The Maximum Number of Runs in a String*

Frantigek Franék!, R. J. Simpson?, and W. F. Smyth!-3

! Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1
smyth@mcmaster.ca
Wwww.cas.mcmaster.ca/cas/research/groups.shtml

2 Department of Mathematics & Statistics, Curtin University
GPO Box U1987, Perth WA 6845, Australia

simpson@math.curtin.edu.au

% Department of Computing, Curtin University, GPO Box U1987
Perth WA 6845, Australia

April 22, 2003

Abstract. A run (maximal periodicity) in a string x is a nonempty
substring «[i..j] = v*u’ of minimum period |u|, k > 2, that is “nonex-
tendible” (neither x[i—1..j] nor «[i..j+1] is a run of period |u|). Runs pro-
vide a basis for computing repetitions (adjacent repeating substrings)
in x, and a recent paper presents an algorithm that computes all the
runs in x in time linear in |xz|. If p(n) denotes the maximum number of
runs that can occur in any string of length n, the same paper also shows
that p(n) < kn, but provides no information about the magnitude of the
constant k. In this paper we first suggest an approach to proving that in
fact k < 2. Then, more precisely, we identify an infinite family of strings
of increasing lengths mn1,ng, such that

. 3
11_1{{.10 r(ni)/ni = m,

where 7(n;) is the number of runs in the string of length n;. We provide

evidence to support the conjecture that this limit is a maximum over

all infinite families of strings. Finally, we establish a restriction on the

frequency of occurrence of letters of the alphabet in strings that contain

p(n) runs.

1 Introduction

The study of repetitions in strings is as old as the study of strings themselves:
the paper that is generally considered to have founded “stringology” [12] raised
and solved problems about the existence/construction of strings of infinite length

* The work of the first and third authors was supported in part by grants from the
Natural Sciences & Engineering Research Council of Canada.

that, for a given integer r > 2, contain no repetitions of exponent r. Much later,
with the invention of digital computers, it became clear that the identification
of the repetitions in given finite strings was important in a variety of contexts:
computational biology, data compression, cryptology, coding theory, and others.
Thus in the early 1980s three quite different repetitions algorithms were proposed
[2,1,10], all of them executing in O(nlogn) time in the worst case. The efficiency
of these algorithms depends critically upon the definition of “repetition” [2].

Given a string @ = x[1..n], a triple (¢, p, r) of positive integers is said to be a
repetition in x if and only if r > 2 is the largest integer such that x[i..i+rp—1] =
x[i..i+p—1]", where x[i..i+p—1] is not itself a repetition. The integers i, p and
r are called the position, the period and the exponent, respectively, of the
repetition. The substring x[i..i+p—1] is called the generator.

Thus only maximal repetitions of minimum period need to be reported: in
y = 00001010101, for example, the repetitions are completely specified by the
outputs (1,1,4), (4,2,4) and (5,2,3). It was shown in [2] that the number of
repetitions in a Fibonacci string fr, (fo =0; fi=1; Yn > 2, fr, = fn—1fn—2)
is O(|fn|log|fnl); it follows that all three of the repetitions algorithms cited
above have asymptotically optimal time complexity.

In [9] Main extended the idea of a repetition somewhat: he realized that
in some cases output could be reduced because the generators of overlapping
repetitions were simply rotations (cyclic shifts) of one another. For example, in
the string y shown above, the repetition (5,2, 3) = (10)? could be easily inferred
from the repetition (4,2,4) = (01)*. Formally: a run (mazimal periodicity)
in a string x is a 4-tuple (i,p,r,t), t € 0..p—1, where

(i,p7r)7 (i+]‘7p,r), crt (i+t,p7r)
and, for r > 3,
(t+t+1,p,r—1), (i+t+2,p,r—1), ..., (i+p—1,p,r—1)

are all repetitions, but neither (i—1,p,r) nor (i+t+1,p,r) is a repetition. The
integer t is the tail of the run.

Thus a run is nonextendible: it cannot be extended either to left or right.
And every run corresponds to t+1 repetitions of exponent r plus, for r > 3, an
additional p—t—1 repetitions of exponent r—1. Observe that if u = x[i..i+p—1]
is the generator of a run (i,p,r,t), we may write

(i,p,r,t) = u"ull..t].

In the above example, the runs in y are (1,1,4,0) = 0* and (4,2,4,0) = (01)*.

In [9] the idea of a run was used to reduce output and so to compute all the
“leftmost” runs in & = x[1..n] in O(n) time, assuming that an s-factorization
[8,13], hence a suffix tree, of « had already been computed. It has since been
shown [3] that on an indexed alphabet (that is, equivalent to integers 1.«
where @ € O(n)), a suffix tree of can be computed in @(n) time; since the
s-factorization is also computable from the suffix tree in ©(n) time, it follows
that Main’s algorithm computes the “leftmost” runs in & in linear time.

In [5,4] it was shown that runs in certain special strings could be calculated
in linear time. But then in [6] Kolpakov & Kucherov completed Main’s work,
showing in general how the “rightmost” runs also could be calculated. In addition
they proved that the maximum number p(n) of runs that could exist in any string
x[1..n] satisfied

p(n) < kin — kay/mlogyn, (1)

for some positive constants k; and ks. Thus, in principle, the calculation of all
the runs in ¢[1..n] can be completed in @(n) time.

This remarkable achievement is not problem-free, however. First, it is not
clear that Farach’s linear-time suffix tree algorithm [3] is practical for long
strings. More generally, the components (suffix tree construction, s-factorization)
of the linear-time all-runs algorithm seem to be unnecessarily sophisticated: one
would hope to be able to find a more direct approach, based on a more precise
and focussed understanding of periodicity in strings. Finally, the very technical
and lengthy proof of (1) is not constructive: it provides no information about
the size of the constants ki and ks.

At the same time, [6] includes a table, based on exhaustive calculation,
that gives p(n) for n = 5,6,...,31, and specifies corresponding run-mazximal
strings. On the basis of these results, it seems very likely that the following
propositions are true for all n > 1 [11]:

(1) p(n) <n;
(2) pln) < p(n—1)+2 (of course p(n) > p(n—1));
(3) p(n) is attained by a cube-free string on {0, 1}.

To date, however, to our knowledge, none of these simple statements about
periodicity has been proved.

In this paper we take a first step toward establishing propositions (1) and
(3). In Section 2 we outline a plausible approach to proving something close to
(1). In Section 3 we describe constructions suggesting that

lim p(n) =0.92705--- .

3
/n=—"r
n—o00 1+ \/5
Finally, in Section 4 we prove a result that partially characterizes the run-
maximal strings. Our expectation is that this line of research will eventually
enhance our understanding of periodicity in strings so that a simpler and more
natural linear-time algorithm for the computation of runs will emerge.

2 A Possible Approach to Proving that p(n) < 2n

In this section we describe a possible strategy for proving that p(n) < 2n. We say
“possible” because the strategy rests on conjectures whose proof (or disproof)
has so far eluded us. However, in our opinion, there is enough supporting evidence
for these conjectures to justify their presentation here.

We begin with basic results about runs and their periods:

Lemma 1. Suppose that a run R = (i,p,r,t) exists in a string . Then for
every j € 1..(r—1)p+t, no run of period p occurs at position i+j of x.

Proof. Suppose such a run exists. Then it is necessarily left-extendible to R, a
contradiction. O

For any string & = x[1..n], let rp(x) be the number of runs of period p > 1
in &. Of course, for p > n/2, rp(x) = 0. The total number r(z) of runs in x is
then given by

[n/2]
r(@) = rp@). (2)

p=1
Lemma 2. For any string z[1..n], rp(z) < |n/(p+1)].
Proof. A direct consequence of Lemma 1. O

Of course it is immediate from (2) and Lemma 2 that p(n) € O(nlogn); in order
to be able to prove more, we need to be able to establish bounds on partial sums
of the r, values. For example, it is not difficult to convince oneself that

ri(®) + ra(x) < [n/2], (3)

but the example
x = 10010001001

with n = 11 and r34+7r4 = 3 > |n/4] encourages caution in extending this
relationship in a straightforward fashion. We believe however that the following
is true:

Congjecture 1. For any string [1..n] and every integer k > 2,
rop—1(x) + rop(x) < [n/(2k — 1)].
Indeed, we believe a stronger relationship holds:
Conjecture 2. For any string x[1..n] and every integer k > 2,
2k 1
S o i@ < [n/(25-1)).
j=0

This conjecture, if true, would together with (3) imply that p(n)/n < 2n.

3 Constructing Strings with Many Runs

In this section we produce a sequence of strings in which the ratio of the number
of runs to the string length approaches 3/(1 + v/5).

We begin by defining an operator o that composes two given strings x),
ny according to the following rule:

_ JxMyif A=
a:)\ouy—{my if A £ u. ()

Thus the composition of two strings has length less by one or two than the
sum of the lengths of its components. In our search for run-rich strings, we try
therefore to identify strings whose composition contains more runs than the sum
of the runs in its two components.

Consider the strings

wq = 01vg10, wy = 10v101,
both of length ¢. Then, for example,
wqg o wg = 01vg101vg10, wg o w1 = 01vg10v;101,
and
|we o wo| = |w1 owi| =20—1, |wgowi| = |wyowe| =2(-2. (5)

Note that for every i € {0,1}, j € {0,1}, w; o w; contains w; as a prefix and
w; as a suffix. Let 7(z) denote the number of runs in a string =, and suppose
that r(wg) = r(w1) = k.

Now we define mappings

f(O) = Wo, f(]') = Ws, (6)
and, for any string & = 2[1..n] on {0,1},
g(x) = f(z[1]) o f(z[2]) o --- 0 f(z[n]). (7)

Next suppose that vg and vq are chosen to be the shortest strings that satisfy
the following condition:

Every possible composition of wg and w; (that is, wg o we, wo o w1,
w1 © Wo, w1 o wsy) contains the 2k runs of its components together with
one additional run.

Thus we suppose that

r(wg o wy) = r(wi1 owg) = 2k+1 (8)
and, since wg o wg and wy o wy are themselves runs,

r(wg o wo) = r(wq owy) = 2k+2. (9)

Based on these assumptions, we can compute |g(z)| and r(g(x)) for any string
x =zx[l.n]:

— Let g denote the number of occurrences of either 00 or 11 in . Then, using

(5)=(7),

l9(x)| = tn—q—2(n—q—1)
=({-2)n+ (g+2). (10)

— Since every run in x becomes a run in g(x),

r(g(x)) =r(x) + kn + (n—1)
=r(z) + (k+1)n— 1L (11)

Now we consider iterating the compositions of wg and w; beginning with
some string x:

@)=z g'(x)=g(g" ' (z)),¥i>1. (12)
For example, if z = 0, then ¢° = 0, ¢! = wo, g* = wow1g(ve)w;we, and so on.
We in fact choose = 0 and set x; = ¢%(0),i = 0,1,.... If n; = |z;|, m; = r(z;),

we can rewrite (10) and (11) for every i > 0 as follows:

nit1 = (=2)n; + (g:+2), (13)
Mmit1 = m; + (k:+1)n, -1, (14)
where ¢; is defined to be the number of occurrences of 00/11 in g¢?(0). Since

x =0, go = 0; for i > 0, we suppose that wg and w; both contain ¢ occurrences
of 00/11, so that therefore ¢; = gn;_;. Thus for ¢ > 1, we can use (13) to compute

n; 1

Nyl (é—2)+q(m*) +%’

n; i

and then, setting A = lim;_, n’_lil , we find

1

A= — —
((—2) +qA’

a quadratic equation in A whose positive solution is

 J(=2)7+4q - (t-2)
A= 7 . (15)

Similarly, using both (13) and (14), we can write

nipr ((=2)+ g7t + 27

n;

from which, setting B = lim;_ oo :’;Ll , we find

k+1
R e

Recall that in order to get the maximum number of runs from our construction,
vo and v1 were defined to be the shortest strings, both of length /4, satisfying (8)
and (9). It is easy to verify that no choice for £ = 5 can satisfy these conditions.
However, for £ = 6, we can choose

Vo = 00, V1 =].]., (17)

satisfying (8) and (9) with & = 2, ¢ = 1. In fact, no other choice for £ = 6
improves on (17). Making appropriate substitutions in (15) and (16), we find
A=-2+5and
lim — = = — =10.92705---, 18
imoom; 145 24 18
where ¢ is the golden mean.
We remark that the recurrences (13) and (14) can also be solved directly for
{=6,k=2,q=1, yielding

o 5tV5
T 0
-
T 0

i1, 5—=V5 i1 1
(2+\/5)+ +T(2_\/5)+ Y
(@B - B2

Here are some values of m(i) and n(7):

446| 493|0.905
1924|2090(0.921

0 0 1/0.000
1 2 6/0.333
2| 19{ 27|0.704
3| 99| 116/0.853
4
5

We note that the initial values of this construction do not produce run-
optimal strings: p(6) = 3 > m1 and p(27) = 21 > mso. Nevertheless we state the
following

Conjecture 3. lim,_, p(n)/n = 3/2¢.

Note also that other infinite sequences of strings can be constructed by making
alternate choices of x, wp, wy in (12).

4 The Nature of Run-Maximal Strings

From the available evidence [6, 7] it seems that for every n there exists a run-
maximal string on the alphabet {0,1}. In this section we provide some support
for this conjecture.

Theorem 1. Let x = x[l..n] be a run-mazimal string that contains o > 3
distinct letters. Suppose that one of these letters A occurs fewer than three times.
Then there exists a run-mazimal string of length n that contains a—1 distinct
letters.

Proof. First suppose that & contains exactly one occurrence of A\. Then x takes
the form uAv. Observe that if A is either a prefix or a suffix of @, we can simply
replace it by any one of the other letters and so satisfy the statement of the
theorem. We suppose therefore that the strings 4 and v are nonempty.

Consider now the removal of A from & = x¢. The number of runs cannot increase
as a result and in fact may be reduced by the coalescence of one or more runs
that are suffixes of u and prefixes of v. If there is no such reduction, we can
simply move A to the right end of ¢ in order to form x1, and so as discussed
above satisfy the theorem. If however there is coalescence, u must terminate with
a nonempty square, wy? say, that is also a prefix of v. We may suppose that
wy is the generator of a run and therefore not itself a repetition. We suppose
further that w12 is the longest such square and so write zo = u'w1 > w120,
where u = u’w12, v = w12v’. Now consider

21 = w'wi v w2, (19)

It is clear that a1 cannot contain more runs than xq. Suppose then that x
contains fewer runs than xq. It follows that there must exist some run in «’ 'wl2
that coalesces with a run in wq2v’. In order for this coalescence to take place,
a generator z # wy of the run must coincide with the beginning of w¢? and in
fact it must be true that wq2 = 2%z’ for some prefix 2’ of z.

Since we chose w1? to be the longest square, it follows that |wq| > |2|, hence that
s > 2. Since w1 is not a repetition, |z| cannot divide |wq]|. Consequently both z
and some nontrivial rotation (cyclic shift) of z are simultaneously a prefix of w1,
hence equal. But since z is a generator of a run and therefore not a repetition,
this is impossible. We conclude that &7 must contain the same number of runs
as Tg.

Two cases now arise: if v’ # €, A occurs at a position in @, that lies to the right
of its position in xg; if however v’ = ¢, then we use an isomorphism of the set
of letters of wq into itself (of course excluding \) to transform the suffix v of &g
into w;>. This transformation leaves the number of runs in unchanged, but
now the longest square suffix of w that is also a prefix of v must be a proper
prefix of v. Thus we can always determine a string (19) that shifts A to the
right.

We can continue, applying the same transformation to &1 to compute a new
string x5 that achieves p(n) runs either without A or with a suffix Aw,?2, 0 <
|wz| < |wi]. Continuing this process eventually determines a string x, of length
n—1 that achieves p(n) runs but does not contain A, as required.

Suppose then that * = uAvAw contains exactly two occurrences of A, and

observe that these occurrences can participate in at most one run. It follows
therefore that we can use the transformation just described to form first yA from
vAw, then z\ from uly, so that x is transformed into zA\, where z contains
at least p(n)—1 runs. In fact, since AX is a run, we see that z contains exactly
p(n)—1 runs, hence that zA\ contains p(n) runs. But then we can replace A by
any letter of z that is not a suffix of z and so achieve p(n) runs without A. O

Remark: A run-maximal string of length n > 2 can contain exactly one oc-
currence of a letter X if and only if p(n) = p(n—1). Note more generally that
p(n+1) > p(n—1) + 1 in all cases.

References

[1] Alberto Apostolico & Franco P. Preparata, Optimal off-line detection of rep-
etitions in a string, TCS 22 (1983) 297-315.

[2] Maxime Crochemore, An optimal algorithm for computing the repetitions
in a word, IPL 12-5 (1981) 244-250.

[3] Martin Farach, Optimal suffix tree construction with large alphabets, Proc.

38" Annual IEEE Symp. FOCS (1997) 137-143.

[4] Frantisek Franék, Ayse Karaman & W. F. Smyth, Repetitions in Sturmian
strings, TCS 249-2 (2000) 289-303.

[5] Costas S. Iliopoulos, Dennis Moore & W. F. Smyth, A characterization of the
squares in a Fibonacci string, TCS 172 (1997) 281-291.

[6] Roman Kolpakov & Gregory Kucherov, On maximal repetitions in words, J.
Discrete Algorithms 1 (2000) 159-186.

[7] Roman Kolpakov & Gregory Kucherov, private communication (2001).

[8] Abraham Lempel & Jacob Ziv, On the complexity of finite sequences, IEEE
Trans. Information Theory 22 (1976) 75-81.

[9] Michael G. Main, Detecting leftmost maximal periodicities, Discrete Applied
Maths. 25 (1989) 145-153.

[10] Michael G. Main & Richard J. Lorentz, An O(nlogn) algorithm for finding
all repetitions in a string, J. Algs. 5 (1984) 422-432.

[11] W. F. Smyth, Repetitive perhaps, but certainly not boring, TCS 24/9-2
(2000) 289-303.

[12] Axel Thue, Uber unendliche zeichenreihen, Norske Vid. Selsk. Skr. I. Mat.
Nat. Kl. Christiana 7 (1906) 1-22.

[13] Jacob Ziv & Abraham Lempel, A universal algorithm for sequential data
compression, I[EEE Trans. Information Theory 28 (1977) 337-343.

