Two-Pattern Strings*

Frantisek Franék!, Jiandong Jiang"?, Weilin Lu'?, and W. F. Smyth!?

! Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1
smyth@mcmaster.ca
www.cas.mcmaster.ca/cas/research/groups.shtml

% Toronto Laboratories, IBM Canada, 8200 Warden Avenue,
Markham, Ontario, Canada L6G 1C7

3 School of Computing, Curtin University, GPO Box U-1987
Perth WA 6845, Australia

March 19, 2002

Abstract. This paper introduces a new class of strings on {a, b}, called
two-pattern strings, that constitute a substantial generalization of Stur-
mian strings while at the same time sharing many of their nice properties.
In particular, we show that, in common with Sturmian strings, only time
linear in the string length is required to recognize a two-pattern string as
well as to compute all of its repetitions. We also show that two-pattern
strings occur in some sense frequently in the class of all strings on {a, b}.

1 Introduction

In this paper we outline the results of an investigation of the properties
of a new class of strings on {a, b}, derived by the successive action of a
sequence of morphisms on the single letter a. All of the strings so deter-
mined are finite, and we deal with them from a computational point of
view: initially, we are interested in efficient algorithms to recognize such
strings and to compute the repetitions in them; then we go on to estimate
their frequency of occurrence among all strings on {a, b}.

A previous paper [5] specified linear-time algorithms to recognize and
compute repetitions in finite substrings of Sturmian strings; the class of
strings discussed here significantly extends this work.

Let p and g denote two distinct nonempty strings on {a, b} such that
|p| < A and |g| < A, where X is a finite integer called the scope. We call

* Supported in part by grants from the Natural Sciences & Engineering Research
Council of Canada.

p and q patterns of scope). For any pair of finite positive integers 4
and j such that ¢ < 7, consider the morphism o that maps single letters
into blocks:

a—p'q, b—pg. (1)

We call ¢ an expansion of scope A and observe that it is specified by a
4-tuple [p, q,1,j]. Observe also that an expansion can be applied to any
(finite or infinite) string on {a,b} to yield an expanded string

y = o(z).

Given any two morphisms o1 and o9, the composition o1 o g9 is therefore
well defined: z = o1 (y) = 01 (02(x)) = (01 0 72) ().

Definition 1. Suppose a positive integer A and a finite sequence
01,02,...,0%
of expansions of scope A are given, where
or = [Pr, Gr,ir, Jr
for every r =1,2,..., k. Then the string
= (010090---00g)(a)

is a complete two-pattern string of scope) if and only if every pair
(Pr, qr) of patterns is suitable (defined in Section 2).

The definition of a suitable pair of patterns is deferred till Section 2
because it is necessarily somewhat technical. However, the main idea of
a suitable pair is simple: p and g should be dissimilar enough that they
can be efficiently distinguished from each other by an algorithm that
recognizes complete two-pattern strings.

We can easily provide examples of complete two-pattern strings. If we
suppose that A = 3 and o1 = [ab, ba, 2, 3], 02 = [abb, aq, 1,4], the following
strings are all complete two-pattern strings of scope 3:

g1l\a

ab)?ba;
ab)?ba(ab)ba(ab)?ba(ab)?ba(ab)®ba(ab)?ba;
ab)?ba(ab)ba(ab)®ba(ab)?ba(ab)?ba;

abb)aa(abb)*aa(abb)aa(abb)* aa(abb)*aa(abb)aa.

(01001)(a

(a) = (
(a) = (
(a) = (
(o2 001)(a) = (

1
)
(01 009)
)

Observe further that when the scope A = 1, the choice of p and q is
restricted to

(p,q) = (a,b) or (p,q) = (b,a). (2)

If the further restriction is imposed that j = 741, then all the strings
generated by any finite sequence of expansions are finite substrings of
Sturmian strings; in fact, in the terminology of [5], these strings are ex-
actly the set of “block-complete” finite substrings of Sturmian strings. We
note that every complete two-pattern string of scope A is also a complete
two-pattern string of scope A+1; thus in particular every block-complete
finite substring of a Sturmian string is a complete two-pattern string.

As noted above, our initial interest in complete two-pattern strings
is computational, following similar studies of Fibonacci [7, 4, 8] and Stur-
mian [1, 5] strings. We pose two sets of questions:

(Q1) What is the complexity of determining whether or not a given
string * = x[l..n] is a fragment of a complete two-pattern string?
Can an efficient algorithm be found to make this determination for
every x?

(Q2) Given a fragment & of a complete two-pattern string, can an algo-
rithm be found that computes all the repetitions in & in linear time?

Since complete two-pattern strings constitute a much more general class
of strings than block-complete finite substrings of Sturmian strings, the
following questions also become of interest:

(Q3) What is the frequency of occurrence of fragments & of complete
two-pattern strings among all strings on {a,b} of length n? What
is the asymptotic frequency of occurrence of complete two-pattern
strings among all infinite strings on {a,b}?

In this paper we provide a partial answer to (Q1) by outlining an algo-
rithm that in ©(n) time determines whether or not a given string [1..n]
is complete two-pattern. Similar to the recognition algorithm in [5], this
algorithm outputs the sequence of expansions (1) by which a is trans-
formed into & — or more precisely, the sequence of reductions

p'g—>a, plg—b (3)

by which « is reduced to a. This sequence provides a complete specifica-
tion of @. Since by (1) each reduction decreases string length by a factor
that exceeds

ilp|+la| > 2, (4)

the recognition algorithm thus yields as a byproduct a potential data
compression technique for complete two-pattern strings x.

The reduction sequence is then used to provide partial answers to
(Q2) and (Q3). Before going on to discuss these questions in more detail,
we pause to provide an introduction and context for them, as well as an
outline of the main results.

In dealing with (Q1), we need to cope with the possibility that at
any stage of the reduction of x, there may be more than one reduction
satisfying (3): it then becomes possible that one of these reductions is
a part of a sequence that reduces & to a, while another one is not. As
long as this possibility exists, any recognition algorithm would be obliged
to include provision for backtracking, leading possibly to an execution
time exponential in the number of reductions. Our main result in this
connection is to show however that backtracking is not required, and
that therefore the algorithm that recognizes complete two-pattern strings
requires only ©(n) time.

Of course this does not yet fully solve (Q1). We conjecture that, just as
for Sturmian strings [5], there exists a ©(n)-time algorithm to determine
whether or not a string is a fragment of a complete two-pattern string
of scope A. If such an algorithm were found, it would greatly extend the
class of strings that could be efficiently compressed using reductions, or
whose repetitions could be efficiently computed.

The view may be taken that interest in (Q2) has been superseded
by other work. It has recently become clear that, as a result of research
extending over a period of a quarter-century, the repetitions in any string
z[l..n] on an indexed alphabet — that is, an alphabet of size « € O(n)
that maps onto the integers 1..cc — can be computed in @(n) time. The
main steps in this development are as follows:

— an algorithm to compute the suffix tree of & in ©(n) time [3];

— an algorithm to compute the s-factorization of &, given the suffix tree
of ¢, in O(n) time [9, 11];

— the identification of “maximal periodicities” or “runs” as a suitable
encoding of repetitions in strings, and the computation of the leftmost
occurrence of every distinct run in in ©@(n) time, based on the s-
factorization [10];

— the proof that the number of runs in any string is O(n), and the
extension of the algorithm [10] to compute all occurrences of every
run in z in ©(n) time, still based on the s-factorization [8].

Impressive as this intellectual edifice is, it nevertheless appears, at
least in the context of strings on the alphabet {a,b}, to be rather indi-

rect in its approach, perhaps involving more sophistication than is really
required. Indeed, it is not clear that the ©(n)-time algorithm given in [3]
is preferable in practice to classical O(n logn)-time algorithms for suffix-
tree construction. Further, the very long and technical proof that number
of runs is linear in string length shows that a constant of proportional-
ity exists, but provides no information about its size; at the same time,
computer experiments described in [8] provide convincing evidence that
the maximum number of runs in any string is at most n, and that this
maximum occurs in strings on {a,b}! Thus, in a sense, the existing the-
ory serves to remind us of how little, rather than how much, we know of
periodicity in strings, perhaps especially those on {a, b}.

For (Q2) we adopt a more direct approach, an extension of the method-
ology used in [5] for Sturmian strings. Making use of the reduction se-
quence computed by the recognition algorithm, we show how to compute
all the runs in complete two-pattern strings [1..n] in ©(n) time. Essen-
tially, we show that if y is derived from @ by a reduction (3), then the
nontrivial runs in & can be computed directly from certain special con-
figurations occurring in y; thus, over the whole reduction sequence, the
runs in & can be computed on a step-by-step basis, from one reduction
to the next. It is the special configurations that are of interest here, since
they provide insight into the way in which repetitions are formed.

Finally, we report on progress with (Q3), in estimating the frequency
of occurrence of complete two-pattern strings among all strings on {a, b}.
We claim that for A sufficiently large with respect to n, complete two-
pattern strings are dense in the set of all strings. We claim also that for
some values of k£ and fixed A, the number of distinct strings of length &
(the complexity) can exceed 2k — can in fact even be exponential in k.

Sections 2-4 deal with questions (Q1)-(Q3) respectively.

2 Recognizing Two-Pattern Strings in Linear Time

Before proceeding with our development, we need to provide a definition
of the term “suitable pair” mentioned in Section 1:

Definition 2. A string q is said to be p-regular if and only if there are
strings u # €, v together with nonnegative integers ny,...,ng, k > 1, and
T such that

— p is neither a prefix nor a suffiz of u;

— p is neither a prefix nor a suffiz of v;

— there are at most two integer values mi1 and mo such that for each
i € 1.k, n; =mq or n;y =mg, t.e [{n;:i€l.k} <2;

— q = (up"vp"!)(up"vp™?) - (up"vp"*)u;
— if r =0, then v = € (the empty string).

The next definition formalizes the notion that the two strings p and q are
fundamentally distinct and can be used as “building blocks” for complete
two-pattern strings.

Definition 3. An ordered pair of nonempty strings (p,q) is said to be a
suitable pair of patterns if and only if

— p is primitive, i.e. has no nonempty border;
— p is neither a prefix nor a suffiz of q;

— q s neither a prefiz nor a suffix of p;

— q is not p-regqular.

Using these definitions, we can now show how to reduce a nontrivial
complete two-pattern string. Let

x = abbabaaabbababbababbababbabaaabbababbabaaabbababbababbababbaba
aabbababbababbababbabaaabbababbababbababbabaaabbababbabaaabbab.

Consider the reduction p; = [a, bbab, 1, 3] and observe that according to
Definition 3, (a, bbab) is a suitable pair. Then applying the reduction

a(bbab) = a, a®(bbab) — b,
we find that
x1 = p1(x) = abaaababaaabaaabaaabab.
Similarly for ps = [a,b, 1,3], we find
T2 = pa(x1) = ababbba,
while for p3 = [ab, bba, 2, 3],
x3 = p3(x2) = a.

Thus & = z[1..124] is completely described by the three-term reduction
sequence
[a, bbab, 1,3], [a,b,1,3], [ab,bba,2,3],

and so is a complete two-pattern string of scope 4.
In the context of possible applications to data compression, it is worth
remarking that in general the number of terms in a reduction sequence

is by (4) at most [logyn] and may be much smaller. In our example,
n = 124 and sequence length 3 = logy, 34 124.

We now introduce formally an idea mentioned in the introduction:
a canonical reduction that is identified by patterns that are somehow
“shortest”:

Definition 4. A reduction p = [p,q,i,j] of a binary string x using
patterns of scope A\ is A-canonical if and only if for every reduction
o1 = [P1,4q1,%1,71] of © using patterns of scope A:

(a) either |p| < |p1l|, or |p| = |p1| and |q| < |q1|, or |p| = |p1| and
la| = |qa|- .
(b) = p1"1q1 implies x = p'q.

It is then possible to prove that it suffices to reduce & using a sequence
of canonical reductions:

Theorem 1. x is a complete two-pattern string of scope X if and only if
there is a sequence of A-canonical reductions {p1,p2,- -+, pn} reducing x
to a string a. O

We omit the fairly predictable details of the algorithm REC that is based
on this theorem. We state however the main result:

Theorem 2. For any A\ > 1, the recognition algorithm REC determines
in O(2)8|z|) steps whether or not is a complete two-pattern string of
scope X\, and if so, the algorithm outputs the A-canonical reduction se-
quence of . O

3 Computing the Repetitions in Linear Time

We describe here the main ideas that permit the repetitions in a complete
two-pattern string to be computed in linear time. Just as for Sturmian
strings [5], it turns out that the repetitions that occur in an expansion y =
o(x) of a two-pattern string & are formed as a result of the application of
o to certain well-defined configurations in . Thus, with the help of the
expansion (reduction) sequence that determines a complete two-pattern
string, it is possible to track and output the repetitions as they are formed
by each expansion in the sequence. As mentioned in the introduction, a
crucial factor that ensures the efficiency of this process is the encoding of
the repetitions as runs.

Definition 5. A repetition in ¢ = x[1..n] [2] is a triple (i,p,T) of pos-
itive integers, where 1 < mn, r > 1,

z[i..i+rp—1] = z[i..i+p—1]",

and x[i + rp..i+(r+1)p—1] # «x[i..i+p—1]. The period of the repetition
is p and its generator is x[i..i+p—1].

Crochemore [2] showed that Fibonacci strings, a special case of two-
pattern strings, contain (2(nlogn) repetitions. To avoid 2(nlogn) pro-
cessing just for output, we therefore introduce:

Definition 6. A run in z[l..n] [10] is a 4-tuple (i,p,r,t) where

(i7p7r)’ (Z+17p’r)7) (Z+t7p77l)

are all repetitions, while (i—1,p,r) and (i+t+1,p,r) are not. The period
and generator are defined as for (i,p,r).

It is easy to prove that for any constant x, all the runs in & whose period
p < Kk can be output in at most c.n steps, where ¢, is a constant whose
value depends only on k. In particular, this result is true for the choice
k = 3X. For p > 3\, we require the following lemma, the main result of
this section:

Lemma 1. For |p| < A, |q| < A, let 0 = [p, q,1,]] be an expansion of x,
so that y = o(x). Then for every run R in y whose period p > 3\, one
of the following holds:

— R is an expansion under o of a Tun in x,
— R is determined by a square u? in x that is derived from a substring
of ® of one of the following forms:

aa, ab, ba, bb, avbva, bvavb, bvaavd, avbv, bvav,

for any nonempty substring v. O

The details of “deriving” w2 and of using it to “determine” R are lengthy
and complicated, to be found at web site

http://www.cas.mcmaster.ca/ franek/
The analysis found there enables us to claim that

Theorem 3. There exists an algorithm RUN such that for every integer
A > 1, RUN computes all the runs in every complete two-pattern string
x = x[l..n] of scope A, based on the reduction sequence of x, in at most
c\n steps, where cy is a constant whose value depends only on A. O

4 Frequency of Two-Pattern Strings

In this section we first present results showing that infinite two-pattern
strings (that is, two-pattern strings formed from an infinite sequence of
expansions) have complexity at least k+1, while for some values of k
the complexity can even be exponential in k. Since Sturmian strings have
complexity k41, we can accordingly claim that two-pattern strings are
in some sense more frequent among all strings on {a,b} than Sturmian
strings are. Nevertheless, for fixed A the relative frequency of two-pattern
strings approaches zero as string length approaches infinity.

Another point of view is also of interest. We find that if we consider
only those values of n that are close to A, then two-pattern strings occur
frequently among all strings of length n. In other words, for sufficiently
large A, a large proportion of strings on {a, b} turn out to be two-pattern
strings.

We begin by recalling the notation LCP(u, v) and LCS(u, v) for arbi-
trary strings « and v: longest common prefix and longest common suffix,
respectively. It is then convenient to define, for any integer m > 0,

Ay = Ap(u,v) = m|p| + |[LCP(u, v)| + |LCS(u, v)|.

Using this notation, we state:

Theorem 4. Let x be an infinite two-pattern string of scope X reducible
by [p,q,i,7]. Then the complexity Cy, = Cy(x) satisfies

(a) Cx > k+1 when |p| <k < A;;
(b) Cr >2k—A; when Aj+1 <k < A;_1+1;
(c) Cx > k+1+(j—i—1)|p| when k > A;_1+2;

where Ap, = Ap(p,q). O

This result provides lower bounds on the complexity C} that are in fact
sharp. We have also established upper bounds on Cj that are however
not sharp. To show that the complexity can for some values of k£ be much
larger than k41, consider an infinite two-pattern string & with substring
pgp, where p = aaaabbbb and q = aababbab are a suitable pair of patterns.
It is easy to check that in the substring pgp there are 2* substrings of
length 4 — for k = 4 the complexity is exponential in k.
In order to state our final results, we introduce the constant [6]

¢ = lim P(n)/2" ~ 0.26778684,

n—oo

where P(n) is the number of primitive strings (with no nonempty border)
of length n on {a, b}. The frequency of occurrence of two-pattern strings
for X large with respect to n can then be estimated in terms of ¢:

Theorem 5. For n > 2, let f(n) denote the frequency of occurrence
among all strings of length n of two-pattern strings x[l..n] = pq, where
P, q is a suitable pair of scope A > [n/2]. Then f(n) > ¢/2. O

Theorem 6. For n > 4, let f(n) denote the frequency of occurrence
among all strings of length n of two-pattern strings x[l..n] = p*q, where
i > 1 and p,q is a suitable pair of scope A\ > n—2. Then f(n) > 15¢/16.
O

References

1. M. Boshernitzan & Aviezri S. Fraenkel, A linear algorithm for nonhomoge-
neous spectra of numbers, J. Algorithms 5 (1984) 187-198.

2. Maxime Crochemore, An optimal algorithm for computing the repetitions
in a word, IPL 12-5 (1981) 244-250.

3. Martin Farach, Optimal suffix tree construction with large alphabets, Proc.

38" Annual IEEE Symp. FOCS (1997) 137-143.

4. Aviezri S. Fraenkel & R. Jamie Simpson, The exact number of squares in
Fibonacci words, TCS 218-1 (1999) 83-94.

5. FrantiSek Franék, Ayse Karaman & W. F. Smyth, Repetitions in Sturmian
strings, TCS 249-2 (2000) 289-303.

6. Leo J. Guibas & Andrew M. Odlyzko, Periods in strings, J. Combinatorial
Theory, Series A 30 (1981) 19-42.

7. Costas S. Iliopoulos, Dennis Moore & W. F. Smyth, A characterization of the
squares in a Fibonacci string, TCS 172 (1997) 281-291.

8. Roman Kolpakov & Gregory Kucherov, On maximal repetitions in words, J.
Discrete Algorithms 1 (2000) 159-186.

9. Abraham Lempel & Jacob Ziv, On the complexity of finite sequences, IEEE
Trans. Information Theory 22 (1976) 75-81.

10. Michael G. Main, Detecting leftmost maximal periodicities, Discrete Applied
Maths. 25 (1989) 145-153.

11. Jacob Ziv & Abraham Lempel, A universal algorithm for sequential data
compression, IEEE Trans. Information Theory 28 (1977) 337-343.

