
1

Towards Sequential Structure-Processing Learning:
Simulation of Forgetting/Retrieving Algorithm

Ivan Bruha and Frantisek Franek
McMaster University

Hamilton, Ont.
Canada

Abstract

Structure-processing learning systems are one of the useful means for automatic knowledge acquisition, what is
one of the fundamental components of expert systems. However, most recently developed learning systems have several
limitations, namely all training patterns have to be stored in the memory of the learning system; they are not able to process
both structural and numerical data; they lack processing of uncertainty. To remove those limitations a sequential learning
system capable of processing uncertainty has to be developed.

The paper discusses one possible combination of the processing of both structural and numerical information in
one system, and embedding such reinforcement techniques that will form a genuine sequential learning system. The
proposed system will be able

� to process structured patterns together with their numerical uncertainties;
� to form a structural description of classes (concepts) accompanied by their statistical attributes;
� to forget as well as retrieve elements of a class (concept) description (model).

The proposed similarity-based learning-from-examples system (whose working name is MILEARN) has two major
stages: batch stage and sequential one. An initial class (concept) description (model) is formed in the batch stage, after
that all training patterns are abandoned, and the learning system will subsequently read new training patterns. Only the
latest modifications of the class (concept) description and one or a few training patterns will retain in the memory. Thus,
the learning system will become genuine sequential one.

1. Introduction

Learning systems are one of the useful means for knowledge acquisition. However, most structure-processing
learning systems developed so far exhibit several weak attributes (see e.g. [Ben87], [Da87]):
- majority of working learning systems are not sequential, i.e. all training patterns have to be stored in the memory of

the learning system;
- they are not able to process both structural and numerical data;
- most systems lack processing of uncertainty.

Therefore, we have been looking into possible models that could process both structural and numerical
information within one model. We are developing a learning system (with momentary name MILEARN) which would be
able
- to process structured patterns together with their (numerical) likelihoods (uncertainties), see e.g. [Ve85];
- to form a structural description of classes (concepts) such that the models and their substructures will be accompanied

by statistical (numerical) attributes;
- therefore, it will be able to forget already scanned patterns, i.e. it becomes a (genuine) sequential algorithm of learning.

2

We view learning as heuristic search through a space of possible class (concept) descriptions. We studied some
machine learning algorithms and found out that the following models of learning were most promising vehicles for our
project:

1. Michalski et al.: AQ and INDUCE [Ben87], [Mi80], [Mi83b], [Mi87]
It is a well-known structure-processing similarity-based learning system, using deduction as the inference strategy.
 Entire training set has to be retained in the memory. There is no support of numerical (statistical) processing (and
it cannot be embedded).

2. Purswani: COHER & TRANSFORM [Pur88]
Besides structured representation of patterns and class (concept) description, there exists a little support for numerical
(statistical) processing. However, it does not comprise uncertainty processing. The system uses three inference
strategies: deduction, abduction, and association. Again, the entire training set must be stored in the memory of the
learning system.

3. Bratko et al.: ASSISTANT [Ce87]
It can process numerical data; acquired knowledge on classes (concepts) is represented as decision trees [Qui86].
Domain-specific knowledge or deduction, however, cannot be applied in principle.

Next three sections of our paper describe concisely both stages (i.e. batch and sequential one) of our learning
system. We would like to emphasize here that the entire system has not been implemented and tested in full. The first
(batch) stage is working (almost properly) at present, and it already includes representation of all objects involved in such
a way as to allow an easy extension to the sequential stage, and allow to process statistical (numerical) data that will be
embraced in both pattern and class descriptions. Details can be found in [Br89]. The Section 4 introduces the principal
ideas of the sequential stage of our learning system, especially simulation of forgetting/retrieving algorithm. Notice that
some ideas discussed in Section 4 display only rough conceptions required for genuine sequentiality of our learning system
MILEARN.

2. Two stages of learning

Our learning system MILEARN, which uses the concept of learning-from-examples with a perfect teacher, has two
major stages:

(1) Batch stage is a starting point using established techniques mentioned above. A relatively small training set of
representative patterns is inserted into the internal memory of the learning system, and an initial class (concept)
description (or a minor set of class descriptions) is formed. All training patterns have to be retained in the memory.

(2) Sequential stage. The learning system will forget the initial training set. New training patterns will be subsequently
read and the existing class description(s) will be modified accordingly. The system will retain the latest
modification(s) of the class description(s) and one or a few current training patterns only.

The principle ideas and attributes of representation of both stages of the proposed system are as follows:
- likelihoods (frequencies) of elements of class description and so-called bond nets above these elements,
- reinforcement (refinement) learning algorithm (partly based on the Stochastic approximation theory) for modification

of the likelihoods and bonds, and one for sequential modification of existing structural class descriptions,
- the forgetting and retrieving algorithm, and two levels of class description bases.

Our learning system processes patterns as structures and class (concept) descriptions are depicted by relational
structures, too. Following COHER & TRANSFORM, deduction and association is used for the inference in its batch stage.
The entire algorithm is written in Prolog and both pattern and class (concept) descriptions are depicted as Prolog terms.
 As the consequence, we did not have to develop any special language for pattern and class descriptions. Moreover, the
inference engine of our learning system utilizes all powerful Prolog utilities like pattern matching, backtracking, list
processing.

More precisely, a pattern or class description is a conjunction of elementary descriptions. An elementary
description is symbolized by a Prolog structure, i.e. a functor followed by one or more its components, or an (infix, prefix,

3

or postfix) operation. For the purposes of the learning algorithm, we distinguish two types of components of elementary
descriptions:

� individuals, i.e. elementary objects involved in descriptions of both patterns and classes, e.g. window1 , window2
, car1 ;

� properties of functors such as size, shape, colour .

In the same way, we distinguish two types of functors:

� relational functors, usually with arity 2 or more, that express relationships between (among) their components
(which are individuals), or unary functors that express truthvalue statements;

� attribute functors that express property values of individuals.

3. Batch stage

The learning system in its batch stage reads in a relatively small set of training patterns. These training
examples have to be really representative ones since the learning system will form one or a few initial class (concept)
descriptions (models) by generalizing the information involved in the training set. The request of really
representative training set for initial stages of learning can be found in many other projects related to learning (see
e.g. [Ber88a], [Ber88b]). After the initial class descriptions (models) are formed the entire initial set of training
patterns is forgotten.

As for the representation, a training pattern is depicted by a set of elementary descriptions, each written as
the following Prolog fact

pattern_descr(N,Z,D,F)

where D is an elementary description of the N-th training pattern of the class (concept) Z . Optionally, a training
pattern description can be accompanied by the likelihood (typicality) F of the given pattern description.

As we have already indicated the batch stage of the learning system finds a few (more than one) descriptions
(models) for the given classes (concepts). The I-th model of the class (concept) Z consists of a set of elementary
descriptions represented by Prolog facts

class_descr(Z,I,D,F)

where D is an elementary description of the I-th model having the likelihood (typicality) F .

The likelihood F of an elementary description depicts the relative frequency of its occurrence in the entire
initial training set. One possible way of determining likelihoods is to modify them sequentially according to a
suitable recurrent formula.

1
 If descriptions of training patterns comprise their likelihoods (typicalities), then they will

be embedded to the above frequencies of class description elements, as well.

Although the combination of structural descriptions and numerical likelihoods is more powerful than a pure
structural approach, the likelihoods, however, do not provide sufficient means for the forgetting/retrieving algorithm
of the sequential stage. Therefore, we incorporate another type of numerical data that are involved in the class
descriptions: bonds. Two elementary class descriptions e1 and e2 have the bond b � < 0; 1> , if they have been
inserted into the class model (description) together in b cases out of 100 . All bonds form a so-called bond net.
 The initial bond net is created during the batch stage by means of suitable statistical recurrent formulas. A fragment
of a class description (model) with a bond net is drawn as a relational structure on Fig. 1. Here i1 to i4 are
individuals, r1 to r4 depict relational functors (r2 is a symmetrical one, the others are unsymmetrical), a1, a2

1
 Another way is to compute likelihoods a posteriori using the number of training patterns that strictly match the given

elementary description, divided by the total number of training patterns for the given class (concept).

4

 are attribute functors, p1 is a property of a1 . The numbers in brackets attached to relational and attribute functors
are their likelihoods. The dashed arches symbolize a bond net, and the numbers affixed to them are corresponding
bonds.

Consequently, the result of the batch stage is a certain number of class models for each class (concept) of
the given problem, each model consisting of elementary descriptions class_descr , and the bonds between them.

The batch stage is characterized by a production system with the following parts:

1. Database (a set of facts) is formed by training set of positive
2
 and negative

3
 training examples.

2. Domain-specific knowledge characterizes the assumptions and constrains related to both pattern and class
descriptions. Such specifications cannot be comprised directly in the database since they do not have character of
training examples. Nor can they be involved in the knowledge base because they are specific for a given set of
problems. It currently involves the following pieces of knowledge:
� Domain of linear functors. If an attribute functor has an ordered set of its property values then it is called a

linear functor.
� Hierarchical tree (or set of hierarchies) of structural functors. If an attribute functor has a hierarchical set of

its property values then it is called a structural functor.
� Relationship among functors. We can capture some relations of functors used in pattern and class descriptions.
� Additional knowledge related to the given problem comprises any facts and rules that could by used in the

inference process. The operator -> is defined for such domain-knowledge expressions.

3. Knowledge base (a set of production rules) represents general knowledge which is used for finding a
required class (concept) description. At present, it consists of two groups of production rules [Mi83a], [Pur88]:

Group I: Description-handling rules

� The Dropping Condition Rule: a class description can be generalized by removing an elementary class
description.

� The Deduction Rule: if a left-hand side of a rule of type A -> B in the domain-specific knowledge is satisfied
then its right-hand side B is added to the description.

2
 belonging to the given trained class

3
 belonging to other classes (concepts)

� The Association Rule: if an elementary description involves an individual X , e.g. f(X,p) , and the domain-
specific knowledge comprises a fact say g(w,X) involving the individual X then the latter fact is added to the
description.

Group II: Component-modifying rules

� The Domain Extension Rule: if two elementary class descriptions are formed by the same linear functor whose
property value is A and B respectively, then they can be replaced by a single elementary class description
whose property value is specified by the interval A .. B .

� The Hierarchy Climbing Rule: if two elementary class descriptions are formed by the same structural functor
whose property value is A and B respectively, then they can be replaced by a single elementary description
whose property value is a more general value of both A and B .

� The Turning Constants Into Variables Rule: if two (or more) elementary class descriptions with the same functor
involve various 'types' of individuals then they can be replaced by a single elementary description with a single
individual of a 'general' (i.e. not specified) type.

5

4. Inference engine finds out which production rules are applicable, chooses one among these rules and
applies it. It produces a discriminant (i.e. consistent and complete) class description. Its top level flow chart is as
follows:

1. Read in the first positive training pattern x1 , and add all applicable elementary descriptions to x1 .

2. By decomposing the description of the training pattern x1 create all possible class descriptions each consisting
of one elementary description of x1 , and insert them to the list Plausible of plausible class descriptions.

3. Read in the rest of the training set, and add all applicable elementary descriptions to them.

4. Do the following routines 4A and 4B simultaneously:
4A. Form a consistent class description from the list Plausible. If it is not complete, generalize it by using

the component-modifying rules (group II). Thus, the result is a consistent and complete (i.e., discriminant)
description of the given class.

4B. Form a complete class description from the list Plausible in a similar way. If it is not consistent,
specialize it by using description-handling rules (group I). Thus, the result is a consistent and complete
(i.e. discriminant) description of the given class (concept).

5. Generate Ncd (a given number) consistent and complete (i.e. discriminant) class descriptions.

4. Sequential Stage

At the moment when the learning system completes its batch stage, all initial training patterns are forgotten,
and only the discriminant class models retain in its memory. Now, the sequential stage begins: a new set of training
patterns is subsequently inserted by the teacher, and the learning system reads one pattern at a time, processes it,
modifies the current class model (or models), and forgets the pattern currently processed. However, if there arises
a larger discrepancy between current model(s) and the current training pattern on its input, then the system retains
a few (more than one) additional training examples in its memory for the purpose of renewing the model consistency.

The primary motto of the sequential stage is to refine the existing class models. It can be done in two ways:
- by structural refinement, i.e. by modifying the existing structure, or
- by numerical refinement, i.e. by refining the likelihoods (frequencies) of elementary descriptions and bonds.

The first type of the class model modification (structural refinement) will be invoked only if there is a larger
discrepancy between existing class models and the current training pattern on the input, i.e. if a so-called match
accordance is below a certain level

�
 . The match accordance can be defined as a percentage of elementary

descriptions that match the given pattern (training example); the formula for the match accordance can comprise the
likelihoods (frequencies) of the elementary class descriptions and the likelihood (typicality) of the input training
pattern, too. To solve the given discrepancy, the learning system will retain the unfittable training pattern and read
in a relatively small set of training patterns in order to modify properly the structure of the existing class model, i.e.
to add (or delete) some of elementary class descriptions.

The latter type of modification, the numerical refinement, adjusts numerical data involved in the class
models. As training patterns are coming step-by-step onto the input of the learning system, both likelihoods
(frequencies) of elementary descriptions and their bonds are modified according to a suitable reinforcement
algorithm. This modification takes place within each step, i.e. even if the current input training pattern is covered
by an existing class model. In such a case, the elementary descriptions which match the input training pattern will
be reinforced, the others will be weaken. The same procedure is applied to the bonds.

If the frequency (likelihood) of an elementary description declines below a certain threshold � , then we
can interpret it as a weakness (scarcity) of the given elementary description. A human (as a learning system) might
forget this piece of knowledge. Our learning system will emulate the same: it will forget such a description. Before
describing the forgetting process we have to introduce a new concept: description bases. We consider two class

6

description bases: the top and the bottom one. The top description base contains all elementary descriptions of all
class models that the learning system remembers. The bottom description base comprises all forgotten elementary
descriptions. The forgetting process looks as follows:
� the elementary description that is to be forgotten will be moved from the top description base to the bottom one,

but
� its bonds with remaining elementary descriptions of the same model remain in the top base.

A forgotten elementary description will not participate in further processing, thus saving time required for
updating class model(s) as well as saving the memory. More specifically, its frequency (likelihood) will not be
modified at all when stored in the bottom description base. Nor its bonds to other elementary description will be
changed, but as we have already mentioned, they will retain in the top description base. An illustrative example of
a top and bottom description bases is on Fig. 2.

If we, humans, forget something, we are - sometimes - able to retrieve it since we have not actually forgotten
a given piece of knowledge completely but our mind has pushed it from its top level down to a bottom level. As
soon as a specific situation remind us something we are able to retrieve a forgotten piece of knowledge by withdraw-
ing it from the bottom of our mind. This process is emulated by a so-called retrieving algorithm in our learning
process. Its principle is following:

� The retrieving process will be invoked if there arises a larger discrepancy between the current class models and
the given input training pattern, i.e. if the match accordance is below the threshold

�
 .

� Because of no sufficient support for the current input training example, the system will retrieve some elementary
descriptions from the bottom description base to the top one. It will scan bonds between elementary
descriptions at the top description base and those at the bottom description base and retrieve only those bottom-
base elementary descriptions whose bonds are greater than a given threshold � .

� Those retrieved elementary descriptions which do not match the given input training example will, however,
be pushed back to the bottom level, for they have not helped to remove the existing discrepancy. Only those
which match the input example will remain in the top description base and their bonds and frequencies
(likelihoods) will be reinforced.

As we have stated at the beginning, the sequential stage has not been implemented nor tested yet. The above
description just indicates the interesting aspects of a sophisticated approach to genuine sequential learning. The
entire system, however, is under an intensive development.

5. Conclusion

The paper is describing the underlying ideas of both batch and sequential stages of our structure-processing
learning system MILEARN. The batch stage, which has been implemented completely, includes all additions and
representations that are required for the sequential stage. The principle differences between similar structure-
processing learning systems and our batch stage are:

1. Our learning algorithm is being implemented in the programming language Prolog (as a matter of fact, an
extension of Prolog, called McPOPLOG [Br88], is being used). We have not developed any language for pattern and
class description (such as VL for INDUCE). Rather, we describe patterns and classes by means of Prolog terms
exclusively.
2. Our learning system is using deduction as well as association as inference strategies. Furthermore, it utilizes
not only the usual development of a discriminant concept description from a consistent model to a complete (and
consistent) one through generalization, but also the opposite scheme going from a complete model to a consistent
(and complete) one through specialization.
3. The learning system forms not one but a given number (Ncd) of discriminant class descriptions (models).
4. Elementary descriptions for each discriminant description (model) are accompanied by their likelihoods (or
frequencies).
5. An initial bond net among elementary class descriptions is formed.

7

There are many open problems which will have to be solved during the actual implementation. But even
after that, several extensions and modifications should be analyzed and developed. Let us just mention one possible
extension. As we already remarked, the learning system finds Ncd discriminant class models, when all initial (batch-
stage) training patterns are scanned and processed. At present, we require that all class models be consistent and
complete, but if this requirement could not be satisfied then the system should at least choose the consistent models
with the highest accuracy, i.e. those which cover initial training patterns with highest likelihoods (that is perhaps
the reason why [Ber88a] may use the term typicality of training examples instead of our likelihood).

Acknowledgement

This research has been supported by NSERC operating research grant A8034 (project leader I. Bruha) and by
NSERC operating research grant OGP0025112 (project leader F. Franek).

References

[Ben87] Bentrup, J.A., Mehler, G.J., Riedesel, J.D.: "INDUCE 4: A program for incrementally learning structural
descriptions from examples", Techn. Report UIUCDCS-F-87-958, Univ. of Illinois, Feb. 1987

[Ber88a] Bergadano, F. - Matwin, S. - Michalski, R.S. - Zhang, J.: "A general criterion for measuring quality of
concept descriptions", Techn. Rept., AI Center, George Mason Univ., 1988

[Ber88b] Bergadano, F. - Matwin, S. - Michalski, R.S. - Zhang, J.: "Representing and acquiring imprecise and
context-dependent concepts in knowledge-based systems", In: Z.W. Ras - L. Saitta (eds.): Methodologies
for Intelligent Systems 3, Elsevier Science Publ. Co., 1988

[Br88] Bruha, I.: "AI multilanguage system McPOPLOG: the power of communication between its subsystems",
The Computer Journal (accepted Sept. 1988)

[Br89] Bruha, I. - Franek, F.: "On a knowledge-based model of structure learning: methodology and
implementation", 1989 European Simulation Conf., Rome, June 1989

[Ce87] Cestnik, B., Kononenko, I., Bratko, I.: "ASSISTANT 86: a knowledge elicitation tool for expert systems".
In: Bratko, I., Lavrac, N. (eds.): "Progress in Machine Learning", Wilmslow, Sigma Press, 1987

[Da87] Dalkey, N.: "Models vs. inductive inference for dealing with probabilistic knowledge", Techn. Rept.
CSD-870050, UCLA, 1987

[Mi80] Michalski, R.S.: "Pattern recognition as rule-guided inductive inference", IEEE Trans. Pattern Analysis
and Machine Intelligence, Vol. PAMI-2, No. 4, 349-361, July 1980

[Mi83a] Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.): Machine Learning, an Artificial Intelligence
Approach. Tioga Publ. Comp., California, 1983

[Mi83b] Michalski, R.S.: "A theory and methodology of inductive learning", in [Mi83a]
[Mi87] Michalski, R.S., Stepp, R.E.: "INDUCE 3: A program for learning structural descriptions from examples",

Techn. Report, Dept. Computer Science, Univ. Illinois, Urbana, 1987
[Pur88] Purswani, F.S.: "A probabilistic reasoning-based approach to machine learning", Techn. Report

UIUCDCS-R-88-1475, Dept. Computer Science, Univ. of Illinois at Urbana-Champaign, 1988
[Qui86] Quinlan, J.R.: "Induction of decision trees", Machine Learning, Vol. 1, 81-106, 1986
[Ve85] Venkatasubramanian, V.: "Inexact reasoning with expert systems: a stochastic parallel network approach",

2nd Conf. Artificial Intelligence Applications, Miami Beach, Florida, Dec. 1985

8

Fig. 1. A fragment of a class description.

Fig. 2. The top and bottom description bases. Here i1 to i3 are individuals, r1 to r3 are relational functors, f1 to f3 are
their likelihoods, b12 to b23 are bonds. The dotted line separates the top base and the bottom one.

