč], who proved
the theorem for measures. This is one of the situations when the global properties
of exhaustive submeasures and measures on Boolean algebras are the same.

2.7 Theorem. L is a Uryshon closed zero-convergence structure. Moreover, L =
{f ∈ Bω : for every exhaustive submeasure µ on B, µ(f(n)) −→ 0}

In the proof of the theorem in addition to Frič’s methods we are going to use
the following folklore concerning exhaustive submeasures.

2.8 Proposition. Let µ be a submeasure on B. Then µ is exhaustive if and only
if for any 〈xn : n ∈ ω〉 ∈ Bω and any ε > 0, there is a k ∈ ω such that for every

p ≥ k, µ(
∨

i≤p

xi −
∨

i≤k

xi) < ε.

Proof. Assume that µ is exhaustive and further assume that there are 〈xn : n ∈ ω〉
and ε > 0 violating the proposition. Then we can pick an increasing sequence of

integers 〈ki : i ∈ ω〉 such that for each i, µ(
∨

i≤ki+1

xi −
∨

i≤ki

xi) ≥ ε. If we set yi =

∨

i≤ki+1

xi −
∨

i≤ki

xi, then 〈yi〉 is a disjoint sequence and limµ(yi) 6= 0, a contradiction.

The opposite implication is obvious. �

Proof of Theorem 2.7. An ultrafilter F on B corresponds uniquely to a {0, 1}-valued
measure µF defined by µF (x) = 1 iff x ∈ F , and 0 otherwise.
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Given the simple observation that L = {f ∈ Bω : (∀µ {0, 1}−valued measure)
µ(f(n)) −→ 0} and 1.8 (ii), it follows that L is a zero-convergence structure,
Urysohn closed, and moreover it is exhaustive.
In the following we will show that any exhaustive submeasure µ on B is continuous
in the topology determined by L.
Let 〈xn〉 ∈ L and let ε > 0. We want to show that for some n0, µ(xn) ≤ ε whenever
n ≥ n0. Using 2.8, by induction we can construct a ϕ ∈ ωω↑ with the property
that µ

(
∨

k≤i≤p

xi −
∨

k≤i≤ϕ(k)

xi

)

< ε/2k.

Set ak =
∨

k≤i≤ϕ(k)

xi. It follows that xk ≤ ak and xk ≤
∧

i≤k

ai ∨
∨

i≤k

(ak − ai).

Since for i ≤ k, ak − ai =
∨

k≤j≤ϕ(k)

xj −
∨

i≤j≤ϕ(i)

xj , µ(ak − ai) < ε/2i and thus

µ
(

∨

i≤k

(ak − ai)
)

< 2ε.

Set bk =
∧

i≤k

ai. 〈bk〉 is a descending sequence. If 〈bk〉 is not it L, then 〈bk〉 has

a finite intersection property and hence can be extended to an ultrafilter F on B.
Then for any k there is an i ≥ k so that xi ∈ F , and so there is 〈yn〉, a subsequence
of 〈xn〉, with µF (yn) −→ 1, a contradiction with the definition of L. Thus 〈bk〉 ∈ L,
and, consequently, for some k0, bk = 0 for any k ≥ k0, and therefore µ(bk) −→ 0.
Since xk ≤

∧

i≤k

ai∨
∨

i≤k

(ak−ai), for sufficiently large k, µ(xk) ≤ µ
(

∨

i≤k

(ak−ai)
)

< 2ε.

�

The just presented proof motivates the following notion.

2.9 Definition. A zero-convergence structure I on B is groupwise closed if for
every 〈xn : n ∈ ω〉 ∈ I and every ϕ ∈ ωω↑ , the sequence 〈an〉, where an =
∧

k≤n

∨

{xi : k ≤ i ≤ ϕ(i)}, belongs to I.

The following is an example of a class of groupwise closed exhaustive zero-
convergence structures.

Each family F of ultrafilters on B with the property that
⋃

F = B − {0}, or
equivalently, F is a dense subset of the Stone space of B, induces an exhaustive
groupwise closed zero-convergence structure

L(F)(B) = {f ∈ Bω : (∀F ∈ F) µF (f(n)) −→ 0},

where µF is the usual 2-valued measure determined by the ultrafilter F . Observe
that L = L(Ult(B)).

The following generalization is a consequence of the proof of Theorem 2.7.

2.10 Proposition. For any groupwise closed zero-convergence structure I on B,
an exhaustive submeasure µ is continuous in τ(I) if and only if µ(f(n)) −→ 0 for
every decreasing f ∈ I.
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2.11 Example. The order zero-convergence structure will be defined in two steps.
(i) for a σ-complete algebra C, set

Os(C) = {f ∈ Cω : (∃g ∈ Cω, g ↓ 0C) f ≤ g}.

(ii) for an arbitrary B, set Os(B) = Bω ∩Os(C), where C is a σ-completion of B.

The convergence structure induced by the order zero-convergence structure on
B is the most frequently studied one in the context of σ-fields of sets or σ-complete
Boolean algebras.

2.12 Proposition. For any algebra B, Os is an exhaustive groupwise closed zero-
convergence, not necessarilly Urysohn closed.

Instead of a proof let us recall a few notions. Let C be a σ-completion of B.

For a sequence 〈xn : n ∈ ω〉 on C, we define limes superior, limes inferior, and
limit as usual, i.e.

limxn =
∧

k∈ω

∨

n≥k

xn and limxn =
∨

k∈ω

∧

n≥k

xn,

limxn = x if limxn = limxn = x. Let us remark that Os(C) = {f ∈ Cω :
limf(n) = 0}. Since lim (xn ∨ yn) = limxn ∨ lim yn for arbitrary 〈xn〉, 〈yn〉, then
Os(C) is a zero-convergence. Since for any disjoint sequence 〈xn〉,
lim xn = 0, Os(C) is exhaustive. Os(B) has the same property; it follows from the
fact that B is dense in C. The groupwise closedness follows from the definition of
limes superior. Order zero-convergence structures for the Cantor algebra A and its
completions are not Urysohn closed.

2.13 Example Recall that zero-convergence structures are ordered by inclusion
and that there are maximal ones. For an arbitrary algebra B, set

E(B) =
⋂

{I : I is a maximal zero− convergence structure on B}.

E is again a zero-convergence structure, which is Urysohn closed, for it is an
intersection of Urysohn closed structures. How large is it? In [Ja1] it is proven that
D ⊆ E , so in our terminology E is exhaustive. We will prove a little more; first we
will describe a property determining which sequences belong to E .

We are going to assign to each sequence f ∈ Bω two elements from C, the
completion of B.

For a complete Boolean algbera C, Cω is again complete. For f ∈ Bω, let Fil(f)
denote the filter on Bω generated by all subsequences of f and let Idl(f) denote
the ideal on Bω genereated by all subsequences. We allow in this context both,

Fil(f) and Idl(f), to be improper. Put v+(f) =
∧

h∈Fil(f)

∨

n∈ω

h(n) and v−(f) =

∨

h∈Idl(f)

∧

n∈ω

h(n), where the joins and meets are taken in C.
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2.14 Fact. (i) both, v+ and v− are monotone on Bω,
(ii) if g is a subsequence of f , then v+(g) ≥ v+(f) and v−(g) ≤ v−(f).

2.15 Lemma. A sequence f ∈ Bω generates a zero-convergence structure on B if
and only if v−(f) = 0.

Proof. It is evident that for any f ∈ Bω, the ideal Idl(f) ⊆ Z if and only if
v−(f) = 0. �

Set
Q(B) = {f ∈ Bω : (∀g ∈ Idl(f)) v+(g) = 0}.

The following theorem provides the promised description and estimation of the size
of E .

2.16 Theorem. For any algebra B, Os ⊆ E = Q.

2.17 Corollary. (Jakub́ık, [Ja1]) Any zero-convergence structure can be extended
to an exhaustive one.

The proof of the theorem is devided into the two lemmas below.

2.18 Lemma. Q ⊆ E.

Proof. (i) We show that for f ∈ Q, Idl(f) ⊆ Z. If not, then there is g ∈ Idl(f)
with

∧

{g(n) : n ∈ ω} ≥ a > 0 for some a ∈ B. Then for every sequence h ∈ Fil(g)
we have h ≥ ka, therefore v+(g) > 0, which is a contradiction with the definition
of Q.

(ii) Assume f ∈ Q and I is a maximal zero-convergence structure. Our aim is to
show that f ∈ Q. From the maximality of I we have f ∈ I if and only if for any
h ∈ I the ideal generated by Idl(f) ∨ {h} is a part of Z.
Assume that f /∈ I and so there is some h ∈ I such that the ideal generated by
Idl(f) ∨ {h} is not a part of Z. Then there is a g ∈ Idl(f) such that g ∨ h /∈ Z,
i.e. there is an a ∈ B+ and a subsequence q of g ∨ h so that q ≥ ka. Since both
Idl(f) and I are closed under subsequences and downward closed, we can pick
g, h such that g ∨ h = ka and h = ka − g. Then necessarily v+(g) ≥ a. For any
g0, ..., gm−1 subsequences of g, we have corresponding subsequences h0, ..., hm−1 of
h and

∨

{(g0∧...∧gm−1)(n) : n ∈ ω} = a −
∧

{(h0∨...∨hm−1)(n) : n ∈ ω}. Since
h ∈ I, so are h0, ..., hm−1, and therefore

∧

{(h0∨...∨hm−1)(n) : n ∈ ω} = 0. We
showed that v+(g) = a ∈ B+, which is a contradiction. Thus f ∈ I, henceQ ⊆ I. �

2.19 Lemma. If f ∈ Bω and v+(f) > 0, then f /∈ E.

Proof. We assume that for a given f , v+(f) ≥ a ∈ B+. Put g = ka − f . We
show that v−(g) = 0, so g is contained in some maximal zero-convergence structure
which cannot contain f since f ∨ g ≥ ka. Let g0, ..., gm−1 be subsequences of g
and f0, ..., fm−1 corresponding subsequences of f . Since a−

∧

{(g0∨...∨gm−1)(n) :
n ∈ ω} =

∨

{(f0∧...∧fm−1)(n) : n ∈ ω} ≥ a, necessarily
∧

{(g0∨...∨gm−1)(n) : n ∈
ω} = 0. This proves that v−(g) = 0. �
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Proof of Theorem 2.16. (i) Verify that Q = E . From Lemmas 2.18 and 2.19 we
know that if Idl(f) is a part of any maximal zero-convergence structure, then for
any g ∈ Idl(f), v+(g) = 0, i.e. f ∈ Q. Since for g ∈ Idl(f), Idl(g) ⊆ Idl(f), if
f ∈ Q, so is Idl(f) ⊆ Q. Thus Q = E .

(ii) Verify that Os ⊆ Q. Let C be a completion of B and f ∈ Bω so that lim f = 0.
Then Idl(f) ⊆ Os and for any g ∈ Idl(f),

∧

k∈ω

∨

n≥k

g(n) = 0, and so v+(f) = 0.

This shows that f ∈ Q. �

Now we can summarize the various zero-convergent structures discussed up to
now in the following diagram.
For any Boolean algebra B, and any dense family F of ultrafilters on B,

Fin ⊆ D ⊆ L ⊆ L(F) ⊆ Os ⊆ E .

All inclusions follow directly from the definitinions of the corresponding zero-
convergence structures, possibly except L(F) ⊆ Os ⊆ E . The latter of these
two inclusions is proven in the previous theorem, and for the former it suffices
to realize that L(F) is groupwise closed and Os is the largest groupwise closed
zero-convergence structure.

The following corollary is really a consequence of the notions and techniques
introduced so far.

2.20 Corollary. If Conv0(B) denotes the family of all zero-convergence structures
on a Boolean algebra B, then Conv0(B) with the inclusion is a complete lattice if
and only if (∀f ∈ Bω)(v−(f) = 0 =⇒ v+(f) = 0).

3. When Z is a zero-convergence structure.

In this section we answer our main question when is the whole Z a zero-conver-
gence structure?.

3.1 Definition. We say that the Cantor algebra A is almost regularly embedded
into a Boolean algebra B if there is A′, a subalgebra of B, so that

(i) A′ is isomorphic to A, and
(ii) there is a set {xn : n ∈ ω} of generators of A′ such that for any infinite

subset X of ω,
∨

B{xn : n ∈ X} = 1 and
∧

B{xn : n ∈ X} = 0.

3.2 Theorem. For any B the following are equivalent.

(i) Z is a zero-convergence structure,
(ii) Z = Q,
(iii) for any a ∈ B+, the Cantor algebra A cannot be almost regularly embedded

into B�a.

Recall, that B is (ω, 2)-distributive if for any sequence 〈an : n ∈ ω〉 ∈ Bω and
for any b ∈ B+, there is a c ≤ b, c 6= 0, such that for any n ∈ ω, either c ≤ an
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or c ∧ an = 0. Thus an (ω, 2)-distributive algebra satisfies (iii), and so Jakub́ık’s
result [Ja] that for an (ω, 2)-distributive Boolean alebgra, Z is a zero-convergence
structure, follows as a direct consequence of the theorem.

Proof. (i) ↔ (ii) is clear.
Proving not (i) → not (iii). Z is not a zero-convergence structure iff Z is not an
ideal iff there are a ∈ B+ and f, g ∈ Z such that f ∨ g = ka. Then {f(n) : n ∈
ω} ⊆ B�a. Let A′ be a subalgebra of B�a generated by {f(n);n ∈ ω}. Then A′ is
countable. Moreover, it is atomless, otherwise there is an atom c 6= 0 and so for any
n, either c ≤ f(n) or c∧ f(n) = 0. One of those cases must happen infinitely many
times. The former contradicts the fact that f ∈ Z, while the latter contradicts the
fact that g ∈ Z. Thus A′ is isomorphic to the Cantor algebra.
For proving not (iii) → not (i), set f(n) = xn and g(n) = a − xn. It follows that
f ∨ g = ka, hence Z is not an ideal. �

In the following we will characterize some Boolean algebras that satisfy the
theorem using their forcing properties. We shall explain how some of the notions
discussed previously can be reinterpreted in terms of properties of reals in generic
extensions and restated in the language of forcing.

Recall well-known basic relations concerning the interrelationship of functions
and subsets of ω in a generic extension and the ground model. Let M denote a
generic extension of V . X ⊆ ω in the extension is said to be an independent (or
splitting) real over V if for all Y ∈ [ω]ω ∩ V both X ∩ Y and Y − X are infinite.
A function f ∈ M , f ∈ ωω, is a dominating real over V iff for all g ∈ ωω ∩ V for
all but finitely many n ∈ ω, g(n) ≤ f(n). M is an ωω-bounding extension of V if
every f ∈ M , f ∈ ωω is bounded by a g ∈ ωω ∩ V , i.e. f(n) ≤ g(n) for any n.

If B is a Boolean algebra and C its completion, sequences from Cω can be viewed
as cannonical names for all reals in a generic extension when forcing with (B+,≤)
or (C+,≤). Sequences from Bω can be viewed as names for elements of a subfield
of all reals in the generic extension. If G is a generic filter on C over V , then a real
(= subset of ω) in V [G] named by f ∈ Cω is fG = {n : f(n) ∈ G}.

Z(B) is thus a set of names of reals and hence determines a set of reals in any
generic extension. The question which set of reals in a generic extension Z(B)
determines? has an answer in the following fact.

3.3 Fact. For any f ∈ Bω, f ∈ Z iff for any generic filter G on B, fG ∈ V [G]
does not contain an infinite subset from V .

In fact, more is easy to see.

3.4 Fact. (i) For any generic filter G on B, ZG = {fg : f ∈ Z} is a family of

subsets of ω in V [G] closed under taking subsets with the property that
ZG ∩ V = [ω]<ω.

(ii) Z is a zero-convergence iff for any generic filter G on B over V , in V [G],
ZG is a proper ideal on ω.
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Similarly, the question when Z is a zero-convergence structure? can be answered
using the forcing properties of B.

3.5 Theorem. Z(B) is a zero-convergence structure iff for any generic filter G
on B and any f ∈ Bω, fG is not an independent real in V [G].

Proof. We shall prove the negated version of the equivalence, i.e. Z is not a zero-
convergence structure iff there are a ∈ B+ and f ∈ Bω such that for any generic
filter G on B containing a, fG is an independent real in V [G].

Let assume that Z is not an ideal. Take f ∈ Bω and a ∈ B+ so that f ∈ Z and
g = ka − f also belongs to Z. Let X ⊆ ω be infinite. Since

∨

n∈X

f(n) = a ∈ G, it

follows from the genericity of G that there is n0 ∈ X so that f(n0) ∈ G. For any
k ∈ ω, the set Xk = {n ∈ X : n > k} is again infinite and so

∨

n∈Xk

∈ G, therefore

for some n1 > k, f(n1) ∈ G. This argument shows that X ∩ fG is infinite. Since
g ∈ Z and gG = ω − fG, it has the same property,

∨

n∈X

g(n) = a for any X ∈ [ω]ω,

and the same argument as for f shows that X ∩ gG = X − fg is infinite. Thus fG

is an independent real.

For the proof of the opposite implication, assume that for any generic filter G on B
over V there is an f ∈ Bω such that fG is an independent real in V [G]. Consider
an infinite subset X of ω from the ground model. Since X ⊆ fG does not hold,
there is an n ∈ X such that f(n) /∈ G. Thus

∧

n∈X

f(n) /∈ G. Let C be a completion

of B. For the element c = lim f(n) −
∨

X∈V ∩[ω]ω

∧

n∈X

f(n) from C there is an a ∈ B

so that a ≤ c and a ∈ G. Set f(n) = f(n) ∧ a. Then fG ∈ Bω, fG = fG and from
the independence of fG we get that ka − f ∈ Z and f ∈ Z. Thus Z cannot be an
ideal. �

Hence any forcing notion that does not add an independent real gives an example
of a complete Boolean algbera B for which Z(B) is a zero-convergence structure.
Among them the ones that add a real, but not an independent real, are the non-
trivial and interesting ones. There are several examples of such forcing notions. The
most familiar are Sacks forcing ([Sa]), Miller forcing ([Mi]), Blass-Shelah forcing
([BS]), and Matet forcing ([B]). Therefore, Boolean algebras of regular open sets
of these partial orders and all their dense subalgebras are examples of non (ω, 2)-
distributive Boolean algebras for which Z is a zero-convergence structure.

It is well known that among the forcing notions mentioned above, only Sacks
forcing is ωω-bounding. On the other hand, any forcing notion adding a dominating
real adds also an independent real and so it is not an example of an algebra where
Z is a zero-convergence structure.

In the following we shall provide a simple description of Z(B) for these examples.
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3.6 Definition. Let B be a σ-complete Boolean algebra. A sequence f ∈ Bω has
an absolute value if for any subsequence g of f , lim g(n) = lim f(n), lim g(n) =
lim f(n). In such a case, the value a = lim f(n) − lim f(n) is called the absolute
value of f and we denote it by abs lim f(n) = a.

Recall the definition of one of the standard cardinal invariants of the continuum,
t, which is is the smallest cardinality of a strictly decreasing chain of infinite subsets
of ω (ordered by inclusion modulo finite sets) without an infinite lower bound.

The following Lemma is a generalization of a result from [Vl].

3.7 Lemma. Let B be a σ-complete algebra satisfying the t-cc. Then for any
f ∈ Bω, there is a subsequence g of f which has an absolute value.

Proof. Note that subsequences of f are determined by subsets of ω. If g is a
subsequence of f , then lim g(n) ≤ lim f(n) and lim g(n) ≥ lim f(n). For an X ∈
[ω]ω, set aX = lim {f(n) : n ∈ X} − lim {f(n) : n ∈ X}.

Assume that such subsequence g does not exist. Then we can construct a descending
chain 〈Xα : α < t〉 of subsets of ω such that for α < β, |Xα − Xβ | = ω, and
|Xβ −Xα| < ω, and aXα

> aXβ
.

Then {aXα
− aXα+1

: α < t} is a disjoint family of size t, a contradiction. �

3.8 Theorem. Let B be a Boolean algebra satisfying the t-cc and let Z be a zero-
convergence structure. Then Z = U(Os).

Proof. We aim at proving that for any f ∈ Z there is a subsequence g of f with
lim g(n) = 0. Fix f ∈ Z. By Lemma 3.7, there is a g, a subseqeunce of f , with
abs lim g(n) = a for some a ∈ B. Since g ∈ Z, abs lim f(n) = lim g(n) = a. Let us
assume that a 6= 0. Then h = ka − g is in Z and so Z is not an ideal, which is a
contradiction. �

The above examples of Boolean algebras of various forcing notions, for which Z is
an ideal, do not satisfy the t-cc, though they all satisfy (2ω)+-cc. An interesting open
problem is whether there is a ccc complete atomless countably generated Boolean
algebra B for which Z is a zero-convergence structure. The positive answer to the
question is certainly equiconsistent with ZFC. For, consider S, a a complete Boolean
algebra of regular open sets of Sacks forcing. It is known [GJ] that S is (σ-closed *
ccc)-decomposable, i.e. there is a C, a complete subalgebra of S, such that C has a
σ-closed dense subset and for any generic filter G on C, the following holds true in
V [G]: when G is extended to G̃ on S by G̃ = {a ∈ S : (∃b ∈ C∩G)(a ≥ b)}, then the

quotient algebra S/G̃ is atomless, countably generated, and satisfies the ccc. Since

S does not add an independent real, in the extension, Z(S/G̃) is a zero-convergence
structure.

3.9 Corollary. Let B be a (σ-closed * ccc)-decomposable Boolean algebra and let
Z be a zero-convergence structure. Then Z = U(Os) = E.
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Remark. The sequential topology determined by Os is neither Hausdorff nor
Fréchet for completion of any of the four forcing notions discussed above, see [BGJ].

We do not know of an example of an algebra for which U(Os) 6= E . We con-
clude with a conjecture. For any Boolean algebra B, if Z(B) is a zero-convegence
structure, then Z(B) = U(Os(B)).
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