THE SIMULATION OF BUSINESS RULES IN ACTIVE DATABASES USING EXPERT SYSTEM
APPROACH

Ivan Bruha and Frantisek Franek
Dept. of Computing & Software

McMaster University
1280 Main Street West
Hamilton, Ontario
L8S 4L.7 Canada
E-mail: bruha@mcmaster.ca
franek@mcmaster.ca

KEYWORDS

Active Database, Active Rules, Deductive Rules, Business
Rules, Rule-based Expert Systems

ABSTRACT

A very active field of research of Database Management
Systems (DBMS) is concerned with an augmentation of
DBMS by rules. Passive rules (constraints) were the first to
be investigated and are now widely accepted. Active rules
(triggers) are in the transformation from research to
mainstream applications. A more complex form of active
rules, business rules, are now the topic of many research
efforts. In our paper we present a framework for
enhancement of SQL-based DBMS by business rules in
mostly declarative form (as opposed to the more usual, but
less manageable, procedural form). The techniques used
utilize rule-based expert system methodology.

INTRODUCTION OF THE FRAMEWORK

The augmentation of database systems by rules is a very
active area of database research (Patton 1999, Ceri and
Fraternalli 1997). In general, there are two main categories
of rules used with database systems. The first, so-called
deductive rules, often also referred to as constraints, arec
usually described in a declarative fashion and are a part of
the data definition and/or data manipulation language of the
database system. Their activity is simple - when a violation
of a constraint is detected, the action that caused the
violation is terminated - and that is why the emphasis is on
the description of the constraint. This kind of deductive
rules has been wildly accepted by commercial providers of
database systems. Besides the test for consistency
(integrity), deductive rules can provide the ability to derive
new information from the existing information, e.g. so-
called security views can be defined using deductive rules.
In any case, these rules do not alter the content of the
database, therefore they are also referred to as passive rules
(Ceri and Fraternalli 1997).

The other kind of rules, active rules, often also called
triggers, provide computational actions triggered by an
occurrence of a specific event, typically a database
operation. The action is a reaction to a given stimulus. Such
rules are called active, since their actions may cause a
change of the database content, in fact, we can talk of their

Vladimir L. Rosicky
Terren Corp.

4711 Yonge Street

Toronto, Ontario

M2N 6KB Canada

E-mail: lanny@terren.com

desirable side effects. It is quite obvious that active rules are
usually of the form
event -> action

and that the action part has a procedural character. Active
rules themselves can be categorised into two major
application groups: the first can be characterised as repair
of violations of integrity rules (constraint violation
repair) and the second as business rules (Patton 1999).

The purpose of business rules is to keep the business
(application-specific) integrity of the database intact. Many
current commercial database systems support triggers in a
very simple format:

e a simple language is provided to describe the event
(trigger) and when the corresponding action should be
activated (before or after the event)

e the action itself is a so-called stored procedure (some
systems, e.g. INFORMIX, provide a special language
for stored procedures, while others, e.g. DB2, allow
any language like C/C++ to be used for stored
procedures).

This approach is quite suitable for the constraint violation
repair, but much less suitable for explicit design of business
rules, the reason being that the procedure triggered by the
event may be quite complex.

The goal of the research described in this paper is to provide
a formalism and a methodology for design of active rules
that would be more conducive to business rules and their
intended applications. Since for practical reasons we can
neither modify nor augment the functional kernel of a
commercial database system directly, we had to come up
with an approach how to extend an existing commercial
database by a layered architecture that would “sit” on the
top of the commercial system and thus simulate business
rules and their execution in it. Since the extension is not a
part of the database system, it actually simulates the active
rules, even though from the user’s point of view they seem
to be an integral part of the database system. Of course, this
framework is not intended as a production system, but as a
test bed for our ideas and methods regarding the business
rules.

DESCRIPTION OF THE DATABASE SYSTEM
EXTENSION

We simulate business rules of a given database system by
the means of an expert system augmented with a direct
database access through embedded SQL queries. We have a
long experience with a rule-based McESE (McMaster
Expert System Environment) project (Jaffer 1990,Franek
and Bruha 1989a, Franek and Bruha 1989b, Franek and
Bruha 1990), and a similar system TESS (Terren Expert
System Shell) (Franek at al. 1999) that provide a database
access. Thus we opted for a similar SQL-augmentation of
MCcESE (see the following section for details) for the task.

We leave it to the commercial system (triggers) to detect
events of our interest, but we simulate the actions by a set
of McESE rules. This approach offers to us three very
important features:

1. MCcESE rules provide a high-level declarative
description of the action and the procedural aspects are
deferred to well-localized atomic predicates, i.e. to a very
low-level of description. This contrasts with the purely
procedural ways of commercially available active rule
formalisms.

2. McESE has two built-in rule resolution
strategies based on its approach to uncertainty, the
optimistic strategy (use the best evaluation) and the
pessimistic strategy (use the worst evaluation), and together
with the stratification requirements and checking,
confluence and termination (Ceri and Fraternalli 1997,
Aiken at al. 1992) are automatically assured.

3. If a database contains attributes with fuzzy or
granulated values, then such values could be -easily
processed by the augmented McESE system as it is in
MCcESE’s nature to allow processing of fuzzy and/or
granulated values (Jaffer 1990, Franek and Bruha 1990).
This is another enhancement our approach provides, since
current commercial systems are not capable of processing
of such attributes. The fuzzy approach to constraint repair is
not needed, while it is more than desirable for business
rules.

SQL-AUGMENTED McESE

The underlying expert system shell, called SQL-augmented
MCcESE, is a rule-based expert system shell with a
backward-chaining inference engine (Franek and Bruha
1989a, Franek and Bruha 1989b). The language of McESE-
rules is rather general and thus quite expressive. Unlike
“pure” rule-based expert systems where the knowledge is
represented exclusively in a declarative form, McESE
introduces a certain form of hybridization, for it allows to
some degree a procedural knowledge representation as well.
Before we can explain the previous statement exactly, we
have to describe a general form of McESE rules.

Rather than providing a formal definition (e.g. using BNF
rules or some other formalism), an example of a rule
exhibiting all of possible features will illustrate it
sufficiently:

rl: 0.3*P1(?abc”)[>=.3] & ~P2(x,y) & P3(2,3.4,y)
=f=>
S(y,x)[>.6]

rl is the rule identifier. The left-hand side of the rule is a
conjunction of ferms, where a term consists of a weight
(may be omitted, otherwise it must be a numeric literal
whose value is between 0 and 1 inclusive), a predicate with
list of arguments (the list may be empty), the arguments
may be strings, integers, reals, or typed variables that can
attain values of one of the types mentioned above. The
predicate may be negated (~). The predicate may be
followed by a threshold directive.

The threshold directive has the form [op val] where op is a
relational operator (one of =, |=, <, <=>>=) and val is a
numeric literal whose value is between 0 and 1 inclusive.
The right-hand side of the rule consists of a single term.

The arrow =f=> defines which certainty value
propagation (of cvp for short) function should be used to
propagate the uncertainty evaluation of the left-hand side of
the rule to the right-hand side term.

A disjunction of terms is modeled by a set of rules, e.g. P
=> @ and R => Q are used instead of (P or R) => Q. The
system allows to specify the rule resolution principle either
as the optimistic strategy (use the rule that gives the best
evaluation) or the pessimistic strategy (use the rule that
gives the worst evaluation). For example, if we always use
cvp function max for each rule and the pessimistic rule
resolution strategy, we get a typical fuzzy logic expert
system. McESE is capable of modeling many other
approaches to dealing with uncertainty. (Jaffer 1990, Franek
and Bruha 1990).

When we say that a McESE rule fires, first the left-hand
side expression is evaluated. The evaluation process consists
of evaluation of individual terms. The value of a negated
term is a complement in 1, i.e. val(~t)=1-val(t). The value of
a term is obtained in the following manner: first the value
of the predicate with concrete arguments (i.e. all variables
must be instantiated) is obtained (for more exact description
see (Franek and Bruha 1989a, Franek and Bruha 1989b,
Franek at al. 1999)). If the term contains a threshold
directive then the value of the predicate is further modified,
otherwise it is not. The modification is based on whether the
value of the predicate satisfies the threshold directive, if so,
the value is modified to 1, otherwise reduced to 0. If a
weight is specified, the resulting value is just multiplied by
the weight.

Once the values of all left-hand side terms are known, the
prescribed cvp function assigns to the right-hand side
predicate its certainty value (it again may be modified by
negation, weight, or threshold directive). During evaluation,
when a rule is fired, all its left-hand side terms must be
evaluated, which may trigger firing of other rules in the
backward-chaining fashion. This process chains backward
until it stops at atomic predicates (these are predicates that
never occur on a right-hand side of any rule). They
correspond to the knowledge of the “real world” and are
processed by corresponding atomic predicate procedures

that, based on the arguments passed to them, return
certainty values. From that point on, these basic values are
propagated forward as described above until they reach the
required predicate.

In order to provide fast processing, McESE rule bases are
compiled into complex linked data structures and that is
what the inference engine works with. The compilation
process also organizes the rules in a systematic way, thus
eliminating possible side effects introduced by the order of
the rules in the rule base and checking the stratification of
the rule-base.

The SQL-augmented McESE rules have built-in relation
predicates (ISNULL, ISNOTNULL, =, =, >, >= < <=) and
allow expressions using built-in operators +, - , * , and /.
An additional value is included, datetime, whose precise
format depends on the database system used. Moreover, an
SQL query is allowed at any position where a value is valid.
Also an SQL query can stand in the place of an atomic
predicate. Thus, the SQL-augmented rule set can include
and be predicated on results of SQL queries and have as its
action an SQL query resulting in the modification of the
database.

CASE STUDY

In this paragraph we shall briefly describe and discuss a
case study of automatic inventory block release simulated
by SQL-augmented McESE.

In travel industry, a retailer like a travel agency may
purchase a block of services/goods from a supplier for a
particular day (we refer to it as inventory block). If the
retailer cannot sell the services/goods (or their portion) by a
certain time, the inventory (or its portion) is then released
using different strategies. The purpose of the release is to
stop selling the services/goods from the block in the usual
manner, so in a sense the unsold part or its portion is
“returned” to the supplier. The usual strategies include
request to the supplier for each additional sale, or complete
stop of selling, or a reduction of the allotment which can be
sold.

For example, a travel agency may purchase a block of
airline tickets for a particular flight and if they are not sold
by 30 days prior to the flight, the allotment of tickets that
can be sold, is reduced by 50% and thus the travel agency
can sell fewer tickets and all additional sales must be done
through the airline; 5 days prior to the flight, the whole
allotment of tickets that can be sold is reduced to 0 and thus
travel agency cannot sell any more tickets on its own and all
sales must be done through the airline.

Current applications deal with such problems using
regularly scheduled inventory block release programs that
search through the database and determine if an inventory
block ought to be released and how. Inventory block release
is an example of an activity that should be left to the
database itself rather than to the application or applications,
as there is no need to worry about scheduling and whether
the inventory block release program ran and when.
Moreover, the release is only important when a new sale is

actually happening, and thus a regularly scheduled
inventory release may be very well an unnecessary effort.
Its business logic is self-contained and requires no
interaction with the core application(s). Usually inventory
block release strategies are described in a form of rules and
their procedural aspects are not too complex. Thus, it is a
prime candidate for business rules approach, and that is why
we selected it as our case study. In this way, the inventory
block release became truly automatic.

Each inventory block for a given supply is described in a
table inventory block. For simplicity we omit all attributes
that are not relevant for our study and also their data types.
Thus the table inventory block has attributes

e Blockld (unique block identifier)

e Supplyld (unique supply identifier)

e Date (date for which the inventory in the block is
destined)

e Status (there are three possible values: FREE
indicating that any unsold quantity from the inventory
block can be freely sold, REQST indicating that any
sale must go through a request to the supplier, and
finally STOP indicating no further sale is possible)

e Allotment (the original quantity)

e Unsold (unsold portion of the original allotment).

When a booking application tries to sell some quantity from
an inventory block for a given supply and a given date, it
checks Status and Unsold in inventory block if the
requested supply in requested quantity is available for the
given date. Then it must update the table inventory block, in
particular it updates Unsold.

Thus a “before update trigger” is defined for the field
Unsold which triggers the SQL-augmented MCcESE
inference engine with a specific rule set for inventory block
release for this particular supply and this particular date (the
system automatically sets value for predefined constants
$supply idand $today). Since it is a “before” trigger,
the inventory release takes place before the update issued by
the booking application. If the result of the inventory release
invalidates the requested sale (i.e. Status has changed to
REQST or STOP or Unsold has been reduced to a quantity
less than the quantity requested), the update request of the
booking application is failed indicating to the application
that the request could not be granted. In what way the
booking application deals with the failed update (usually the
transaction is rolled back or retried before rolled back) is
entirely up to the application and is not relevant for
inventory release. (See Fig.1 below)

This setup presents a complication caused by the fact that
the inventory block release triggered by the update of
Unsold may itself update Unsold and thus it needs to
bypass the trigger. But this is a technicality and not really
relevant to the experimentation.

The inventory block release strategies we employed were
rather very simple:

Rulel: 20 days prior Date, reduce Unsold by 50%
Rule2: 10 days prior Date change Status to REQST and
reduce Unsold by 50%

Rule3: 2 days prior Date change Status to STOP
The corresponding SQL-augmented McESE rule set:

The constants $supply id and %today are predefined
and their values are set by McESE upon invocation. User-
defined constants %date and $%$status are defined
within the McESE rule set. The constant $date refers to
the date of the inventory block being processed (as
determined by $supply id) and the constant %status
refers to its status.

DEF %date=(SELECT Date
FROM inventory block
WHERE SupplyId=%supply id)

DEF %status=(SELECT Status
FROM inventory block
WHERE SupplyId=%supply id)

Rl:%date<=%today+20 & %$status=FREE
& ~R2 & ~R3

(UPDATE inventory block
SET Unsold=Unsold*0.5
WHERE SupplyId=%supply id)

R2: %date<=%today+10 & %status=FREE
& ~R1 & ~R3
==>
(UPDATE inventory block
SET Unsold=Unsold*0.5,
Status=REQST
WHERE SupplyId=%supply id)

R3:%date<=%today+2 & ~Rl & ~R2
==>
(UPDATE inventory block
SET Status=STOP
WHERE SupplyId=%supply id)

Note that we can control the exclusivity of the rule firing
and hence whether the rules are performed in exclusive
mode (like in the example above when only one of the three
rules will fire). If the cumulative effect is desired (which
actually is more common), then a simple modification of
the rules (see below) will have the desired effect.

R1l:%date<=%today+20 & %status=FREE
==>
(UPDATE inventory block
SET Unsold=Unsold*0.5
WHERE SupplyId=%supply id)

R2: %date<=%today+10 & %status=FREE
==>
(UPDATE inventory block
SET Unsold=Unsold*0.5,
Status=REQST
WHERE SupplyId=%supply id)

R3:%date<=%today+2

==>
(UPDATE inventory block
SET Status=STOP
WHERE SupplyId=%supply id)

We have presented here the inventory block release business
rules in a much simpler form than actually used in the
experimentation. The purpose is to allow the reader to
understand the fundamental concepts behind our approach,
their strength as well as their weaknesses.

The rules can be combined (which is a common situation in
real life) with appropriate report activities, e.g. when Status
is changed to REQST, the appropriate supplier should be
notified about the total of sold and unsold services/goods
from the original allotment. It should be clear from the
description of the workings of McESE that there is no
problem to refer to the appropriate activities in McESE rules
and hence describe them in the declarative form within the
simulated business rules.

We have not addressed yet the issue of storage, i.e. where
and how are McESE rules stored and how they are accessed.

Since a McESE rule set is a kin to a computer program
(though in a declarative form), it must be stored in a form
readily accessible to humans for editing and modifications.
On the other hand a speedy processing requires the rule set
be pre-processed (compiled) into a proper data structure.

Thus, we opted for McESE rules in a syntax form very
similar to SQL queries that were stored in a table of the
database in textual form like any other data. Hence our own
GUI query builder with syntax checking could be used to
create and edit McESE rule sets. A pre-compiler was used
to translate such rules to proper McESE rules before they
were compiled and stored in binary form in the same table
as BLOBs (binary large objects). Any time a rule set was
modified, a trigger invoked the pre-compiler and McESE
compiler, so the compiled version was kept automatically
up-to-date.

We decided not to describe the SQL-like syntax of McESE
rules we used in our research, for it did not seem really
relevant to the main topic of our research, the simulation of
business rules in an active database, and the verification of
the expert system approach.

CONCLUSION

The above described case study of automatic inventory
block release indicates, despite the simplicity with which it
was presented here, that SQL-augmented expert systems
like McESE could be successfully utilized as tools for
design of active business rules. The main contribution of
this approach is the declarative aspect brought to the design
of business rules which facilitates understanding and easier
development. The additional contribution can be seen in the
processing of uncertainty which is very often a part of
business activities and cannot be accommodated by the
traditional business rules in active databases.

Update Request

Application

Triggered

MCcESE
Request Failed/Sycceeded D p| Inference
Engine
DBMS Data in/out &
Database access
Fig. 1

REFERENCES

Aiken, A.; Widom, J.; and Hellerstein, J.M. 1992.
“Behaviour of Database Production Rules: Termination,
Confluence and Observable Determinism.” ACM SIGMOD,
vol. 2: 59-68.

Ceri, S. and Fraternalli, P. 1997. Database Applications
with Objects and Rules, The IDEA Methodology, Addison-
Wesley.

Franek, F. and Bruha, 1. 1989a. “An environment for
extending conventional programming languages to build
expert system applications,” Expert Systems Theory &
Applications, Proceedings of IASTED International
Symposium, Zurich, Switzerland: 106-109.

Franek, F. and Bruha, 1. 1989b. “McESE-McMaster Expert
System Environment.” In Computing and Information,
North-Holland: 383-388.

Franek, F. and Bruha, I. 1990. “A way to incorporate
Neural Networks into Expert systems.” Artificial
Intelligence Application & Neural Networks, Proceedings
of IASTED International Symposium, Zurich, Switzerland:
251-254.

Franek, F.; Rosicky, V.L.; and Bruha, I. 1999. “A hybrid-
expert-system based tool for scheduling and decision
support.” Proceedings of 13th European Simulation
Multiconference ESM99, Warsaw, Poland.

Jaffer, Z. 1990. “Treatments of Uncertainty and Their
Emulation in McESE.” M.Sc. Thesis, McMaster University.

Paton, N.W., editor. 1999. Active Rules in Database
Systems, Springer-Verlag, New York.

