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Abstract. We describe a simple space- and time-efficient algorithm that
computes an integer array w = w[l..n] whose elements identify all the
distinct substrings in a given string & = x[1..n]. Essentially, these el-
ements give the lengths of longest common prefixes (LCPs) of suffixes
of . A second integer array XA = A[l..n] optionally output by the algo-
rithm identifies locations in @ whose LCPs are given by =, thus exactly
the information provided by a suffix array or suffix tree. We therefore
refer to these two arrays collectively as a quast suffic array. The dis-
tinction between quasi suffix arrays and standard suffix arrays is that
the locations specified in A do not necessarily give the suffixes of « in
lexicographical order; indeed, our algorithm does not depend upon any
specific ordering of the alphabet. Thus for problems that do not require
lexicographical order — for example, pattern-matching, calculation of re-
peating substrings — quasi suffix arrays are sufficient. Compared to suf-
fix tree construction, it appears that in practice our algorithm executes
faster, while the standard suffix array construction algorithm is several
times slower. We present four variants of the algorithm: a prototype,
two that require O(nlogn) expected time, and one that we conjecture
executes in expected time O(n).

1 Introduction

In string processing and pattern-matching problems on an ordered
alphabet, a collection of closely-related standard data structures are

* Supported in part by grants from the Natural Sciences & Engineering Research
Council of Canada.



frequently employed to promote algorithmic efficiency: suffix trees
[19], directed acyclic word graphs (DAWGs) [7], and suffix arrays
[13], in particular. This paper describes a simple data structure,
closely related to suffix arrays, that efficiently specifies all the distinct
substrings of a given string = x[1..n]. Unlike the other structures,
however, ours does not require dependence on an ordering of the
alphabet.

Based on the earlier idea of a Patricia trie [15], suffix trees were
introduced by Weiner [19], who also described the first of several
worst-case O(n logn)-time algorithms [14, 18] for their construction.
(The claim of O(n) time for these algorithms depends on choosing
to suppose that the alphabet is fixed.) More recently, for the com-
mon case of an “indexed” alphabet (that is, treatable as a sequence
1,2,...,a € O(n) of integers), a genuine O (n)-time suffix tree con-
struction algorithm was discovered [10], but its space requirements
are very large and the overhead associated with the large space so
signficant, that apparently the O(nlogn) algorithms are faster in
practice. Another algorithm not generally recognized as a suffix tree
construction algorithm is Crochemore’s algorithm (Algorithm C) for
the computation of all repetitions in & [8]. Indeed Algorithm C is
particularly important for this paper: not only does it effectively
compute suffix trees in O(nlogn) time if its refinement process is
allowed to continue to its natural conclusion, but moreover the re-
finements it performs are the basis of our new algorithm.

Suffix trees are important and useful in many pattern-matching
contexts [1,4,16,2,5], as well as for data compression [3], but the
space requirement of a suffix tree Ty is inevitably many times that
of x itself — a serious problem when n is large, say several tens
of millions to billions of letters. In such cases the time advantage
resulting from suffix tree use can be lost because of the memory
swaps or disk accesses necessitated by a huge data structure. In an
effort to reduce this disadvantage, clever storage mechanisms have
been devised [12] as well as alternative structures, such as DAWGs
[7,9] and suffix arrays [13]. Of these approaches, by far the most
effective for storage reduction is the use of suffix arrays, that require
storage of only kn integers, where £ may vary from 1 to 4 depending
on the functionality required. Moreover, suffix arrays, together with
their associated longest common prefix (LCP) information, can be



computed in O(nlogn) worst-case time using somewhat more than
3n words of storage and with some significant increase in storage
requirements in O(n) expected time [13]. Despite the reduced storage
requirement, suffix arrays can be used as efficiently as suffix trees and
DAWGs for many, but not all, applications.

As noted above, we deal here with a data structure that is closely
related to a suffix array. The first component of this structure is an
array m, = w[l..n] of integers in the range 0..n—1. We call m,
the prefix array because 7[i] is the length of the longest prefix of
x[i..n] that is also a prefix of some x[j..n|, 1 < j < i (zero if the
longest such prefix is empty). Thus over all ¢ € 1..n, j € i+m][i]..n,
the strings «[i..j] are exactly the distinct substrings of @, while for
7r[i] > 0 the nonempty strings x[i..i+7[i|]—1] identify occurrences of
longest repeating substrings in &. The second component is another
integer array Ay = A[l..n| (called the location array) that for
each location i € 2..n in « identifies another location A[i] < 4 in
x that shares the same longest prefix 7[i] (zero if no such location
exists). Together these arrays provide the same information as suffix
arrays (and suffix trees), but in a form that does not depend on
lexicographical order. Collectively, we refer to these two arrays as a
quast suffix array.

In this paper we first introduce a very simple algorithm (Algo-
rithm DIST1) that computes quasi suffix arrays quickly in practice
using only a single integer array of length n as additional storage. We
then go on to describe DIST2, an extension of DIST1 that requires
one more integer array and one bit array as working storage, but
that executes in O(nlogn) expected time. We also discuss a variant
DIST3 of DIST2 that may reduce expected time at a cost of further
extra storage. Finally we describe Algorithm DIST4 that we conjec-
ture requires only O(n) time in the average case. Minor modifications
to the DIST algorithms permit repetitions (adjacent repeating sub-
strings) or all repeating substrings to be output as a byproduct of
their execution. In this context, DIST has found application as a
component of a strategy for data compression [17].

The quasi suffix array construction algorithms introduced in this
paper are competitors for many applications to the suffix array con-
struction algorithm (Algorithm MM) of Manber & Myers [13]. The
storage required for the quasi suffix array itself (including what is



effectively LCP information) is the same as that required for the suf-
fix array. Although the currently-provable average-case time bound
for our quasi suffix array algorithm DIST is greater than that of
the most sophisticated version of Algorithm MM, DIST is a very
much simpler algorithm and so in practice runs more quickly: Man-
ber & Myers comment that their suffix array construction algorithm
requires more time, by a factor of 3 to 10, than a corresponding suf-
fix tree construction algorithm — DIST on the other hand executes
faster than suffix tree construction. The space requirements for DIST
and MM are comparable.

In Section 2 we describe Algorithm DIST1 and its outputs, then
go on in Section 3 to discuss DIST2 and DIST3. Section 4 then
introduces DIST4 and finally Section 5 discusses applications and
some of the connections among quasi suffix arrays, suffix arrays and
suffix trees.

2 Algorithm DIST1

As noted in the Introduction, Algorithm DIST performs refinements
of classes of equal substrings just as Crochemore’s repetitions algo-
rithm [8] does. The first steps of Algorithms C & DIST are identical:
the equal substrings of length 1 are identified and their locations in
x are placed in the same class. In the very common case that the
alphabet is indexed, this calculation requires @(n) time; in the very
rare case that the alphabet is not totally ordered, the time require-
ment is O(n?). We may in any case suppose that after execution of
the first step the alphabet is indexed, hence arranged in some (not
necessarily lexicographic) order.

But C and DIST differ in the form in which the data is held. For
example, if the Fibonacci string

12345678910111213 14
r=abaababaabaab$

were given, Algorithm C would compute classes (implemented as
doubly-linked lists)

p=1 <1,3,46,8,9,11,12> <2,5,7,10,13>,
a b



while DIST computes an equivalent array

1234567891011 12 13
c1=0013245687 91110

in which ¢4[i] is the greatest j < i such that x[j] = x[i] (zero if no
such j exists). Observe that the classes identified by ¢; are singly-
linked: they can be processed right-to-left but not left-to-right.

At subsequent stages, Algorithm C refines the classes for sub-
strings of length p into those for p+1; in the above example the
classes at level 2 are

p=2 <1,4,6,9,12><3,8 11> <2.5,7, 10> <13> .
ab aa ba b$

On the other hand, DIST in its simplest form computes a new array
cp+1 by following a descending chain of locations ¢,|i] from ¢ until
j is found for which x[j+p|] = x[i+p] (zero if no such j exists). In
our example, the array

12345678910111213
c2=0001245367890

represents the classes at level p = 2. In fact, leaving columns blank
below the first occurrence of zero, we may represent the entire cal-
culation for the example string as follows:

1234567891011 12 13 14
r=abaababaabaa b $
ci=0013245687 91110

Cy = 0124536789 0

cs = 10423678 0 (1)
Cy = 0 123670

Cs — 12060

Cce = 10 0

Cr = 0

Observe that the level p at which the first zero occurs in column 7 is
the length of the shortest string @[i..i+p—1] at location i of @ that
is equal to no string x[j..j+p—1], 1 < j < i. In other words, we can



write down the prefix array for  simply by recording p—1 for each ;
that is, one less than the level at which the first zero appears. Thus,
for our example,

12345678910111213
m,=0013265454321

Furthermore, if we record the value ¢,_1[i] as well — that is, the
final location j < 7 such that x[j..j+p—2] = x[i..i+p—2] — we are
thus able to identify the pair of strings whose LCP is given by r[i].
Denoting this second array by A, we have for our example string:

123456789101112 13
A =0011212367 8 9 10.

Let us denote by lep(7, j) the length of the LCP of «[i..n] and x[j..n].
Then the above output of DIST tells us that lcp(13,10) = 1, while
lep(9,6) = 5, and so on. In general,

lep (i, Ali]) = (] (2)

for every i € 1..n, A[i] > 0. As discussed further in Section 5, the in-
formation in these two arrays is sufficient to specify the suffix tree of
x — though, as discussed above, without the notion of lexicographic
order.

We display in Figure 1 pseudocode for the simplest form of our
algorithm, which we call DIST1. After computing the first level ¢ =
c; of the array, DIST1 computes the remaining levels in the same
storage space by methodically visiting each location ¢ from right to
left until every value ¢[i] is zero. Setting ¢ [i] = c[i], we may define

c(k) [i] = c[c(k_l)[i”
for every k > 1 such that ¢*~V[i] # 0. We call the sequence
O] =4, ¢M[i], P[], ..., e*i] = 0 (3)

the chain corresponding to 7, and we observe that each chain corre-
sponds to a class in the Crochemore refinement process. For ev-
ery i such that c[i] > 0 at level p, it is necessary to locate in
the chain an antecedent j = c®[i] of i (if it exists) such that
x[i..i+p] = x[j..j+p]. This requirement can be met by performing
skips down each chain that operate in either of two ways:



— Given a string z[1..n] containing « distinct letters,
compute Ty and Ag.
compute ¢ = c1[l.n+1] — ¢[n+1] =0 since z[n+1] =$

e < 0% e < 075 nzero+—n—a; p+1

while nzero > 0 do
— Compute level p+1 from level p.
cprev <0
for i + n—p+1 downto 1 do
if ¢[¢] > 0 then
if cprev = 0 then
j+<0

elsif cfi] < cprev then
— Skip to search for a match with x[i+p].
J el
while j > 0 and z[i+p] # x=[j+p] do
J < clj]

else
— Skip to search for a match with x[i].
J < cprev—1
while j > 0 and «[i] # z[j] do
Jj < clj+1]-1

if j =0 then
7[t] - p; Ali] < c[i]; nzero < nzero—1
cprev < cfi]; c[i] « j

p <+ p+1

Fig. 1. Algorithm DIST1



— (for c[i] < ¢[i+1]) determine an antecedent j of i such that
zli+p| = [j+pl;

— (for ¢[i+1] < c[7]) determine an antecedent j+1 of i+1 such that
ali] = x[j].

The selection between these two forms of skip is a heuristic that
seems on average to reduce number of skips, but it is just a minor
issue (the algorithm would work with just either one and with the
same time complexity). Observe that in order to compute ¢ in situ,
we need to use an extra variable cprev that stores the value of ¢[i+1]
in level p so that it can be used in these calculations.

The worst-case time complexity of DIST1 is at least order 72,
attained for example by the string @ = a”. We deal with the reduc-
tion of worst-case processing time later, in more refined versions of
DIST. But even for DIST1 it is instructive to consider average-case
complexity, making use of the result [11] that the expected length of
the maximum repeating substring in a string [1..n| on an alphabet
of size « is

p" =2log,n+ O(1). (4)

It follows immediately from (4) that p* is the expected number of
levels that need to be computed by DIST1, hence that the expected
total number of steps that need to be taken in the for loop over
all values of p is ©(nlogn). Except for the internal skip (while)
loops, only constant time is required for each instruction within the
for loop; thus, in order to estimate the expected time of DIST1, we
need to be able to bound the expected time requirement of the skip
loops. This is something that we are currently unable to do; however,
in the next section we describe modifications to DIST1 that bypass
the skipping problem by ensuring that at each level p each location
in ¢ is visited a constant number of times (at most three).

3 Algorithms DIST2 & DIST3

Our first modification to DIST1 is to replace the ad hoc skip loops of
Figure 1 by processing that deals with each chain (refinement class)
in its entirety. DIST2 refines each chain at level p into one or more
subchains at level p+1 according to the letters y = x[i+p] that are



found in the (p+ 1)th location of the substrings that occur in the
chain. The revised algorithm is outlined in Figure 2.
DIST2 makes use of the following additional storage:

— a bit vector PROC[1..n] in which PROC]4] is TRUE if and only if
c[i] has already been recomputed in the current level;

— a stack S of location values that allows each chain in level p+1
to be processed in left-to-right order;

— an array L[1..a] in which L[u] gives the current rightmost location
i in the current chain corresponding to the letter y = x[i+p| that
is being traversed from left to right (zero if no such location
exists);

— a stack S’ of the distinct letters u = @[i+p] that have occurred
in the current chain.

Observe that the maximum possible number of integer entries in
stack S is n—a+1 — that is, the maximum number of occurrences
of the most frequent letter in . Observe further that an entry can
be pushed onto stack S’ only after an entry has already been deleted
from S. Thus the storage required for S and S’ can be shared so that
no more than n—a+1 memory locations are required. The storage
required for the array L is o memory locations. Thus altogether
for S, S’ and L at most n+1 memory locations are required, each
sufficient to store an integer of magnitude at most n. Assuming that
a memory location is a computer word, we can therefore state:

Theorem 1. Given a string x[1..n] on an ordered or indexed al-
phabet of size «, Algorithm DIST2 computes the quasi suffiz array
of ¢ in O(nlog, n) time in the average case, using at most 2n+O(1)
words and n bits of additional storage.

Proof. Storage requirements have been dealt with above. To estab-
lish the expected time bound, observe that the time required for the
processing of each chain is proportional to the number of entries in
it: each location in ¢ is visited once when a stack S is formed, once
when it is emptied, and at most once by the action of the for loop.
Thus the processing required for each value of p is ©(n), and since by
(4) the expected number of levels is O(log, n), the result follows. O

An obvious strategy for reducing the time requirement of Algo-
rithm DIST?2 is to reduce the number of locations that need to be



— Given a string x[1..n] containing « distinct letters,
compute T and A in expected O(nlogn) time
on an ordered or indexed alphabet.

compute ¢ = ¢1[1..n] — a byproduct is an indexed alphabet 1..c

e < 075 Ap < 07; nzero+ n—a; p«1
PROC « (FALSE)"
L+ 0°T' — L[a+1] =0 corresponds to x[n+1] = $

while nzero > 0 do
— Compute level p+1 from level p.
for i +— n—p+1 downto 1 do
if PROC[{] then
PROC][¢] - FALSE
else
if c[i] > 0 then
— Process the chain for j = i.
j
— (1) Put the locations j of the chain on stack S.
while j # 0 do
push(S, j)
if j < ¢ then PROC]|j] < TRUE
J i
— (2) Pop S to form subchains according to p = x[j+p].
while not empty(S) do
Jj + pop(S)
if j < N —p+1 then
cprev < c[j]; c[j] <+ 0
else
w e zlj+pl; cprev + elj]
clj] < L{u); Llp] < j; push(S', p)
if cprev > 0 and ¢[j] = 0 then
w[j] < p; Alj] < cprev; nzero < nzero —1
— (3) After processing the chain, reset location pointers.
while not empty(S’) do
p < pop(S'); Llu] <0
process next level if need be by outermost while
p <+ p+1

Fig. 2. Algorithm DIST2



visited in each level p+1. We can accomplish this by introducing ad-
ditional data structures that allow locations ¢ for which ¢[i] = 0 to be
“hopped”. There are two basic approaches to do so. One amounts
to maintaining what is essentially a doubly-linked list of non-zero
entries and these are the only ones being processed, or maintaining
a circular queue of hops, i.e. pairs of positions (from, to) indicating
to “hop” from the position from to the position to. For DIST3 we
briefly discuss the first approach, while for DIST4 we employ the
queue approach.

We initialize for p = 1 a doubly-linked list linking together the
nonzero entries in c¢;y:

— left[1..n+1] is an array in which for every i € 1..n+1, left[i] is the
rightmost nonzero entry in ¢[i] to the left of location i (zero if no
such location exists);

— right[0..n] is an array in which for every i € 0..n, right[i] is the
leftmost nonzero entry in c[i] to the right of location i (n+1 if
no such location exists).

The arrays left and right are then used to ensure that only nonzero
entries in ¢ are visited for each value of p; whenever an entry at
location ¢ in ¢ becomes zero, i is removed from the doubly-linked
list.

Since now the processing in each level p is proportional only to

the nonzero elements in ¢p, the time bound of Theorem 1 holds a
fortiori for DIST3:

Theorem 2. Given a string x[1..n] on an ordered or indexed al-
phabet of size a, Algorithm DISTS computes the quast suffiz array
of  in O(nlog, n) time in the average case, using at most 4n+0O(1)
words and n bits of additional storage.

In fact it is unclear whether DIST3 will run more quickly than DIST2
in the average case: the extra housekeeping required to maintain
the arrays left and right, and the generally less efficient update of
PROC, could negate any advantage gained by hopping zero entries
in ¢. Our main purpose in introducing DIST3 is to show how the
idea of hopping can be implemented; we will extend this technique
further in the next section.



4 Algorithm DIST4

Here we revert to the methodology of DIST1 — processing individual
entries in ¢ rather than entire refinement classes — combined with
the hop strategy introduced in DIST3. However, we hop not only
zero entries in ¢ but also triangles induced by runs of the form

cpli-i+kl =q,q+1,...,q+k (5)

for some ¢ > 1 and some maximum k£ > 1. Examples of such triangles
can be found in (1), where

c1[6.8] = 4,5,6

and
c2[9..12] = 6,7,8,9.

The following result, easily proved, shows how a triangle in levels
p,p+1,...,p+k—1 can be inferred from a run of k£ elements in level

p:
Lemma 1. Suppose that for some i € 1.n—1, some k € 1..n—i, and

someq>1,
cpli.i+kl=gq,q+1,...,qg+k.

Then for every j € 1..k,
Cptjli-itk—jl=¢q,q+1,... ,¢+k—j. O

We see therefore that every occurrence of a run of length £+1 allows
us to predict (and therefore potentially to avoid processing) a total
of (k;d) locations in ¢p4j, j = 1,2,... , k. Since runs are a symptom
of the frequent occurrence of repeating substrings in @, and since it is
repeating substrings of length p that ensure the existence of nonzero
elements at level p, the idea of avoiding the processing of triangles
is an attractive one. Accordingly we introduce processing and data
structures that allow us to (a) recognize runs of length £+1 as they
occur in level p, (b) hop over the processing of the portions of the
corresponding triangle that occur in levels p+1,p+2,... ,p+k.

In addition to the array c[l..n+ 1] that we employ in all the
versions of DIST, DIST4 also makes use of two circular hop queues,
Ohop (zero-hops) and Thop (triangle-hops), each of size < [2].



During the processing we keep track of Lend, the position of the
first non-zero entry in ¢[1..n| from the left, and Rend, the position
of the first non-zero entry from the right. We maintain the zero-hops
from the non-zero to the next non-zero position, e.g. for ¢[2..6] =
1000 3, we will hop from ¢[6] = 3 to ¢[2] = 1. For triangles
we maitain the hops from the rightmost position of the triangle to
the first position to the left that is not a part of the triangle, e.g.
for ¢[4..8] = 6 10 11 12 15 we will hop from ¢[7] = 12 to ¢[4] =
6. Thus, it is possible that the end of a hop may be to the left
of a start of another hop (in just one case, when a triangle-hop is
followed immediately by a zero-hop; an illustration of the situation:
c[3..11] =1000 3456 10, where we have a triangle-hop from
c[10] = 6 to ¢[6] = 0 and a zero-hop from ¢[7] = 3 to ¢[3] = 1). We
also allow that the end of a hop (the value of to) be smaller than
Lend.

For simplicity, in the high-level pseudocode for DIST4 we shall
use the following terminology:

— to delete hop means to remove it from the queue

— to transfer hop means: the hop is deleted, the first value (hop
from) is decremented by 1, and if the new value of fromis > 0,
then the new (shorter) hop is inserted at the end of the queue

— to copy hop means to delete it and to insert it at the end as is
(i.e. unchanged).

— to extend hop to r means to raplace the to value of the hop by
the smaller value of 7 (extending the hop to the left).

— to create hop means to insert the appropriate pair from and to
at the end of the queue.

A broad outline of the algorithm in a high-level pseudocode is
given in Figure 3. The body of the while loop consists of a rather
anwieldy nested if statement. When we implemented the algorithm
in C++, it was replaced by multiply nested if statements in much
more practical way, but much less conducive for presentation. The
nested if statement represents 29 rules of how to maintain the zero-
hop queue and the triangle-hop queue and how to manipulate the
index 7 from left to right making all the “hops”.

In order to estimate space complexity of DIST4 as 3xn of machine
words, we need to ascertain that each hop queue can have at most



— as in DIST1, compute c[1..n] for level 1
set zero-hop and triangle-hop queues for level 1
set Lend to the position of the first non-zero entry of ¢ from the left
set Rend to the position of the first non-zero entry of ¢ from the right

p+1

1+ Rend

while 7 > Lend do
cprev < cli] - rember original value of cli
j—1 - remember original value of 1

calculate new vale of ¢[i] as in DIST1 (note that c[i] is necessarily non-zero)
if ¢ = Rend and c[i] = 0 and there is a zero-hop (¢, m) then
delete the hop; Rend < i < m
elsif : = Rend and c[i] = 0 and there is a triangle-hop (i, m) then
transfer the hop; Rend <— Rend—1; i < m
elsif i = Rend and c[i] = 0 then
Rend < Rend—1; i + i—1
elsif i = Lend and c[i] = 0 and there is a zero-hop (m, i) then
delete the hop; Lend + m
elsif i = Lend and c[i] = 0 then
Lend < Lend+1
elsif c[i] = 0 and there is a zero-hop (r,7) and a zero-hop (i, m) then
extend the first zero hop from r to m;
delete the second zero-hop; i + m
elsif c[i] = 0 and there is a zero-hop (r,7) and a triangle hop (¢, m) then
transfer the triangle hop; extend the zero-hop to i+1; ¢ < m
elsif c[i] = 0 and there is a zero-hop (r,¢) then
extend the hop to i+1; 7 < i—1
elsif c[i] = 0 and there is a triangle-hop (4, m) then
transfer the hop; create a new zero-hop (i+1,i—1); i < m
elsif ¢[i] = 0 and there is a zero-hop (¢, m) then
delete the hop; create a new zero-hop (i+1,m); i < m
elsif c[i] = 0 then
create a new triangle-hop (i+1,i—1); ¢ + i—1
elsif : = Rend and c[i] # 0 and there is a zero-hop (¢, m) then
copy the hop; i < m
elsif = Rend and c[i] # 0 and there is a triangle-hop (¢, m) and
cprev = cfi] then
copy the hop; i < m
elsif : = Rend and c[i] # 0 and there is a triangle-hop (¢, m) and
cprev # c[i] then
transfer the hop; i < m
elsif s = Lend and c[i] # 0 and c[i]+1 = ¢[i+1] and
there is a triangle-hop (r,4) then
extend the hop to i—1; 7 < i—1
elsif i = Lend and c[i] # 0 and c[i]+1 = ¢[i+1] then
create a new triangle-hop (i+1,i—1); i + i—1
elsif i = Lend and c[i] # 0 then
14 1—1
con’t on next page

Fig. 3. DIST4 - the maintanance of zero-hop and traingle-hop queues



elsif c[i] # 0 and c[i—1] +1 = ¢[i] and ¢[i] + 1 = ¢[i+1] and
there are triangle-hops (r,7) and (i, m) then
delete hop (%, m); extend hop (r,i) to m; i < m
elsif c[i] # 0 and c[i] + 1 = ¢[i+1] and
there are triangle-hops (r,7) and (¢, m) then
transfer hop (i, m); extend hop (r,7) to m; i + m
elsif c[i] # 0 and c[i—1] + 1 = c[i] and
there are triangle-hops (r,7) and (i, m) then
copy hop (i,m); i < m
elsif c[i] # 0 and there are triangle-hops (r,¢) and (i, m) then
transfer hop (i,m); i + m
elsif ¢[i] # 0 and c[i—1] + 1 = ¢[¢] and c[i] + 1 = c[i+1] and
there is a triangle-hop (Z, m) then
delete the hop; create a new triangle-hop (i+1,m); i < m
elsif ¢[i] # 0 and c[i—1] + 1 = ¢[¢] and there is a triangle-hop (¢, m) then
copy the hop; 7 < m
elsif c[i] # 0 and c[i] + 1 = ¢[i+1] and there is a triangle-hop (¢, m) then
transfer the hop; create a new triangle-hop (i+1,i—1); i < m
elsif c[i] # 0 and there is a triangle-hop (i, m) then
transfer the hop; i < m
elsif ¢[i] # 0 and c[i] + 1 = ¢[i+1] and there is a triangle-hop (r,7) then
extend the hop to i—1; 7 < i—1
elsif c[i] # 0 and there is a triangle-hop (r,¢) then
14 1—1
elsif c[i] # 0 and c[i] + 1 = ¢[i+1] then
create a new triangle-hop (i+1,i—1); 7 + i—1
elsif c[i] # 0 then
14 1—1
if cprev > 0 and ¢[j] = 0 then
w[j] <= p; Alj] < clj]
p 4 pt+l - back to the top of the while loop on previous page

Fig. 4. DIST4 - continuation from the previous page



[5] elements as stated previously. The following easy lemma provides
the proof.

Lemma 2. For any input string s and any level of processing, the
number of the same hops (zero-hops or triangle-hops) is < [7]

Proof. The following argument can be made for either zero-hops or
triangle-hops. So we will just talk about hops. Let f(r) be the num-
ber of hops that start at a position < r. We will show by induction
over v that f(r) < [f]. c refers to the array as produced by the
algorithm.

For r=2, we can have at most 1 triangle hop or 1 zero-hop.

For r+1 there are 3 possibilities:

1. There is no hop from r+1 to some m < r. Then f(r+1) = f(r) <
[51 <[]

2. There is a hop from r+41, and there is no hop from r, then
fr+1) < f(r)+1= f(r-1)+1 <[5 +1 =[]

3. There is a hop from r and from r+1. If the hop from r+1 were
a zero-hop, then ¢[r+1]#0 while ¢[r]=0. But no hop starts at
a position with a zero value, a contradiction with the fact that
there is a hop starting at r. Hence the hop from 41 must be a
triangle hop, and so does the hop starting from r. But an easy
inspection of DIST4 shows the algorithm maitains the hops of
the same kind in a strictly decreasing manner when a hop’s to
is strictly bigger than the next hop’s from. Therefore, this case
cannot happen.

Note that each “rule” in the body of the while loop in DIST4
is executed in constant time and that only one “rule” is used in a
single pass through the while loop body. Thus, the time complexity
of DIST4 is that of DIST1 less all the processing of the “hopped”
entries. To properly estimate the number of steps “saved” by not
processing the “hopped” entries has so far resisted our attempts at
analysis. As a consequence we are not able to state either worst-case
or average-case nontrivial upper bounds on the asymptotic complex-
ity of DIST4 (besides the obvious fact that it must be no worse than
DIST1). However, we have performed experiments on pseudorandom
strings and on long strings drawn from the Calgary corpus [6], as well
as on special strings, such as Fibonacci strings, that should be close



to worst case for our algorithm. The behaviour of the algorithm on
pseudorandom and Calgary corpus strings appears to be linear, and
on Fibonacci strings marginally greater than linear. We therefore
state

Congecture 1. On strings £ = x[1..n] on an indexed alphabet, Al-
gorithm DIST4 executes in O(nlogn) worst-case and O(n) average-
case time, while using 2n+0(1) additional words of memory.

5 Concluding Remarks

In this paper we have introduced the idea of a quasi suffix array, then
presented four variants of an algorithm DIST to construct it, two of
which (DIST2 & DIST3) execute in O(nlogn) average case time,
one of which we conjecture to execute in O(n) average case time.
The quasi suffix array provides the same information that a suffix
array does, but the suffixes are not necessarily sorted in lexicographic
order; this is not a disadvantage for many applications (for example,
pattern-matching or computing repeating substrings), and allows the
construction algorithms to be simpler and therefore faster. Indeed,
as we have seen, since the construction of the first level ¢; yields an
indexed alphabet, an order is implicitly imposed on the suffixes of
x, even though it does not have to be lexicographic.

To see the relationship between suffix arrays and quasi suffix
arrays, we return to our original example:

12345678 910111213 14
r=abaababaabaabdsl.

Recall that the quasi suffix array is

123456789101112 13
Az=0011212367 8 910
w,=00132654543 21,

reflecting the relationship

#[i] = lep(i, A[i))



for every ¢ € 3..n. In this case the corresponding suffix array in its
usual form would be

12 3 4567 8 910 11 12 13
=831161941272105 13
=0431653205 4 21,

A

I
T
4
7r£l2

reflecting the relationship

w'[i] = lep(N'[i—1], N'[i])

for every i € 2..n. Observe that 7, is just a permutation of 7.
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