Computing all repeats using suffix
arrays*

FrantiSek Franék', W. F. Smyth'?, and Yudong Tang'

! Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1
smyth@mcmaster.ca
Wwww.cas.mcmaster.ca/cas/research/groups.shtml

2 School of Computing, Curtin University, GPO Box U-1987
Perth WA 6845, Australia

June 28, 2002

Abstract. We describe an algorithm that identifies all the repeating
substrings (tandem, overlapping, and split) in a given string = x[1..n].
Given the suffix arrays of « and of the reversed string Z, the algorithm
requires @(n) time for its execution and represents its output in O(n)
space, either as a reduced suffix array (called an NE array) or as a re-
duced suffix tree (called an NE tree). The output substrings u are nonez-
tendible (NE); that is, extension of some occurrence of uw in x, either
to the left or to the right, yields a string (Aw or w\) that is unequal to
the same extension of some other occurrence of w. Thus the number of
substrings output is the minimum required to identify all the repeating
substrings in . The output can be used in a straightforward way to iden-
tify only repeating substrings that satisfy some proximity or minimum
length condition.

1 Introduction

The computation of all the repeating substrings in a given string
x = z[l..n] is a problem with various application areas, most no-
tably data compression, cryptography, and computational biology.
For repeating substrings that are tandem (that is, repetitions),
several O(nlogn) algorithms [1, 5, 10] were discovered about 20 years
ago; more recently, a repetitions algorithm [9] was published that, at
least theoretically, executes in ©(n) time in the common case that

* Supported in part by grants from the Natural Sciences & Engineering Research
Council of Canada.

the alphabet is tndexed — that is, treatable as a range of integers
l.a € O(n).

These successes with repetitions have encouraged researchers to
seek algorithms that efficiently compute all repeating substrings w,
including in addition to tandem occurrences those that are split (of
the form wwvu for some nonempty v) and overlapping (such as
u = abaab in & = abaabaab). The following definitions permit this
problem to be stated more precisely:

Definition 1. A repeat in a string x is a tuple
Mgy = (p; 1,0, ... i), T > 2,
where
u = x[iy..i1+p—1] = xfizg..io+p—1] = - - - = ®[ir..ir+p—1].

u 1s said to be a repeating substring of x and the generator of
Mg w. As for repetitions, we call p = |u| the period of the repeat
and r its exponent. If the tuple includes all the occurrences of u in
x, then Mgy is said to be complete and is written Mgy 4.

In its most general form, then, our task may be defined to be the
computation of Mg 4, for every repeating u. This task is simplified
by introducing the idea of “nonextendibility”:

Definition 2. A repeat Mgy = (p; 41,12, - -. , i) is said to be left-
extendible (respectively, right-extendible) if and only if

(p+1; i1—1,di9—1,... i, —1) (respectively, (p+1; iy, 19, .. ,ir))

is a repeat. If Mg o is neither left-extendible nor right-extendible, it
1s said to be nonextendible. We abbreviate these terms as LE, RE
and NE, respectively.

It is clear that it suffices to compute complete NE repeats: those that
are extendible, either to left or right, do not need to be reported be-
cause any extendible repeating substring will be reported implicitly
as a substring of the strings specified by an NE repeat.

In the last few years, two algorithms [8, 3] have been published
that employ suffix trees to compute all the NE repeats in a given

string « defined on an ordered alphabet. There are several standard
O(nlogn)-time algorithms [12-14] that compute suffix trees: indeed,
if alphabet size is assumed to be constant, then the logn term can
be defined away and the claim made that these algorithms are “lin-
ear” in string length. It is not usually recognized that Crochemore’s
repetitions algorithm [5] also belongs in this collection of O(n logn)-
time algorithms: by continuing the refinement process until all of the
equivalence classes become singletons, all the information required
for suffix tree construction becomes available. For strings defined on
an indexed alphabet, there does exist a genuine @ (n)-time suffix tree
construction algorithm [7], but it is very complicated and the space
requirements are consequently so great that its theoretical asymp-
totic time advantage is eaten away by additional memory swaps to
and from disk. In general, the main difficulty with suffix tree use is
the space requirement, many times that of the string itself, so that
for strings of several tens of millions of characters, their use becomes
impractical. As a result, related data structures such as directed
acyclic word graphs (DAWGS) [4, 6] and suffix arrays [11] have been
devised, that provide much of the functionality of suffix trees but
use less space.

In its simplest form, a suffix array o, = o[1..n] of a given string
z[l..n] is an array of integers such that for every i € 1.n, ofi] =
j if and only if x[j..n] is the 0 smallest suffix of 3, where the
sentinel letter $ is by convention larger than any other letter in the
alphabet. Thus o, specifies the starting positions of the suffixes of
x in ascending lexicographical order; for example, if

12345678910111213
x=abaababaab a ab,

(1)
then
0,=83116194127210513. (2)

For effective use of suffix arrays, a second array A is normally also
computed that gives the length (lcp) of the longest common prefix
(LCP) of adjacent entries in o,; in our example,

Az = 0431653205421, (3)

reflecting the fact that lep(8,3) = 4, lep(3,11) = 3, and so on. In
general, we set A[1] = 0, while for every i € 2..n,

Ali] = lep(o[i—1], o[d]). (4)

Suffix arrays were introduced in [11], where an O(nlogn)-time
and space-efficient algorithm is described for their calculation. For
many problems — in particular, as we shall see, for the problem
discussed in this paper — suffix arrays provide the same functional-
ity that suffix trees make available, and with a very much reduced
use of space. The drawback is that direct suffix array construction
requires, according to [11], three to ten times the time needed for
construction of the corresponding suffix tree. Of course suffix arrays
can be computed from suffix trees, but then the space advantage is
lost.

In this paper we describe an alternate approach to the calculation
of all the NE repeats in a string « that can be used either with suffix
trees or suffix arrays, depending on circumstances. In fact, a weaker
form of suffix array/tree (which we call a quasi suffix array/tree)
suffices for this algorithm: there is no requirement for the suffixes of
x to be sorted in lexicographic order, and so a simpler and faster
suffix array construction algorithm, such as that proposed in [2], can
be used. Referring again to the example (1), this means that we
might use

o,=16941238112710513 (5)
Az=0653214305421

just as well as the arrays (2) and (3).
The new algorithm is based on the following easily-proved lemma:

Lemma 1. Let T denote the reverse string x[n]x[n—1]---x[1] of a
giwen string €. Then a repeat Mgy s LE if and only if Mg 4 is
RE. O

This result suggests a straightforward approach to computing all the
NE repeats in :

— compute all the NRE (non-RE) repeats of & and all the NRE
(non-RE) repeats of Z;

— compare the NRE repeats of with the NRE repeats of Z to
identify those that are in both lists (the NE repeats).

It turns out that the NRE repeats of a string are identified by its
suffix tree (as well as by its suffix array), a fact illustrated by ref-
erence to our example (1) in Figure 1. This figure represents a kind
of stripped-down suffix tree in which we represent only the distinct
prefixes of each suffix in @. The internal (circular) nodes are rec-
ognizable as the lcp values contained in the array A;, while the
leaf (square) nodes represent the starting positions i of the suffixes
x[i.n]$, i = 1,2,... ,n, as specified in the array o,. As in every
suffix tree, the lcp value at the root of each subtree applies to all
the leaf nodes of that subtree; thus the lcp values also specify the
complete repeats in @ that are according to Definition 2 NRE. For
example, the substrings

u = x[9..13] = ©[6..10] = x[1..5]

defined by the subtree rooted at the internal node 5 constitute a
complete NRE repeat

M q = (5; 9,6,1).

In Section 2 we describe an algorithm that computes the NE tree
of x, hence all the NE repeats in «, in linear time from the suffix
(NRE) trees of and Z. Then Section 3 explains how this algorithm
can be implemented to compute the NE array of &, also in linear
time, based on the suffix (NRE) arrays of & and Z. Section 4 briefly
discusses extensions of these algorithms and open problems.

2 Computing the NE Tree

We suppose that the suffix trees, say Ty and Tz of « and T respec-
tively, have already been computed, thereby identifying complete
NRE repeats in and complete NRE repeats in Z. From Lemma 1
we know that the NRE repeats in Z identify NLE repeats in «. For
brevity we refer to the generator u of an NRE (respectively, NLE,
NE) repeat Mg 4 as an NRE (respectively, NLE, NE) repeating sub-
string, while asking the reader to bear in mind that the terms NRE,

Fig. 1. Suffix (NRE) tree Ty for = abaababaabaab

NLE, NE really relate to the repeat that is a collection of repeating
substrings.

Suppose that some lcp node p in T has as child a position node
7. Then in Z there exists an NRE repeating substring

u=z[.1+p—1]
that is the reverse of an NLE repeating substring
u=z[n—(+p—1)+1.n—7+1]
in &. Thus the assignment
i < n—(+p—2) (6)

identifies one start position ¢ of an NLE repeating substring w in @ of
period p. Observe that in fact 7 is also a start position of one of a set
of NLE repeating substrings of every period j € 1..p; thus if in T we
find for some ¢ the largest value of p such that 7 is one of a collection

of substrings of length p that are both NRE and NLE, then every
parent of p in Ty will also identify collections of substrings that are
both NRE and NLE.

Algorithm 1 (Compute the NE Tree)
— Given the suffix trees Tx & Tg;, compute the NE tree of z[l..n]

(1) traverse T to create a table POINTERJ:] that for each
position ¢ in @ points to the corresponding node in T

(2) for every lcp node p in Ty do
NE[p] + FALSE

(3) for every parent-child pair (p,?) in T do
— Here use POINTERJi]:
if ¢ = n—(2+p—2) is a child of Icp node p in T then
while not NE[p] do
NE[p] « TRUE
if p # 0 then
p < parent of pin T

(4) traverse T deleting every subtree rooted
at an lcp node p for which NE[p] = FALSE

Let us say that a substring u of x is a maximal NE repeating
substring of x if and only if

— u occurs at least twice in x;
— w is not a proper substring of any repeating substring of .

The following result, again easily proved, then tells us that a maximal
NE repeating substring must be identifiable in both T and T:

Lemma 2. If u = x[i..i+p—1] is a mazimal NE repeating substring
of x, then the position node i occurs as a child of the lcp node p in
Ty, and n—(i—p—2) occurs as a child of p in Tg. O

Recall the observation made above that every internal (lcp) node in
Ty that is an ancestor of an NE repeating substring must itself be the
root of a subtree of T whose leaf (position) nodes are the repeating
substrings of a complete NE repeat. This lemma therefore provides
us with a simple strategy for identifying all NE repeating substrings:
just find the maximal ones (largest value of p), then locate all their

ancestors in 7. Algorithm 1 provides an outline of how this can be
accomplished.

The algorithm is expressed in terms of four steps. Step (1) is a
traversal of T that sets up a table enabling each position node
in T to be accessed later in constant time. In Step (2) a Boolean
variable corresponding to each mark node p in T is initialized to
FALSE, indicating that no terminal nodes in the subtree rooted at
p have currently been identified as NE. Step (3) processes every
parent-child pair (p,7) in Tj, testing to determine whether or not
the equivalent parent-child pair (p,n— (7+p—2)) exists in Ty; if
so, then the mark node p and all its ancestors in T must be NE
— accordingly, until an ancestor is found that is already NE, p and
its ancestors in T are identified as NE. A final step traverses Tg to
eliminate all subtrees rooted at any node p for which NE[p] = FALSE;

the remaining tree, TwNE, is the NE tree of x.

Each of the steps (1), (2), (4) of Algorithm 1 is a traversal of an
NRE tree that requires O(1) time at each node, hence O(n) time in
total. Step (3) is another tree traversal, but with slightly more com-
plex processing: since the if statement makes use of the POINTER
array, it too requires only O(1) time at each execution, hence also
O(n) time overall. The while loop in Step (3) causes the NE vari-
able for at most n mark nodes to be set TRUE, and tests the current
setting of at most n mark nodes for which NE is already TRUE —
thus the total time consumed in the while loop is O(n). We have
established:

Theorem 1. Given the suffiz trees Ty and Tz for x[l..n], Algo-

TyE

rithm 1 correctly computes the NE tree using O(n) time and

O(n) additional space. O

Figure 2 displays the suffix tree T for our example string (1),
modified so that position nodes 7 are replaced by ¢ = n—(#+p-2). Note
that only positions 1, 6,9 give rise to NLE repeats; thus the NE tree
reduces to the subtree of T3 that corresponds to these positions —
that is, the path from the root of T to lcp node 6 that corresponds
to the substring abaaba. The complete NE repeats of (1) are thus
seen from Figure 1 to be all the occurrences of a, ab, aba, abaab and
abaaba. In general, the occurrences of NE repeats, whether all of
them or selected according to various criteria, can be located and

Fig. 2. Tz for & = baabaababaaba with i = n—(+p—2)

output in time proportional to their number by traversal of the NE
tree. Such problems are also discussed in [3]. Another quite different
approach to the computation of nonextendible repeats (though still
making use of suffix trees) is described in [8].

3 Computing the NE Array

We provide here an outline of a version of the algorithm that avoids
the use of suffix trees completely: the entire calculation is carried out
based on suffix arrays (both o, and A;), and its end-product is not
an NE tree, but rather an NE array. Since the suffix array of x[1..n]
requires only 2n computer words for its storage, this revision yields
significant saving in space.

For every j € 1..n, let p; = A[j]. It then follows from (4) that for
every j € 2..n,

if p; > p; 1 then
p; is a descendant of p; ; in the suffix tree
elsif p; < p;_; then
p; is an ancestor of p;_; in the suffix tree
else
p; and p;_; identify the same node in the suffix tree

Since the suffix array contains the same Icp information that is pro-
vided by the suffix tree, these relationships imply that the suffix
array must be decomposable into subarrays, each of which specifies
nodes that lie on a single path from the root to a terminal node in
the suffix tree. For example, the lcp values in the array (3) can be
separated into three subarrays

0,4,3,1/1,6,5,3,2,0/0,5,4,2,1

corresponding to the three paths in the suffix tree of Figure 1. Here
the repeated lcp values 0 and 1 identify the root of a subtree at which
a new path begins. These nodes are called branch nodes, marking
the point at which a new path diverges from the preceding one. A
similar breakdown is provided by the lcp array (5):

0,6,5,3,2,1/1,4,3,0/0,5,4,2,1.

These ideas can be made more precise as follows:

Definition 3. An I-run I}, in a suffiz array is a sequence of h > 2
lep values pj,pjy1,--. ,Pjrh—1, not all equal, such that

(a) either j =1 or else pj_1 > pj;
(b) pj <pjt1 < < Djth-1;
(c) either j+h—1=mn or else pjih—1 > Dj+h-

Thus an I-run is a maximum-length sequence of nondecreasing lcp
values in the suffix array; similarly, a D-run D;;, is a maximum-
length sequence of nonincreasing lcp values. Using these definitions,
we can now characterize paths in the suffix tree in terms of runs in
the suffix array:

Lemma 3. Every sequence I;,Djp 1 p or Iy, where j+h—1 =n,
in the suffiz array identifies nodes that lie on a single path in the
suffix tree.

Proof. Since p; = 0, it follows from Definition 3(a)-(b) that either
there are no runs in the suffix array (p; = 0 for every j € 1..n)
or else the sequence of runs begins with an I-run I 5. Observe that
Definition 3(c) ensures that every I-run is followed by a D-run or
else by the end of the array; similarly, every D-run must be followed
by an I-run or else by the end of the array.

Now consider an I-run I;j. Since p;ji—1) < pjye for every t €
1..h—1, it follows that I;;, determines a sequence of descendants
of p; that lie on a single path in the suffix tree. If in fact ¢+h—
1 = n, then I;; is in itself the final path identified in the suffix
array. If not, however, then I, is followed by a D-run D;ij 14,
where pjih—1)1@-1) < D(j+h—1)4¢ for every t € 1..h"—1. These lcp
values determine a sequence of ancestors of p;;,_1, all on the same
path from the root already identified by I;;. The subsequent I-run
Lt hin—opm, if it exists, of course specifies descendants of the branch
node p;;p4+n—2 that lie on a path distinct from the path specified by
Ij,h- O

We see then that the ID-runs in the suffix array essentially decom-
pose the internal (lcp) nodes of the suffix array into paths. Adjacent
pairs of runs in the array identify two paths in the tree that have
exactly one node (a branch node) in common. Observe also that for
each ID-run, the minimum node in the corresponding path must be
either the first node of the I-run or the last node of the D-run.

Since a branch node is both the last node of a D-run and the first
node of an I-run, the values of pairs of adjacent branch nodes in the
suffix array therefore determine the way in which two paths in the
suffix tree are related. If we include the first lcp value (p; = 0) in the
suffix array as a branch node, and denote consecutive branch nodes
by b; and by, respectively, we see that there are only three possible
relationships between the corresponding paths, as shown in Figure 3.
Notice in particular that in each of these three cases, future paths
can be added only as descendants of b, on the current path or as
descendants of ancestors of by in the tree. No further change can be
made to the path rooted at b, that was specified by the previous
path containing b;.

This discussion puts us in a position to describe an approach to
the calculation of NE repeats that is based on suffix arrays only. As
before we denote the position and Icp arrays for € by g, and A,
respectively; for Z the corresponding arrays are o, and A,. We also
make use of a LOC array that gives for each position node7in T7; its
location in &; this enables us to find any position in o in constant
time. A bit vector NE[1..n] specifies for each j € 1..n whether (TRUE)
or not (FALSE) the lcp node A[j] is also NLE. Finally, in order to

b1 < b2 b1 = b2 b1 > b2
Fig. 3. Branch nodes b1 and b2 of adjacent paths (ID-runs)

identify the beginning and end of ID paths in A;, we use the ID
patterns (Lemma 3) to compute a BRANCH array that includes, in
addition to the branch points defined above, also the first and last
positions in A;. An outline of the processing, more complex than the
tree-based calculation but not necessarily more time-consuming, is
displayed as Algorithm 2.

Step (1) of the algorithm is a straightforward for loop that ini-
tializes the LOC array and the bit vector NE. Step (2) computes the
BRANCH array based on Lemma 3 and a linear scan of A[1..n]. Step
(3) is another for loop that first identifies all the matches of (p,)
pairs in the NRE arrays for and Z, then for each path ensures that
every ancestor of a matched (p, i) pair within the path is NE. Each
of the two sections of Step (3) requires ©@(n) time. In Step (4) the
processing of the second section of Step (3) is repeated, but in re-
verse order to ensure that all ancestors of NE positions are properly
set to be themselves NE. Finally the NE array is determined by all
those positions j in A, for which NE[j] = TRUE. Hence

Theorem 2. Given the suffic (NRE) arrays corresponding to x[1..n|
and T, Algorithm 2 correctly computes the NE array using ©(n) time
and ©(n) additional space. O

We remark that the NE array can if desired be used to compute
the corresponding NE tree in linear time.

4 Extensions & Open Problems

In this paper we have described an algorithm — implemented in two
quite different ways — that, given suffix trees or suffix arrays of the

Algorithm 2 (Compute the NE Array)

— Given the suffix (NRE) arrays of x = z[1..n] and Z,
compute the NE array of

(1) for j + 1 to n do
LOC[&[j]] « j; NE[j] < FALSE

(2) compute BRANCH]1..b*], where for b € 1..b", BRANCH][}]
is the position of the t® branch point in Ag
(include positions j = 1 and j = n as branch points)

(3) b1
for j <+ 1 to n do

determine j' such that (p,i) = (A[j'], o[j]) is a
parent-child pair in the suffix tree of

74+ n—(i+p—2); 7+ LOC[]

determine 7 such that (5,7) = (X[7],&[7]) is a
parent-child pair in the suffix tree of Z

if p = p then
NE[j'] + TRUE; NE[1] < TRUE

if j = BRANCH[b+1] then

determine j* € BRANCH[b].. BRANCH[b+1] such that
p* = A[j*] is the maximum lcp
for which NE[j*] = TRUE

for every j' € BRANCH[b].. BRANCH[b+1] do
if A[j'] < p* then

NE[j'] + TRUE
b+ b+1

(4) process the paths identified by BRANCH in reverse order,
setting NE true for ancestors of p* as in Step (3)

strings ¢ and Z, computes all the complete NE repeats in linear time
while representing them in linear space. To restrict the output to
repeats that lie within a specified substring of x, it is necessary only
to ignore values of o[i| (position values) that lie outside the confines
of that substring; similarly, in order to consider only repeats above
a certain length ¢, it suffices to consider only subtrees whose roots
contain lcp values A[i] greater than /.

Although we have described the algorithms in terms of suffix
arrays and suffix trees, we remark again that quasi suffix arrays (and
of course corresponding quasi suffix trees) such as the one illustrated
in (5) can be used instead to implement Algorithms 1 and 2. This
means that more efficient algorithms such as the one described in [2]
can be used.

We remark also that since the order of output is determined by
the structure of the suffix tree/array, it is therefore not straightfor-
ward to output repeating substrings in the natural order of their
left-to-right occurrence in . We leave this as an open problem.

References

[1] Alberto Apostolico & Franco P. Preparata, Optimal off-line detection of rep-
etitions in a string, TCS 22 (1983) 297-315.

[2] Leila Baghdadi, Frantisek Franék, W. F. Smyth & Xiangdong Xiao, Computing
quasi suffix arrays, preprint (2002).

[3] Gerth S. Brodal, Rune B. Lyngso, Christian N. S. Pedersen & Jens Stoye, Finding
maximal pairs with bounded gap, J. Discrete Algs. 1 (2000) 77-103.

[4] M. T. Chen & Joel Seiferas, Efficient and elegant subword-tree construction,
Combinatorial Algorithms on Words (NATO ASI Series F12), Alberto Apostolico
& Zvi Galil (eds.), Springer-Verlag (1985) 97-107.

[6] Maxime Crochemore, An optimal algorithm for computing the repetitions
in a word, IPL 12-5 (1981) 244-250.

[6] Maxime Crochemore & R. Verin, Direct construction of compact directed
acyclic word graphs, Proc. Fighth Annual Symp. Combinatorial Pattern Match-
ing, Lecture Notes in Computer Science 1264, Springer-Verlag (1997) 116-129.

[7] Martin Farach, Optimal suffix tree construction with large alphabets, Proc.
38t Annual IEEE Symp. Foundations of Computer Science (1997) 137-143.

[8] Dan Gusfield, Algorithms on Strings, Trees, € Sequences, Cambridge University
Press (1997) 534 pp.

[9] Roman Kolpakov & Gregory Kucherov, On maximal repetitions in words, J.
Discrete Algs. 1 (2000) 159-186.

[10] Michael G. Main & Richard J. Lorentz, An O(nlogn) algorithm for finding
all repetitions in a string, J. Algs. 5 (1984) 422-432.

[11] Udi Manber & Gene W. Myers, Suffix arrays: a new method for on-line
string searches, SIAM J. Comput. 22-5 (1993) 935-948.

[12] Edward M. McCreight, A space-economical suffix tree construction algo-
rithm, JACM 32-2 (1976) 262-272.

[13] Esko Ukkonen, Constructing suffix trees on-line in linear time, Proc. IFIP
92, vol. T (1992) 484-492.

[14] P. Weiner, Linear pattern matching algorithms, Proc. 14th Annual IEEE
Symp. Switching & Automata Theory (1973) 1-11.

