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Abstract.

A uniform method to define a (restricted iterated) forcing notion to collapse a huge cardinal to a

small one to obtain models with various types of highly saturated ideals over small cardinals is presented.

The method is discussed in great technical details in the first chapter, while in the second chapter the

application of the method is shown on three different models: Model I with an ℵ1-complete ℵ2-saturated

ideal over ℵ1 that satisfies Chang’s conjecture, Model II with an ℵ1-complete ℵ3-saturated ideal over ℵ3,

and Model III with an ℵ1-complete (ℵ2, ℵ2, ℵ0)-saturated ideal over ℵ1.

Introduction

”There is no κ+-complete κ+-saturated ideal over κ (κ an uncountable cardinal)” is a straight-

forward generalization of the classical result of Ulam (see [U] or [J]) ”there is no non-trivial σ-additive

measure on ℵ1”. Solovay (see [S]) proved that if ”there exists a κ-complete κ-saturated ideal over κ”,

then κ is a large cardinal (Mahlo). So if one wants to generalize the notion of saturated ideals to an ideal

over a smaller cardinal κ, either completeness of such ideal must be less than κ, or saturatedness must

be at least κ+. From Solovay’s work (see [S]) follows that the consistency strength of the existence of an

ℵ1-complete ℵ2-saturated ideal over ℵ1 is at least the existence of a measurable cardinal. Later improved

by Mitchell (see [Mi]), the consistency strength is in fact at least the existence of a certain sequence of

measurable cardinals. Until Kunen’s paper [K2], there was no model known with an ℵ1-complete ℵ2-

saturated ideal over ℵ1. Kunen used a collapse of huge cardinal to obtain such a model. Variations of his

method were used by Magidor (see [M]), Laver (see [L]), and Forman-Laver (see [FL]) to obtain various

saturated ideals over ℵ1 or ℵ3.

In this paper the author tried to unify all these variations. In Chapter 1 an exposition of the

method (a restricted iterated forcing) with most of details worked out is presented. Only the general

knowledge of forcing and iterated forcing is assumed. The aspects of restricted forcing (keeping forcing

terms ”small” so the resulting posets are not getting too ”big”), extension and covering properties of

elementary embeddings (i.e. when an elementary embedding j:V →M can be extended to one from a

generic extension of V to a generic extension of M , and when a subset of a generic extension of M is

a set from the generic extension of M) are the main thrust of the first chapter. Also the circumstances

which give rise to a particular ideal (which can be made saturated depending on the forcing used) are

discussed as well.

Starting with an elementary embedding j:V →M with the critical point κ, restricted iterated

forcing is used to obtain a poset B = P ∗ Q so that B is a regular suborder of j(P ), and in any generic

extension of V via B there is an ideal I over κ so that ℘(κ)/I can be embedded into Boolean completion of

j(P )/B, and hence it inherits the saturatedness of j(P )/B. The extension of the elementary embedding

j to one from V [G] to M [H] can satisfy (if the circumstances are right) the ”transfer” property, i.e. for

every object X from V [G] of certain size j


X∈M [H], and of course j(X)∈M [H]. In many situations

j


X becomes a ”subobject” of j(X), lending itself to prove properties like Chang’s conjecture, or the

graph one proven by Forman-Laver.



In Chapter 2 three different models for various saturated ideals are produced via restricted

iterated collapse of a huge cardinal. In the first chapter the author tried to set up the machinery of

restricted iterated forcing so that only certain properties of the forcing to be iterated must be checked for

all pieces to fit together to get the posets P , Q, and B so that B can be regularly embedded into j(P ).

Some additional properties of the model V B then follow from properties of P and/or j(P )/B.

Lately the field has been quite active by efforts of Forman, Magidor, and Shelah (see [FMS])

who obtained a model where MM (Martin’s Maximum Axiom) holds by collapsing ”just” a supercompact

cardinal to ℵ1. Some of the consequences of MM are that 2ℵ
0 = ℵ2 and the non-stationary ideal over ℵ1 is

ℵ2-saturated. Forman, Magidor, and Shelah (private communication) using a forcing similar to the one

used to produce a model where MM holds, obtained a model where GCH holds and the non-stationary

ideal over ℵ1 is ”somewhere” ℵ2-saturated (i.e. the restriction of the ideal to a stationary subset of ℵ1

is ℵ2-saturated). It seems at the moment that huge cardinals can give rise to some ”fancy” saturated

ideals, while supercompact cardinals can give similar results as far as ℵ2-saturatedness is concerned.

Let us mention an interesting open problem. Although a supercompact cardinal is enough to

get an ℵ1-complete ℵ2-saturated ideal over ℵ1, and a huge cardinal cardinal is enough to get an ℵ1-

complete ℵ3-saturated ideal over ℵ3, a model with an ℵ1-complete ℵ2-saturated ideal over ℵ2 is not

known. Note that if ℵω < κ < ℵω1
, then there is no an ℵ1-complete ℵ2-saturated ideal over κ (see [F2]).

For completeness, Woodin (see [W]) obtained a model of ZFC with an ℵ1-complete ideal over ℵ1 which

has a dense set of size ℵ1 via the axiom of determinacy. He can now obtain (private communication)

enough of determinacy by collapsing a huge cardinal to ℵ1 to use similar construction to get a model of

ZFC with an ℵ1-complete ℵ1-dense ideal over ℵ1, but it is a completely different approach from the one

presented in this paper.

The motivation of the author to undertake writing of this paper was twofold: first is the scarcity

of published literature in this area (no wonder due to the enormous technicality of the subject), and

second the non-existence of expository literature in the topic allowing non-experts to understand and use

the methods. The author sincerely hopes that this paper will succeed in at least partially filling both

gaps.

Notation and basic definitions.

For all basic notations about sets see [J] and [K1], about forcing and iterated forcing see [J],[K1],

and [B]. For definitions and properties of large cardinals see [MK] and [SRK].

We are using as standard set-theoretical notation as possible. To distinguish formulas from text,

they are enclosed between `̀ ´́ , e.g. `̀ x∈X´́ . WLOG abbreviates ”without loss of generality”, ∅ denotes

the empty set. Lower case Greek letters are reserved for ordinal numbers. Ord denotes the class of all

ordinal numbers. If X is a set, then |X| denotes its size (cardinality). If f is a function, dom(f) denotes

its domain, while rng(f) denotes its range. If X is a set, then f


X denotes the range of the function

f |X (f restricted to X). For a set X, ℘(X) denotes the power set of X, while [X]<γ denotes the set of

all subsets of X of size < γ, and [X]≤γ denotes the set of all subsets of X of size ≤ γ, and [X]γ denotes

the set of all subsets of X of size γ. If X and Y are sets, then XY denotes the set of all functions from

X into Y , and for an ordinal γ, <γX =
⋃

{α
X : α < γ}, while ≤γX =

⋃

{α
X : α ≤ γ}. If V is the

set universe, the cumulative hierarchy of sets 〈Vα : α∈Ord〉 is defined by V0 = ∅, Vα+1 = Vα∪℘(Vα),

and Vα =
⋃

{Vβ : β < α} for α limit. Then V =
⋃

{Vα : α∈Ord}. A set X is said to have rank α, if

X∈Vα+1−Vα.

Let P be a poset (i.e. a set partially ordered by ≤). Let p∈P , and let D⊂P . Then p << D iff

p ≤ d for every d∈D. D is dense in P iff for any p∈P there is d∈D so that d ≤ p, while D is said to be

dense below p iff for any p′ ≤ p there is d∈D so that d ≤ p′. p, p′∈P are compatible, we shall denote



it by p⊃⊂q, if there is q∈P so that q ≤ p, p′. p⊃⊂q will denote that p and q are incompatible. D is an

antichain, iff D consists of pairwise incompatible elements. P satisfies the κ-c.c. iff for every X∈[P ]κ

there are p, q∈X so that they are compatible in P . P satisfies the (κ, κ, µ)-c.c. iff for any X∈[P ]κ there

is Y ∈[X]κ so that for any Z∈[Y ]µ there is z∈P so that z << Z. P satisfies the (κ, κ, <µ)-c.c. iff P

satisfies the (κ, κ, γ)-c.c. for every γ < µ. D is directed iff every two elements of D are compatible. D

is centered iff for any D0∈[D]<ω there is p∈P so that p << D0. P is κ-centered iff P is a union of

κ centered posets. P is said to be λ-closed (<λ-closed) if for every ξ ≤ λ (ξ < λ) and every descending

sequence 〈pα : α ≤ ξ〉 of elements of P there is p∈P so that p ≤ pα for every α ≤ ξ.

I is a κ-complete ideal over λ iff (i) I⊂℘(λ); and (ii) if X⊂Y ⊂λ, and Y ∈I, then X∈I; and

(iii) if {Xα : α < ξ}, and ξ < κ, then
⋃

{Xα : α < ξ} ∈ I; (iv) ∅∈I; and (v) λ/∈I; and (vi) for

every α∈λ, {α}∈I. (Note: usually a κ-complete ideal is defined as one satisfying (i)-(iv), a proper ideal

is one satisfying (v), non-principal ideal as one satisfying (vi). Since we shall deal only with proper,

non-principal ideals, we included these properties right in the definition.) I+ = {X⊂κ : X /∈I}. I is

κ-saturated iff {Xα : α < κ}⊂I+, then Xα∩Xβ /∈I for some α 6= β < κ. I is (κ, κ, µ)-saturated iff

for every X∈[I+]κ there is Y ∈[X]κ so that for every Z∈[Y ]µ,
⋂

Z /∈I. I is κ-centered iff I =
⋃

{I+
α :

α < κ}, and each I+
α is centered, i.e. whenever X0, ... ,Xn ∈ I+

α , then
⋂

{Xi : i ≤ n} /∈ I.

If M⊂V is a transitive model of ZFC, then U is a non-principal M -κ-complete M -ultrafilter over

λ iff (i) U⊂℘(λ)∩M; and (ii) if X⊂Y ⊂λ, and X∈Y, and Y ∈M , then Y ∈U ; and (iii) if {Xα : α < ξ}∈M ,

and ξ < κ, then
⋂

{Xα : α < ξ} ∈ U ; and (iv) if X⊂λ, X∈M and X /∈U , then λ−X∈U ; and (v) for every

α∈λ, {α}/∈U .

If P is a forcing notion (i.e. a poset), p∈P , then p ‖ V
P `̀ φ´́ (read p forces over V that φ) means

that for any G P -generic over V , so that p∈G, V [G]|= `̀ φ´́ . Symbol 1P denotes the greatest element of

P (if it exists). ‖ V
P `̀ φ´́ means that p ‖ V

P `̀ φ´́ for any p∈P , which is equivalent to 1P ‖ V
P `̀ φ´́ if P

has the greatest element, and also it is equivalent to V [G]|= `̀ φ´́ for any G P -generic over V . If P and

Q are posets, P ' Q denotes that they are isomorphic. P ⊂⊂ Q denotes that P is a complete suborder

(see Def. 13). P×Q is a poset of ordered pairs 〈p, q〉, p∈P , q∈Q ordered by 〈p, q〉 ≤ 〈p′, q′〉 iff p ≤ p′

and q ≤ q′. Then P ⊂⊂ P×Q, as well as Q ⊂⊂ P×Q.

As much as possible we shall adhere to denoting forcing terms (i.e. names, see Def. 5) with ◦

accent. E.g. X
◦

∈V P denotes a V P -term. When forcing with P , every object X from the ground model V

has a canonical name by which V is embedded into V [G]. For simplicity we shall use the same notation

for the canonical name for X as for X itself. The notion of iterated forcing P*Q
◦

represents a poset of

pairs 〈p, q
◦

〉 so that p∈P , and ‖ V
P `̀ q

◦

∈Q
◦

& Q
◦

is a poset´́ , with the order defined by 〈p, q
◦

〉 ≤ 〈p′, q
◦ ′

〉 iff

p ≤ p′ and p′ ‖ V
P `̀ q

◦

≤ q
◦ ′

´́ . It is standard (see e.g. [J], [K1]) that if P ⊂⊂ Q, then there is (Q/P )∈V P

so that P ∗ (Q/P ) ' Q. A sequence 〈Pα : α ≤ κ〉 is a forcing iteration iff for every α < κ, there is

R
◦

α∈V Pα so that Pα+1 = Pα ∗R
◦

α. For α limit p∈Pα iff p is an α-sequence so that p|β∈Pβ and p|β ‖ V
Pβ

`̀ p(β)∈R
◦

β ´́ and supp(p) = {β∈α : p|β ‖ V
Pβ

`̀ p(β) 6= 1
R
◦

β

´́ } satisfies some specified properties. For

example, if at every limit stage we require that only the sequences with finite support are taken, it is

called finite support iteration. Different ideals for support may be used (see [K1]).

Let B be a Boolean algebra, and let φ be a formula (using V B-terms). The symbol ‖φ‖B denotes

the Boolean value of φ (see [J]). Symbols OB , 1B denote the least and greatest elements of B. Comp(P )

for a poset P denotes its Boolean completion. Let p∈P . Then p ‖ V
P `̀ φ´́ iff p ≤ ‖φ‖Comp(P ).

Let formula φ define a set. Let P be a poset. Let M be a model of ZFC. Then φP denotes the

V P -term for the set φ defines in a generic extension of V via P , and φM denotes the set φ defines in M .

An uncountable regular cardinal α is inaccessible (we shall abbreviate it by inacc.) iff 2λ < α

for every λ < α.

If M is a model of ZFC, j:V →M is an elementary embedding iff for any formula φ(X0, ...

,Xn) with n+1 free variables and no constants, and any A0, ... ,An∈V , V |= `̀ φ(A0, ... ,An)´́ iff



M |= `̀ φ(j(A0), ... ,j(An))´́ . An ordinal κ is the critical point of j iff j(α) = α for all α < κ, and

j(κ) > κ (such κ must be at least a measurable cardinal - see [J]). If Vα = Mα for all α ≤ κ, then

j(x) = x for every x∈Vκ.

Chapter 1.

Def. 1: Let j:V →M be an elementary embedding with critical point κ. Let M⊂V and let j be definable

in V . j is huge if j(κ)M⊂M (where j(κ)M is defined in V ).

Def. 2: Let ρ be an ordinal. X⊂Ord is ρ-Easton if |X∩γ| < γ for all regular γ > ρ.

Lemma 3: Let λ be Mahlo, ρ ≥ ω, and let X⊂λ be ρ-Easton. Then X is bounded below λ, i.e. |X| < λ.

Proof: A = {γ : ρ ≤ γ < λ & λ regular} is stationary in λ since λ is Mahlo. For every γ∈A define f(γ)

as the least ν so that X∩γ⊂ν. Since X is ρ-Easton, f is regressive and so by Fodor’s theorem there are

a stationary B⊂A and σ < λ so that X∩γ⊂f(γ) = σ for all γ∈B. Hence X⊂σ. tu

Lemma 4: Let j:V →M be huge with critical point κ. For all α ≤ j(κ), all ρ ≥ ω, and all X⊂j(κ)

(4.1) `̀ α is a cardinal´́ iff M |= `̀ α is a cardinal´́ ;

(4.2) `̀ α is regular´́ iff M |= `̀ α is regular´́ ;

(4.3) `̀ α is weakly inaccessible´́ iff M |= `̀ α is weakly inaccessible´́ ;

(4.4) `̀ α is inaccessible´́ iff M |= `̀ α is inaccessible´́ ;

(4.5) `̀ α is Mahlo´́ iff M |= `̀ α is Mahlo´́ ;

(4.6) `̀ X is ρ-Easton and X∈M ´́ iff M |= `̀ X is ρ-Easton´́ .

(4.6) `̀ X is a ρ-Easton subset of j(κ)´́ iff M |= `̀ X is a ρ-Easton subset of j(κ)´́ .

Proof: Left to the reader. tu

Def. 5: Let P be a poset. Then V P
0 = ∅, V P

α+1 = V P
α ∪ ℘(V P

α ×P ), V P
α =

⋃

{V P
β : β < α} for α limit,

and V P =
⋃

{V P
α : α∈Ord}.

Lemma 6: Let P be a poset so that P∈Vλ, λ a regular cardinal. Then

(6.1) V P
α ∈Vλ for every α < λ;

(6.2) V P
α+n⊂Vα+3n for every α ≥ λ, α limit, and every n∈ω.

Proof: Left to the reader. tu

Lemma 7: Let P be a poset. If X∈V P and X∈Vα, then X∈V P
α .

Proof: Left to the reader. tu

Lemma 8: Let P be a poset. If X∈V P , then X ∩ Vα∈V P
α+1.

Proof: Left to the reader. tu

Lemma 9: The maximum principle.

Let P be a poset, A an antichain in P (i.e. a set of mutually incompatible elements of P ). For each a∈A,

let X
◦

a∈V P
αa

, αa ordinals. Then there is a X
◦

∈V P
α+1, α =

⋃

{αa : a∈A}, so that a ‖ P `̀ X
◦

= X
◦

a´́ for

every a∈A.

Proof: Define X
◦

by 〈Y
◦

,p〉∈X
◦

iff for some a∈A, Y
◦

∈dom(X
◦

a), p ≤ a and p ‖ P `̀ Y
◦

∈X
◦

a´́ . Then

dom(X
◦

) =
⋃

{dom(X
◦

a) : a∈A} ⊂
⋃

{V P
αa

: a∈A} = V P
α . Now, to prove that a ‖ P `̀ X

◦

= X
◦

a´́ for each

a∈A is fairly standard (see e.g. [K1]) and hence left to the reader. tu



Lemma 10: Let P be a poset, p∈P , X
◦

∈V P and α+n ≥ 1, where α = 0, or α is a limit ordinal, and

n∈ω. Let p ‖ P `̀ X
◦

has rank at most α+n´́ . Then there are q ≤ p and Y
◦

∈V P
α+2n so that

q ‖ P `̀ X
◦

= Y
◦

´́ .

Proof: By contradiction. Let α, n be the least such that the negation holds.

(1) If n = 0 (so α is limit), then p ‖ P `̀ (∃β < α)(X
◦

has rank at most β)´́ . There are q ≤ p and

β < α so that q ‖ P `̀ X
◦

has rank at most β´́ . By the minimality of α, n there are q̄ ≤ q and

Y
◦

∈V P
β such that q̄ ‖ P `̀ X

◦

= Y
◦

´́ , a contradiction.

(2) So n ≥ 1.

Let t = 〈x
◦

, q〉∈X
◦

. Define Dt = {r ≤ q : (r incompatible with p) or (r ≤ p and for some

z
◦

∈V P
α+2n−2, r ‖ P `̀ z

◦

= x
◦

´́ )}. We claim that Dt is dense below q.

Let q′ ≤ q. We are to show that there is q′′ ≤ q′ so that q′′∈Dt. If q′ is incompatible with p,

then q′ is in Dt and we are done. If on the other hand q′ is compatible with p, then there is

q̄ ≤ p, q′. Then q̄ ‖ P `̀ x
◦

∈X
◦

and has rank at most α+n−1´́ . By the minimality of α, n there

are q′′ ≤ q̄ and z
◦

∈V P
α+2n−2 so that q′′ ‖ P `̀ x

◦

= z
◦

´́ . Therefore q′′∈Dt and we are done. The

claim is proven.

Let At be a maximal antichain in Dt. For every a∈At there is z
◦

a∈V P
α+2n−2 so that a ‖ P

`̀ x
◦

= z
◦

a´́ whenever a is compatible with p. By Lemma 9 there is R
◦

t∈V P
α+2n−1 so that a ‖ P

`̀ R
◦

t = z
◦

a´́ for every a∈At, hence a ‖ P `̀ R
◦

t = x
◦

´́ whenever a∈At si compatible with p. Define

Y
◦

= {〈R
◦

t, q〉 : 〈x
◦

, q〉∈X
◦

}. Then Y
◦

∈V P
α+2n.

Let G be P -generic over V so that p∈G. If t = 〈x
◦

, q〉∈X
◦

and q∈G, then some a∈At is in G (and

hence compatible with p) and since a ‖ P `̀ R
◦

t = x
◦

´́ , (x
◦

)G = (R
◦

t)
G. Thus (X

◦

)G = {(x
◦

)G : t =

〈x
◦

, q〉∈X
◦

& q∈G} = {(x
◦

)G : 〈R
◦

t, q〉∈Y
◦

& q∈G} = {(R
◦

t)
G : 〈R

◦

t, q〉∈Y
◦

& q∈G} = (Y
◦

)G. Therefore

there is some q ≤ p so that q ‖ P `̀ X
◦

= Y
◦

´́ and Y
◦

∈V P
α+2, a contradiction. tu

Lemma 11: Let P be a λ-c.c. poset, λ a regular cardinal, p∈P and X
◦

∈V P . Let p ‖ P `̀ X
◦

has rank at

most λ´́ . Then there is Y
◦

∈V P
λ so that p ‖ P `̀ X

◦

= Y
◦

´́ .

Proof: By Lemma 10, D = {q ≤ p : (∃Y
◦

∈V P
λ )(q ‖ P `̀ X

◦

= Y
◦

´́ )} is dense below p. Let A be a maximal

antichain in D. For every a∈A there is X
◦

a∈V P
λ be so that a ‖ P `̀ X

◦

= X
◦

a´́ . Since λ is regular and

|A| < λ (as P satisfies the λ-c.c.), there is β < λ so that X
◦

a∈V P
β for each a∈A. By Lemma 9, there is

Y
◦

∈V P
β+1

⊂V P
λ so that a ‖ P `̀ Y

◦

= X
◦

a = X
◦

´́ for every a∈A. Hence p ‖ P `̀ Y
◦

= X
◦

´́ . tu

Lemma 12: Let P be a λ-c.c. poset, λ a regular cardinal. Let p∈P , X∈V ,Y
◦

∈V P , and

p ‖ P `̀ Y
◦

⊂X & |Y
◦

| ≤ λ´́ . Then there are q ≤ p and Ŷ ∈V P so that |Ŷ | ≤ λ and q ‖ P `̀ Y
◦

= Ŷ ´́ .

Proof: Let f :ρ→X be a bijection. There are g
◦

∈V P , ξ ≤ λ and q ≤ p so that q ‖ P `̀ g
◦

:ξ→Y
◦

´́ . Hence

q ‖ P `̀ (∃β∈ρ)(g
◦

(α) = f(β))´́ , for any α < ξ. Let Dα = {r ≤ q : (∃β∈ρ)(r ‖ P `̀ g
◦

(α) = f(β)´́ )}.

Then Dα is dense below q. Let Aα be a maximal antichain in Dα. Define h
◦

∈V P by 〈〈α, f(β)〉, r〉∈h
◦

iff

r∈Aα and r ‖ P `̀ g
◦

(α) = f(β)´́ . Since |Aα| ≤ λ for every α < ξ, and λ is a regular cardinal in V ,

|h
◦

| ≤ λ. It is left to the reader to check that (1) ‖ P `̀ h
◦

⊂ξ×X ´́ , (2) q ‖ P `̀ h
◦

is a function´́ ,

(3) q ‖ P `̀ dom(h
◦

) = ξ´́ , (4) q ‖ P `̀ h
◦

⊂g
◦

´́ , and so q ‖ P `̀ h
◦

= g
◦

´́ .

Now define Ŷ ∈V P by Ŷ = {〈f(β), r〉 : (∃α < ξ)(〈〈α, f(β)〉, r〉∈ h
◦

)}. Thus |Ŷ | ≤ λ and it is left to the

reader to check that (5) q ‖ P `̀ h
◦


ξ⊂Ŷ ´́ , (9) q ‖ P `̀ Ŷ ⊂h
◦


ξ´́ . Thus q ‖ P `̀ Ŷ = h
◦


ξ = g
◦

ξ =

Y
◦

´́ . tu

Def. 13: P, Q be posets. A mapping i : P → Q is a complete (regular) embedding of P into Q, iff



(13.1) for every p, q∈P , if p ≤ q in P , then i(p) ≤ i(q) in Q;

(13.2) for every p, q∈P , if p⊃⊂q in P , then i(p)⊃⊂i(q) in Q;

(13.3) for every q∈Q there is p∈P so that whenever p′∈P and p′⊃⊂p in P , then i(p′)⊃⊂q in Q (we shall

denote this relationship between p and q by p≺P q in Q).

P⊂⊂Q denotes that P is a complete suborder of Q, i.e. the identity is a complete embedding of P into

Q.

Note: (13.3) can be replaced by: for every A, a maximal antichain (a set of mutually incompatible

elements) in P , i


A is a maximal antichain in Q.

Def. 14: Let P be a poset. We shall say that P is separative if for every p, q∈P , whenever p 6≤ q, then

there is p′∈P so that p′ ≤ p and p′⊃⊂q.

Lemma 15: Let P, Q be posets such that P⊂⊂Q and P is separative. Let p, p1, p2∈P , q∈Q. Let p≺P q

and q ≤ p1, p2 in Q. Then p ≤ p1, p2 in P .

Proof: Assume that p 6≤ p1 in P . Then by separativeness of P , there is P3∈P such that p3 ≤ p and

p3⊃⊂p1 in P . Thus p3⊃⊂p in P. Since p≺P q, p3⊃⊂q in Q. Therefore p3⊃⊂p1 in Q, and since P⊂⊂Q,

p3⊃⊂p1 in P , a contradiction. Thus p ≤ p1, and by the same argument p ≤ p2. tu

Lemma 16: Let j:V →M be an elementary embedding. Let P be a poset. Then j|P :P→j(P ) satisfies

(13.1) and (13.2).

Proof: Left to the reader. tu

Lemma 17: Let P, Q be posets such that P⊂⊂Q. Let φ(x1, ..., xn) be an upward absolute formula. Let

X
◦

1,...,X
◦

n ∈V P . Let p∈P , q∈Q and q ≤ p in Q. Let p ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ . Then q ‖ Q

`̀ φ(X
◦

1,...,X
◦

n)´́ .

Proof: Let q1 ≤ q in Q. Let G be Q-generic over V so that q1∈G. Since p ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ ,

V [G∩P ]|= `̀ φ(X
◦

G∩P
1 ,...,X

◦

G∩P
n )´́ . Since each X

◦

i∈V P , X
◦

G∩P
i = X

◦

G
i , and by upward absolutness of φ,

V [G]|= `̀ φ(X
◦

G
1 ,...,X

◦

G
n )´́ . Thus for some q2∈G q2 ‖ Q `̀ φ(X

◦

1,...,X
◦

n)´́ . Then q2⊃⊂q1 in Q, and so there

is q3∈Q, q3 ≤ q2, q1 and q3 ‖ Q `̀ φ(X
◦

1,...,X
◦

n)´́ . Hence q ‖ Q `̀ φ(X
◦

1,...,X
◦

n)´́ . tu

Lemma 18: Let P, Q be posets such that P⊂⊂Q. Let φ(x1, ..., xn) be a downward absolute formula.

Let X
◦

1,...,X
◦

n ∈V P . Let p∈P and let p ‖ Q `̀ φ(X
◦

1,...,X
◦

n)´́ . Then p ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ .

Proof: Let p1 ≤ p in P . Then p1 ≤ p in Q. Let G be Q-generic over V so that p1∈G. Since

p1 ‖ Q `̀ φ(X
◦

1,...,X
◦

n)´́ , V [G]|= `̀ φ(X
◦

G
1 ,...,X

◦

G
n )´́ . Since each X

◦

i∈V P , X
◦

G∩P
i = X

◦

G
i , and by downward

absolutness of φ, V [G∩P ]|= `̀ φ(X
◦

G∩P
1 ,...,X

◦

G∩P
n )´́ . Thus for some p2∈G∩P p2 ‖ P `̀ φ(X

◦

1,...,X
◦

n)´́ .

Then p2⊃⊂p1 in P , and so there is p3∈P , p3 ≤ p2, p1 and p3 ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ . Hence p ‖ P

`̀ φ(X
◦

1,...,X
◦

n)´́ . tu

Lemma 19: Let P, Q be posets such that P⊂⊂Q. Let φ(x1, ..., xn) be a downward absolute formula.

Let X
◦

1,...,X
◦

n ∈V P . Let p∈P , q∈Q, p≺P q, and let q ‖ Q `̀ φ(X
◦

1,...,X
◦

n)´́ . Then p ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ .

Proof: Let p1 ≤ p in P . Then p1⊃⊂p in P , and so p1⊃⊂q in Q. Let q1∈Q be such that q1 ≤ p1, q in Q.

Let G be Q-generic over V so that q1∈G. Since q1 ‖ Q `̀ φ(X
◦

1,...,X
◦

n)´́ , V [G]|= `̀ φ(X
◦

G
1 ,...,X

◦

G
n )´́ . Since

each X
◦

i∈V P , X
◦

G∩P
i = X

◦

G
i , and by downward absolutness of φ, V [G∩P ]|= `̀ φ(X

◦

G∩P
1 ,...,X

◦

G∩P
n )´́ . Thus

for some p2∈G∩P p2 ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ . Then p2⊃⊂p1 in P , and so there is p3∈P , p3 ≤ p2, p1 and

p3 ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ . Hence p ‖ P `̀ φ(X
◦

1,...,X
◦

n)´́ . tu



Def. 20: Let P, Q be posets so that P⊂⊂Q. Let R
◦

∈V P so that ‖ P `̀ R
◦

is a poset´́ . Define Q⊗P R
◦

=

{〈p,q
◦

〉 : q∈Q, r
◦

∈V P , q ‖ Q `̀ r
◦

∈ R
◦

´́ }, 〈q1,r
◦

1〉 ≤ 〈q2,r
◦

2〉 iff q1 ≤ q2 in Q, and q1 ‖ Q `̀ r
◦

1 ≤ r
◦

2 in R
◦

´́ .

Lemma 21: Let P, Q be posets such that P⊂⊂Q. Let R
◦

∈V P so that ‖ P `̀ R
◦

is a poset´́ . Then Q⊗P R
◦

is dense in Q∗R
◦

.

Proof: Obviously Q⊗P R
◦

is a suborder of Q∗R
◦

. Let 〈q,r
◦

〉∈Q∗R
◦

. Then q∈Q, r
◦

∈V Q and q ‖ Q

`̀ r
◦

∈ R
◦

´́ . Let G be Q-generic over V so that q∈G. Since R
◦

∈V P and G∩P is P -generic over V , R
◦

G = R
◦

G∩P ∈V [G∩P ]. Thus r
◦G ∈V [G∩P ], and so there is r

◦

1∈V P such that r
◦G∩P
1 = r

◦G. Thus for some q1∈G,

q1 ‖ Q `̀ r
◦

1 = r
◦

´́ . Then q1⊃⊂q in Q, and so there is q3∈Q such that q2 ≤ q1, q in Q and

q2 ‖ Q `̀ r
◦

1 = r
◦

´́ . Then 〈q2,r
◦

1〉 ∈ Q⊗P R
◦

and 〈q2,r
◦

1〉 ≤ 〈q,r
◦

〉 in Q∗R
◦

. tu

Lemma 22: Let P, Q, R be posets so that P⊂⊂Q⊂⊂R. Let S
◦

∈V P and let ‖ P `̀ S
◦

is s poset´́ . Let Q

be separative. Then Q⊗P S
◦

⊂⊂ R⊗P S
◦

.

Proof: Obviously Q⊗P S
◦

⊂ R⊗P S
◦

.

First we verify that (13.1) holds. Let 〈q1,s
◦

1〉 ≤ 〈q2,s
◦

2〉 in Q⊗P S
◦

. Then q1 ≤ q2 in Q and

q1 ‖ Q `̀ s
◦

1 ≤ s
◦

2 in S
◦

´́ . By Lemma 17 q1 ‖ R `̀ s
◦

1 ≤ s
◦

2 in S
◦

´́ . As q1 ≤ q2 in R, 〈q1,s
◦

1〉 ≤ 〈q1,s
◦

1〉 in

R⊗P S
◦

.

Next we verify that (13.2) holds. Let 〈q1,s
◦

1〉⊃⊂〈q2,s
◦

2〉 in R⊗P S
◦

. There is 〈r,s
◦

〉 ∈ R⊗P S
◦

so that

〈r,s
◦

〉 ≤ 〈q1,s
◦

1〉, 〈q2,s
◦

2〉 in R⊗P S
◦

. Thus r ≤ q1, q2 in R and r ‖ R `̀ s
◦

≤ s
◦

1, s
◦

2 in S
◦

´́ . Since Q⊂⊂R,

there is q∈Q so that q≺Qr. By Lemma 5 q ≤ q1, q2 in Q. Since `̀ s ≤ s1 in S´́ is an absolute formula,

by Lemma 19 q ‖ Q `̀ s
◦

≤ s
◦

1, s
◦

2 in S
◦

´́ . By Lemma 17 q ‖ R `̀ s
◦

≤ s
◦

1, s
◦

2 in S
◦

´́ . So 〈q,s
◦

〉 ∈

Q⊗P S
◦

, and thus 〈q,s
◦

〉 ≤ 〈q1,s
◦

1〉, 〈q2,s
◦

2〉 in Q⊗P S
◦

.

Verify that (13.3) holds. Let 〈r,s
◦

〉 ∈ R⊗P S
◦

. Then s
◦

∈V P , r∈R and r ‖ R `̀ s
◦

∈ S
◦

´́ . Since Q⊂⊂R, there

is q∈Q such that q≺Qr. Since `̀ x∈X ´́ is absolute, by Lemma 19 q ‖ Q `̀ s
◦

∈ S
◦

´́ , and by Lemma 17

q ‖ R `̀ s
◦

∈ S
◦

´́ . So 〈q,s
◦

〉∈Q⊗P S
◦

. We shall show that 〈q, s
◦

〉≺〈r, s
◦

〉:

let 〈q1,s
◦

1〉∈Q⊗P S
◦

so that 〈q1,s
◦

1〉 ⊃⊂ 〈q,s
◦

〉 in Q⊗P S
◦

. Thus there is 〈q2,s
◦

2〉 ∈ Q⊗P S
◦

such that

〈q2,s
◦

2〉 ≤ 〈q1,s
◦

1〉, 〈q,s
◦

〉 in Q⊗P S
◦

. Hence q2 ≤ q1, q in Q, and q ‖ Q `̀ s
◦

2 ≤ s
◦

1, s
◦

in S
◦

´́ . Since q2⊃⊂q

in Q, q2⊃⊂r in R. Let r1∈R so that r1 ≤ r, q2 in R. Since `̀ s2 ≤ s1, s in S´́ is absolute, by Lemma 17

r1 ‖ R `̀ s
◦

2 ≤ s
◦

1, s
◦

in S
◦

´́ . Then 〈r1,s
◦

2〉 ∈ R⊗P S
◦

and 〈r1,s
◦

2〉 ≤ 〈r,s
◦

〉, 〈q1,s
◦

1〉 in R⊗P S
◦

. Hence

〈q1,s
◦

1〉 ⊃⊂ 〈r,s
◦

〉 in R⊗P S
◦

. tu

Lemma 23: Let P, Q be posets so that P⊂⊂Q. Let S
◦

, R
◦

∈V P so that ‖ P `̀ R
◦

⊂⊂ S
◦

´́ . Then

Q⊗P R
◦

⊂⊂ Q⊗P S
◦

.

Proof: Obviously Q⊗P R
◦

is a suborder of Q⊗P S
◦

.

Let’s verify (13.2). Let 〈q1,r
◦

1〉, 〈q2,r
◦

2〉 ∈ Q⊗P S
◦

be so that 〈q1,r
◦

1〉 ⊃⊂ 〈q2,r
◦

2〉 in Q⊗P S
◦

. There is

〈q3,r
◦

3〉 ∈ Q⊗P S
◦

so that 〈q3,r
◦

3〉 ≤ 〈q1,r
◦

1〉, 〈q2,r
◦

2〉 in Q⊗P S
◦

. Hence q3 ≤ q1, q2 in Q and

q3 ‖ Q `̀ s
◦

3 ≤ r
◦

1,r
◦

2 in S
◦

´́ . So q3 ‖ Q `̀ r
◦

1 ⊃⊂ r
◦

2 in S
◦

´́ . And thus q3 ‖ Q `̀ r
◦

1 ⊃⊂ r
◦

2 in R
◦

´́ . It

follows that q3 ‖ Q `̀ (∃ r
◦

3)(r
◦

3 ≤ r
◦

1,r
◦

2 in R
◦

)´́ . There is r
◦

3 ∈V Q so that q3 ‖ Q `̀ r
◦

3 ≤ r
◦

1,r
◦

2 in R
◦

´́ .

Then 〈q3,r
◦

3〉 ∈ Q∗R
◦

. By Lemma 21 there is 〈q4,r
◦

4〉 ∈ Q⊗P R
◦

so that 〈q4,r
◦

4〉 ≤ 〈q3,r
◦

3〉 in Q∗R
◦

.

q4 ‖ Q `̀ r
◦

4 ≤ r
◦

1,r
◦

2 in R
◦

´́ . Therefore 〈q4,r
◦

4〉 ≤ 〈q1,r
◦

1〉, 〈q2,r
◦

2〉 in Q⊗P R
◦

, and so 〈q1, r
◦

1〉⊃⊂〈q2, r
◦

2〉 in

Q⊗P R
◦

.

Let’s verify (13.3). Let 〈q,s
◦

〉 ∈ Q⊗P S
◦

. Then q ‖ Q `̀ s
◦

∈ S
◦

´́ . So q ‖ Q `̀ (∃r
◦

∈ R
◦

)(r
◦

≺
R
◦ s

◦

)´́ , since



q ‖ Q `̀ R
◦

⊂⊂ S
◦

´́ . Thus there is r
◦

∈ V Q such that q ‖ Q `̀ r
◦

≺
R
◦ s

◦

´́ , and so 〈q,r
◦

〉 ∈ Q∗R
◦

. By Lemma

21 there is 〈q1,r
◦

1〉 ∈ Q⊗P R
◦

so that 〈q1,r
◦

1〉 ≤ 〈q,r
◦

〉 in Q∗R
◦

. We shall show that 〈q1,r
◦

1〉 is the element

in Q⊗P R
◦

we are looking for: let 〈q2,r
◦

2〉 ∈ Q⊗P R
◦

so that 〈q2,r
◦

2〉 ⊃⊂ 〈q1,r
◦

1〉 in Q⊗P R
◦

. Then there is

〈q3,r
◦

3〉 ∈ Q⊗P R
◦

so that 〈q3,r
◦

3〉 ≤ 〈q2,r
◦

2〉, 〈q1,r
◦

1〉 in Q⊗P R
◦

. Then q3 ≤ q1, q2 in Q and q3 ‖ Q

`̀ r
◦

3 ≤ r
◦

1,r
◦

2 in R
◦

´́ . Also q3 ‖ Q `̀ r
◦

1 ≤ r
◦

≺
R
◦ s

◦

´́ . Thus q3 ‖ Q `̀ r
◦

3 ⊃⊂ s
◦

in S
◦

´́ , and so q3 ‖ Q

`̀ (∃ s
◦

1)(s
◦

1 ≤ r
◦

3,s
◦

in S
◦

)´́ . Thus there is s
◦

1 ∈ V Q so that q3 ‖ Q `̀ s
◦

1 ≤ r
◦

3,s
◦

in S
◦

´́ . It follows that

〈q3,s
◦

1〉 ∈ Q∗S
◦

. By Lemma 21 there is 〈q4,s
◦

2〉 ∈ Q⊗P S
◦

so that 〈q4,s
◦

2〉 ≤ 〈q3,s
◦

1〉. Then q4 ‖ Q `̀ s
◦

2 ≤ r
◦

3,s
◦

in S
◦

´́ . Thus 〈q4,s
◦

2〉 ≤ 〈q2,r
◦

2〉, 〈q,s
◦

〉 in Q⊗P S
◦

. Hence It follows that 〈q2,r
◦

2〉 ⊃⊂ 〈q,s
◦

〉 in Q⊗P S
◦

. tu

Lemma 24: Let P, Q be posets. Let R
◦

∈V P and let ‖ P `̀ R
◦

is a separative poset´́ . Let Q be separative.

Then Q⊗P R
◦

is separative.

Proof: We shall prove that Q∗R
◦

is separative; since Q⊗P R
◦

is dense in Q∗R
◦

it follows that Q⊗P R
◦

must

also be separative, too.

Let 〈q1,r
◦

1〉 6≤ 〈q2,r
◦

2〉 in Q∗R
◦

. There are two possible cases:

(i) q1 6≤ q2 in Q. Then by separativness of Q, there is q3∈Q such that q3 ≤ q1 and q3⊃⊂q2 in Q. Then

〈q3,r
◦

1〉 ∈ Q∗R
◦

, 〈q3,r
◦

1〉 ≤ 〈q1,r
◦

1〉, and 〈q3,r
◦

1〉 ⊃⊂ 〈q2,r
◦

2〉 in Q∗R
◦

.

(ii) q1 ≤ q2 in Q. Then q1 ‖ Q

/

`̀ r
◦

1 ≤ r
◦

2 in R
◦

´́ . So there is q3∈Q, q3 ≤ q1 in Q, so that

q3 ‖ Q `̀ r
◦

1 6≤ r
◦

2 in R
◦

´́ , and so q3 ‖ Q `̀ (∃ r
◦

3)(r
◦

3 ≤ r
◦

1 and r
◦

3 ⊃⊂ r
◦

2 in R
◦

)´́ . So for some r
◦

3 ∈ V Q,

q3 ‖ Q `̀ r
◦

3 ≤ r
◦

1 and r
◦

3 ⊃⊂ r
◦

2 in R
◦

´́ . Thus, 〈q3,r
◦

3〉 ∈ Q∗R
◦

. Hence 〈q3,r
◦

3〉 ≤ 〈q1,r
◦

1〉, and

〈q3,r
◦

3〉 ⊃⊂ 〈q2,r
◦

2〉 in Q∗R
◦

. Hence Q∗R
◦

is separative. tu

Lemma 25: Let M⊂V be a transitive model of ZFC.

(25.1) Let P∈M be a poset and φ a restricted formula with n free variable and no constants. Let p∈P

and let X
◦

1, ... ,X
◦

n∈MP . Then p ‖ P `̀ φ(X
◦

1, ... ,X
◦

n)´́ iff p ‖ M
P `̀ φ(X

◦

1, ... ,X
◦

n)´́ .

(25.2) If P∈Mλ and <λMλ⊂M and P satisfies the λ-c.c. in V , then `̀ G is P -generic over V ´́ iff

`̀ G is P -generic over M ´́ .

Proof:

(25.1) Let p ‖ M
P `̀ φ(X

◦

1, ... ,X
◦

n)´́ and assume that p ‖ P

/

`̀ φ(X
◦

1, ... ,X
◦

n)´́ . Then for some q ≤ p,

q ‖ P `̀ ¬φ(X
◦

1, ... ,X
◦

n)´́ . Choose G, a P -generic filter over V (and so over M as well) so that

q∈G. Then V [G]|= `̀ ¬φ(X1, ..., Xn)´́ and so (as φ is restricted and X1, ..., Xn∈M [G]) M [G]|=

`̀ ¬φ(X1, ..., Xn)´́ , where Xi = (X
◦

i)
G for i = 1, ..., n. Since p∈G, M [G]|= `̀ φ(X1, ..., Xn)´́ , a

contradiction. Hence p ‖ P `̀ φ(X
◦

1, ... ,X
◦

n)´́ .

The opposite direction: let p ‖ P `̀ φ(X
◦

1, ... ,X
◦

n)´́ . Assume that p ‖ M
P

/

`̀ φ(X
◦

1, ... ,X
◦

n)´́ .

Then for some q ≤ p, q ‖ M
P `̀ ¬φ(X

◦

1, ... ,X
◦

n)´́ . By the same argument as above, q ‖ P

`̀ ¬φ(X
◦

1, ... ,X
◦

n)´́ , a contradiction as q ≤ p.

(25.2) One direction is easy and so is left to the reader. For the other direction assume that G is

P -generic over M . Let D be dense in P . Let A be a maximal antichain in D. Since |A| < λ,

A∈M and so G∩A 6= ∅. Hence G∩D 6= ∅. tu

Lemma 26: Let j:V →M be an elementary embedding, M⊂V , and let j be definable in V . Let P∈V

be a poset. Let G be P -generic over V and let H be j(P )-generic over M so that if p∈G, then j(p)∈H.

Then

(26.1) there is an elementary embedding ̂:V [G]→M [H] definable in V [H] and extending j;

(26.2) if λM⊂M and j(P ) satisfies the λ-c.c. in V , λ regular, then if X∈V , Y ∈V [H], Y ⊂X, |Y | < λ,

and Y ⊂M [H], then Y ∈M [H];



(26.3) if Mα = Vα for all α ≤ λ, λ a limit ordinal, and if P∈Vλ, then V [H]α = M [H]α for all α ≤ λ.

Proof:

(26.1) Define ̂((X
◦

)G) = (j(X
◦

))H .

̂ is well-defined, because if (X
◦

)G = (Y
◦

)G, then for some p∈G, p ‖ P `̀ X
◦

= Y
◦

´́ , and so

j(p) ‖ M
j(P ) `̀ j(X

◦

) = j(Y
◦

)´́ by elementarity of j. Since j(p)∈H, ̂((X
◦

)G) = (j(X
◦

))H =

(j(Y
◦

))H = ̂((Y
◦

)G) . ̂ is elementary, for if V [G]|= `̀ φ((X
◦

1)
G, ... ,(X

◦

n)G)´́ , then p ‖ P

`̀ φ(X
◦

1, ... ,X
◦

n)´́ for some p∈G, and so j(p) ‖ M
j(P ) `̀ φ(j(X

◦

1), ... ,j(X
◦

n))´́ . Since j(p)∈H,

M [H]|= `̀ φ((j(X
◦

1))
H , ... ,(j(X

◦

n))H)´́ , so M [H]|= `̀ φ(̂((X
◦

1)
G), ... ,̂((X

◦

n)G))´́ .

̂ extends j, for if X∈V , then (X)G = X and so ̂(X) = j(X).

(26.2) Let Y
◦

∈V j(P ) so that Y = (Y
◦

)H . By Lemma 12 we can assume WLOG that |Y
◦

| ≤ λ. Let 〈y
◦

, q〉∈Y
◦

.

Then (y
◦

)H∈(Y
◦

)H = Y ⊂M [H], so there is ŷ∈M j(P ) such that (ŷ)H = (y
◦

)H . Define Ŷ = {〈ŷ, q〉 :

〈y
◦

, q〉∈Y
◦

}. Then Ŷ ⊂M j(P )⊂M and |Ŷ | = |Y
◦

| ≤ λ, so Ŷ ∈λM⊂M , hence Ŷ ∈M . Since Ŷ ∈V j(P ),

Ŷ ∈M j(P ) and thus (Ŷ )H∈M [H]. (Ŷ )H = {(ŷ)H : 〈ŷ, q〉∈Ŷ } = {(y
◦

)H : 〈y
◦

, q〉∈Y
◦

} = (Y
◦

)H = Y .

Hence Y ∈M [H].

(26.3) will be proven by induction:

(i) (V [H])0 = (M [H])0 = ∅.

(ii) Assume that (V [H])α = (M [H])α and α < λ.

Let (X
◦

)H∈(V [H])α+1. Then (X
◦

)H⊂(V [H])α = (M [H])α. By Lemma 10, we can assume

WLOG that X
◦

∈V P
α+2, and by Lemma 6, V P

α+2⊂Vλ = Mλ. Hence (X
◦

)H∈M [H] and so

(X
◦

)H∈(M [H])α+1. Thus (V [H])α+1⊂(M [H])α+1, and so (V [H])α+1 = (M [H])α+1.

(iii) if (V [H])β = (M [H])β for all β < α ≤ λ, α limit, then (V [H])α = (M [H])α. tu

Lemma 27: Let j:V →M be huge with critical point κ. Let P∈Vκ be a poset. Then

(27.1) j(p) = p for all p∈P ;

(27.2) j(P ) = P ;

(27.3) G is P -generic over V iff G is P -generic over M ;

(27.4) for any G P -generic over V , there is a nearly huge ̂:V [G]→M [G] extending j.

Proof: (27.1) and (27.2) are easy and so they are left to the reader to prove.

(27.3) follows directly from Lemma 25.

(27.4) follows from Lemma 26. tu

Properties 28: Let C(γ, δ), γ < δ cardinals, define in V a poset.

(28.1) C(γ, δ)⊂Vδ for all cardinals γ < δ, δ inacc.;

(28.2) C(γ, τ) = {s∩Vτ : s∈C(γ, δ)}, for all cardinals γ < τ ≤ δ, τ, δ inacc.;

(28.3) for every s∈C(γ, δ), s ≤ s∩Vτ in C(γ, δ), for all cardinals γ < τ ≤ δ, τ, δ inacc.;

(28.4) for every s∈C(γ, δ), s∩Vτ≺C(γ,τ)s in C(γ, δ), for all cardinals γ < τ ≤ δ, τ, δ inacc.;

(28.5) C(γ, τ)⊂⊂C(γ, δ), for all cardinals γ < τ ≤ δ, τ, δ inacc.;

(28.6) C(γ, δ) is separative for all cardinals γ ≤ δ, δ inacc.

Properties 29: Let I = 〈Iα : α ≤ κ, α limit 〉 be a sequence such that:

(29.1) Iα is an ideal on α containing all finite subsets of α, for all limit α ≤ κ;

(29.2) Iα⊂Iβ for all limit α ≤ β ≤ κ;

(29.3) if α is inaccessible, than x∈Iα implies that |x| < α.

Lemma 30: Let |{α∈κ : α inaccessible }| = κ. Let I = 〈Iα : α limit, α ≤ κ〉 be a sequence of ideals

satisfying (29.1) - (29.3). Let C define a poset and satisfy (28.1) - (28.6). Then there exists an (iterated

forcing) sequence 〈Pα : α ≤ κ〉 such that



(30.1) P0 = C(ω0, κ);

(30.2) Pα+1 = Pα∗{∅} whenever α < κ is not inaccessible;

(30.3) Pα+1 = Pα⊗
Pα↑Vα

C(α, κ)Pα↑Vα whenever α < κ is inaccessible, where C(α, κ)Pα↑Vα denotes

C(α, κ) as defined in the extension by Pα↑Vα;

(this is a sound definition since it follows from (30.7) - (30.10) that Pα↑Vα⊂⊂Pα , see (3*) below)

where for any β inacc. such that α ≤ β ≤ κ we define Pα↑Vβ = {p↑Vβ : p∈Pα}, and p↑Vβ is

defined as follows: (p↑Vβ)(0) = p(0)∩Vβ , if p(ξ) = ∅, then (p↑Vβ)(ξ) = ∅, and when p(ξ) 6= ∅

(hence ξ is inacc.), then (p↑Vβ)(ξ)∈V
Pξ

↑Vξ

β so that ‖
Pξ

↑Vξ

`̀ (p↑Vβ)(ξ) = p(ξ)∩V
Pξ

↑Vξ

β ´́ (such

Pξ↑Vξ-name in Vβ exists by Lemma 11 as ξ is inacc.). The ordering is defined by p↑Vβ ≤ q↑Vβ

in Pα↑Vβ if p↑Vβ ≤ q↑Vβ in Pα (this is a sound definition since by (30.7) Pα↑Vβ⊂Pα)

(30.4) For α ≤ κ limit, Pα consists of all limits of conditions of 〈Pβ : β < α〉 with support from Iα;

And furthermore the sequence 〈Pα : α ≤ κ〉 satisfies:

(30.5) Pα is separative for every α ≤ κ;

(30.6) Pα⊂Vκ for every α < κ;

for every inacc. α ≤ κ, any inacc. β such that α ≤ β ≤ κ:

(30.7) Pα↑Vβ ⊂ Pα;

(30.8) Pα↑Vβ is separative;

(30.9) p⊃⊂q in Pα↑Vβ iff p⊃⊂q in Pα for any p, q∈Pα↑Vβ ;

(30.10) p↑Vβ ≺
Pα↑Vβ

p in Pα, for any p∈Pα;

(30.11) p↑Vβ ≥ p in Pα, for any p∈Pα;

(30.12) {p|supp(p) : p∈Pα↑Vα} ⊂ Vα.

Proof:

(1*) For any α ≤ κ, any γ < α, and any β such that γ < β ≤ κ, (p|γ)↑Vβ = (p↑Vβ)|γ, for any p∈Pα.

((p|γ)↑Vβ)(0) = (p|γ)(0)∩Vβ = p(0)∩Vβ = (p↑Vβ)(0) = ((p↑Vβ)|γ)(0). If p(ξ) = ∅, then

(p|γ)(ξ) = ∅ and so ((p|γ)↑Vβ)(ξ) = ∅ = (p↑Vβ)(ξ) = ((p↑Vβ)|γ)(ξ). If p(ξ) 6= ∅, then ξ is

inacc. and ξ < γ. Then ((p|γ)↑Vβ)(ξ)∈V
Pξ

↑Vξ

β so that ‖
Pξ

↑Vξ

`̀ ((p|γ)↑Vβ)(ξ) =

(p|γ)(ξ)∩V
Pξ

↑Vξ

β ´́ , hence ‖
Pξ

↑Vξ

`̀ ((p|γ)↑Vβ)(ξ) = p(ξ)∩V
Pξ

↑Vξ

β ´́ , thus ((p|γ)↑Vβ)(ξ) and

(p↑Vβ)(ξ) are names for the same object.

(2*) For any α ≤ κ, any α < γ ≤ β ≤ κ, γ, β inacc., p↑Vγ = (p↑Vβ)↑Vγ = (p↑Vγ)↑Vβ , for any p∈Pα.

(p↑Vγ)(0) = p(0)∩Vγ . ((p↑Vγ)↑Vβ)(0) = (p↑Vγ)(0)∩Vβ = (p(0)∩Vγ)∩Vβ = p(0)∩Vγ .

((p↑Vβ)↑Vγ)(0) = (p↑Vβ)(0)∩Vγ = (p(0)∩Vβ)∩Vγ = p(0)∩Vγ . Thus (p↑Vγ)(0) =

((p↑Vγ)↑Vβ)(0) = ((p↑Vβ)↑Vγ)(0). If p(ξ) = ∅, then (p↑Vγ)(ξ) = ∅, ((p↑Vγ)↑Vβ)(ξ) = ∅,

and ((p↑Vβ)↑Vγ)(ξ) = ∅. Thus (p↑Vγ)(ξ) = ((p↑Vγ)↑Vβ)(ξ) = ((p↑Vβ)↑Vγ)(ξ). If p(ξ) 6= ∅,

then ξ is inacc. and ξ ≤ γ, and so ((p↑Vγ)(ξ)∈V
Pξ

↑Vξ
γ so that ‖

Pξ
↑Vξ

`̀ (p↑Vγ)(ξ) =

p(ξ)∩V
Pξ

↑Vξ
γ ´́ , and ((p↑Vβ)(ξ)∈V

Pξ
↑Vξ

β so that ‖
Pξ

↑Vξ

`̀ (p↑Vβ)(ξ) = p(ξ)∩V
Pξ

↑Vξ

β ´́ , therefore

((p↑Vβ)↑Vγ)(ξ)∈V
Pξ

↑Vξ
γ so that ‖

Pξ
↑Vξ

`̀ ((p↑Vβ)↑Vγ)(ξ) = (p↑Vβ)(ξ)∩V
Pξ

↑Vξ
γ ´́ , and hence

‖
Pξ

↑Vξ

`̀ ((p↑Vβ)↑Vγ)(ξ) = (p(ξ)∩V
Pξ

↑Vξ

β )∩V
Pξ

↑Vξ
γ = p(ξ)∩V

Pξ
↑Vξ

γ ´́ . So (p↑Vγ)(ξ) and

((p↑Vβ)↑Vγ)(ξ) are names for the same object. Similarly for ((p↑Vγ)↑Vβ).

(3*) For any α ≤ κ, any inacc. β such that α < β ≤ κ, Pα↑Vβ⊂⊂Pα.

To verify (13.1) notice that by (30.7) and by the definiton of the order on Pα↑Vβ , Pα↑Vβ is a

suborder of Pα.

(13.2) is in fact (30.9).

(13.3) follows from (30.10).



(4*) For any α ≤ κ, any inacc. β and inacc. γ such that α < γ ≤ β ≤ κ, Pα↑Vγ⊂⊂Pα↑Vβ .

Let p∈Pα↑Vγ . Then p = q↑Vγ for some q∈Pα. By (30.7) p∈Pα, so p↑Vβ∈Pα↑Vβ . By (2*)

p↑Vβ = p, so p∈Pα↑Vβ . Hence Pα↑Vγ ⊂Pα↑Vβ , and by the definition (see 30.3) it is a suborder.

Let p, q∈Pα↑Vβ so that p⊃⊂q in Pα↑Vβ , then p⊃⊂q in Pα by (3*) as Pα↑Vβ⊂⊂Pα, and so p⊃⊂q

in Pα↑Vγ by (3*) as Pα↑Vγ⊂⊂Pα.

Let p∈Pα↑Vβ . Consider p↑Vγ . Let p′∈Pα↑Vγ . Let p′⊃⊂p↑Vγ in Pα↑Vγ . Then p′⊃⊂p in Pα by

(30.10), hence p′⊃⊂p in Pα↑Vβ as by (3*) Pα↑Vβ⊂⊂Pα.

(5*) For any α ≤ κ, any inacc. β and inacc. γ such that α < γ ≤ β ≤ κ, if p, q∈Pα so that p ≤ q,

then p↑Vβ ≤ q↑Vβ .

If not, then p↑Vβ 6≤ q↑Vβ . By (30.8) there is p1∈Pα↑Vβ so that p1 ≤ p↑Vβ and p1⊃⊂q↑Vβ . Since

p1⊃⊂p↑Vβ , p1⊃⊂p in Pα, by (30.10). Thus p1⊃⊂q in Pα. By (30.11) q ≤ q↑Vβ and so p1⊃⊂q↑Vβ ,

a contradiction.

The proper proof will be conducted by induction over the level of iteration.

Define P0 = C(ω0, κ). Then P0⊂Vκ and is separative by (28.1), (28.6). Hence (30.1),(30.5), and (30.6)

are satisfied.

For α < κ not inacc. define Pα+1 = Pα∗{∅}. Since by the induction hypothesis Pα⊂Vκ and is separative,

so is Pα+1. Thus (30.2),(30.5), and (30.6) are satisfied.

For α < κ, α inacc. define Pα+1 = Pα⊗
Pα↑Vα

C(α, κ)Pα↑Vα .

Let’s explain this part a bit more. Let C
◦

∈V Pα↑Vα be a name for C(α, κ) as defined in V Pα↑Vα . The

forcing conditions of Pα+1 are 〈p, s
◦

〉 such that p∈Pα, s
◦

∈V Pα↑Vα , and p ‖ Pα
`̀ s

◦

∈ C
◦

´́ . By the induction

hypothesis (30.10), p↑Vα≺
Pα↑Vα

p, and so by Lemma 19 (as `̀ x∈X ´́ is absolute), p↑Vα ‖
Pα↑Vα

`̀ s
◦

∈

C
◦

´́ . Thus, p↑Vα ‖
Pα↑Vα

`̀ s
◦

has rank at most κ´́ , and because |Pα↑Vα| ≤ α (follows from (30.12)

as α is inacc.), and α < κ, by Lemma 11 there is s
◦

1 ∈V Pα↑Vα
κ so that p↑Vα ‖

Pα↑Vα

`̀ s
◦

1 = s
◦

´́ . By

Lemma 17 (as `̀ x = y´́ is absolute), p↑Vα ‖ Pα
`̀ s

◦

1 = s
◦

´́ . By (30.10) p ‖ Pα
`̀ s

◦

1 = s
◦

´́ . Hence

〈p, s
◦

1〉∈ Pα⊗
Pα↑Vα

C(α, κ)Pα↑Vα and 〈p, s
◦

1〉 = 〈p, s
◦

〉. Thus we can restrict our conditions to those with

the second coordinate from V Pα↑Vα
κ , and so Pα+1⊂Vκ. By Lemma 24 it also is separative as Pα is by

the induction hypothesis, and C(α, κ)Pα↑Vα is separative in the generic extension via Pα↑Vα by (28.6).

Hence (30.3), (30.5), and (30.6) are satisfied.

Let’s look at the limit case.

Let α < κ, α limit. Consider the set A of all limits of 〈Pξ : ξ < α〉 (full limits in Kunen’s terminology

[K1], or inverse limits in Baumgartner’s terminology [B]). If a∈A, then a|ξ∈Pξ for every ξ < α and so

a(ξ)∈Vκ. Hence a∈Vκ, and so A⊂Vκ. Since Pα contains all limits with support from Iα, Pα⊂A, thus

Pα⊂Vκ and so (30.6) holds.

To show that Pα for α ≤ κ, α limit, is separative, consider p, q∈Pα so that p 6≤ q. Since (∀ξ < α)(p|ξ ≤ q|ξ)

implies that p ≤ q, there is ξ < α so that p|ξ 6≤ q|ξ. Take such ξ. Since Pξ is separative by the induction

hypothesis (30.5), there is t∈Pξ so that t ≤ p|ξ and t⊃⊂q|ξ in Pξ. Define r by r(η) = t(η) for all η < ξ,

and r(η) = p(η) for all ξ ≤ η < α. Then supp(r) ⊂ supp(t) ∪ supp(p), hence supp(r)∈Iα, and so r∈Pα.

Clearly r ≤ p, and since r|ξ = t, r⊃⊂q in Pα. Thus (30.5) holds.

To prove (30.12) : let p∈Pα. Then (p↑Vα)(0) = p(0)∩Vα∈Vα by (28.1). If p(ξ) = ∅, then (p↑Vα)(ξ) =

∅∈Vα. On the other hand if p(ξ) 6= ∅, then ξ is inacc. and ξ < α. Then (p↑Vα)(ξ)∈V
Pξ

↑Vξ
α . Thus

(p↑Vα)⊂Vα. Since α is inacc., |supp(p↑Vα)| < α and so (p↑Vα)|supp(p↑Vα)∈Vα.

We have proven everything but (30.7) - (30.11). So let’s assume that α ≤ κ is inacc. We shall discuss it

in three steps, (A), (B), and (C). Let β be inacc. so that α ≤ β ≤ κ.



(A) Case that α is the least inacc. (and so α < κ).

p∈Pα iff p(0)∈C(ω0, κ) and p(ξ) = ∅ for all 0 < ξ < α.

p∈Pα↑Vβ iff p(0)∈C(ω0, β) and p(ξ) = ∅ for all 0 < ξ < α (it follows from (28.2)).

Verify (30.7): follows from C(ω0, β)⊂C(ω0, κ), which follows from (28.3).

Verify (30.8): follows from (28.6).

Verify (30.9): follows from (28.5).

Verify (30.10): follows from (28.4).

Verify (30.11): follows from (28.3).

(B) Case that α is a successor inacc., i.e. α has an immediate inacc. predecessor γ (and so α < κ).

Let C
◦

∈V Pγ↑Vγ be a name for C(γ, κ) as defined in V Pγ↑Vγ . Let C
◦

β ∈V Pγ↑Vγ be a name for

C(γ, β) as defined in V Pγ↑Vγ .

p∈Pα iff supp(p)⊂γ & p|γ∈Pγ , or γ∈supp(p)⊂γ+1 & p|γ∈Pγ & p(γ)∈V
Pγ↑Vγ
κ &

p|γ ‖ Pγ
`̀ p(γ)∈C

◦

´́ .

(*) p∈Pα↑Vβ iff supp(p)⊂γ & p|γ∈Pγ↑Vβ , or γ∈supp(p)⊂γ+1 & p|γ∈Pγ↑Vβ &

p(γ)∈V
Pγ↑Vγ

β+1 & p|γ ‖ Pγ
`̀ p(γ)∈C

◦

β ´́ .

The direction from right to left is easy, as any p satisfying the right hand side must be in Pα,

and since p↑Vβ = p, p must be in Pα↑Vβ . Now, the opposite direction. Let p = q↑Vβ for some

q∈Pα. There are two possibilities:

(i) supp(q)⊂γ. Then supp(p)⊂γ as well. p|γ = (q↑Vβ)|γ = (q|γ)↑Vβ . Thus the first part of the

right hand side condition is satisfied.

(ii) γ∈supp(q)⊂γ+1. Then q|γ ∈Pγ , q(γ)∈V
Pγ↑Vγ
κ and q|γ ‖ Pγ

`̀ q(γ)∈C
◦

´́ . p(γ) =

q(γ)∩Vβ ∈V
Pγ↑Vγ

β+1 . By Lemma 19, using (30.10), (q|γ)↑Vγ ‖
Pγ↑Vγ

`̀ q(γ)∈C
◦

´́ .

(q|γ)↑Vγ ‖
Pγ↑Vγ

`̀ p(γ) = q(γ)∩V
Pγ↑Vγ

β & q(γ)∈C
◦

´́ . By (28.2), (q|γ)↑Vγ ‖
Pγ↑Vγ

`̀ p(γ)∈

C
◦

β ´́ , as β is inacc. in V Pγ↑Vγ since |Pγ↑Vγ | ≤ γ, and γ < β, and β is inacc. in V . By Lemma 17,

(q|γ)↑Vγ ‖ Pγ
`̀ p(γ)∈C

◦

β ´́ . Using (30.11), q|γ ‖ Pγ
`̀ p(γ)∈C

◦

β ´́ . By Lemma 19, using (30.10),

(q|γ)↑Vβ ‖
Pγ↑Vβ

`̀ p(γ)∈C
◦

β ´́ . By Lemma 17, (q|γ)↑Vβ ‖ Pγ
`̀ p(γ)∈C

◦

β ´́ . p|γ = (q↑Vβ)|γ =

(q|γ)↑Vβ by (1*), hence p|γ ‖ Pγ
`̀ p(γ)∈C

◦

β ´́ .

Verify (30.7): follows immediately from (*).

Verify (30.8): Let p, q∈Pα↑Vβ so that p 6≤ q. There are two possible cases:

(i) p|γ 6≤ q|γ. Then there is t∈Pγ↑Vβ so that t ≤ p|γ and t⊃⊂q|γ, by (30.8). Define s so that

s|γ = t, s(ξ) = p(ξ) for all γ ≤ ξ < α. Then (by (*)) s∈Pα↑Vβ , and s ≤ p, and s⊃⊂q.

(ii) p|γ ≤ q|γ. Then γ∈supp(p)⊂γ+1, and p|γ, q|γ∈Pγ↑Vβ , p(γ), q(γ)∈V
Pγ↑Vγ

β+1 . Clearly,

p|γ ‖ Pγ

/

`̀ p(γ) ≤ q(γ) in C
◦

β ´́ . So there is t∈Pγ , t ≤ p|γ so that t ‖ Pγ
`̀ p(γ) 6≤ q(γ) in C

◦

β ´́ .

By Lemma 19, t↑Vγ ‖
Pγ↑Vγ

`̀ p(γ) 6≤ q(γ) in C
◦

β ´́ . By (28.6) t↑Vγ ‖
Pγ↑Vγ

`̀ (∃s∈C
◦

β)(s ≤ p(γ)

& s⊃⊂q(γ))´́ . Thus there is s
◦

∈V
Pγ↑Vγ

β+1 so that t↑Vγ ‖
Pγ↑Vγ

`̀ s
◦

∈C
◦

β & s
◦

≤ p(γ) &

s
◦

⊃⊂q(γ)´́ . By Lemma 17, t↑Vγ ‖ Pγ
`̀ s

◦

∈C
◦

β & s
◦

≤ p(γ) & s
◦

⊃⊂q(γ)´́ . By (5*), Lemma 15,

using (30.8), t↑Vγ ≤ t↑Vβ ≤ p|γ. By (3*) t↑Vγ ∈Pγ↑Vγ⊂⊂Pγ↑Vβ . Define r so that r|γ = t↑Vγ ,

r(γ) = s
◦

, and s(ξ) = ∅ for all γ < ξ < α. Then r∈Pα↑Vβ , r ≤ p and r⊃⊂q.

Verify (30.9): it suffices to show it from right to left. Let p, q∈Pα↑Vβ , so that p⊃⊂q in Pα. Then

for some r∈Pα r ≤ p, q in Pα. There are two possibilities:

(i) supp(r)⊂γ. Then supp(p), supp(q)⊂γ as well. r|γ ≤ p|γ, q|γ in Pγ . By (5*) (r|γ)↑Vβ ≤

(p|γ)↑Vβ = p|γ, (q|γ)↑Vβ = q|γ, hence (r↑Vβ)|γ ≤ p|γ, q|γ in Pγ↑Vβ . Since supp(r)⊂γ,

supp(r↑Vβ)⊂γ, and so r↑Vβ ≤ p, q in Pα↑Vβ .



(ii) γ∈supp(r)⊂γ+1. Then r|γ ∈Pγ , r(γ)∈V
Pγ↑Vγ
κ so that r|γ ‖ Pγ

`̀ r(γ)∈C
◦

´́ . Thus

r|γ ‖ Pγ
`̀ r(γ) ≤ p(γ), q(γ) in C

◦

´́ . By (*), r|γ ‖ Pγ
`̀ p(γ), q(γ) ∈ C

◦

β ´́ . By Lemma 19, using

(30.10), (r|γ)↑Vγ ‖
Pγ↑Vγ

`̀ r(γ) ≤ p(γ), q(γ) in C
◦

& p(γ), q(γ)∈C
◦

β ´́ . By (28.2) and (28.3),

(r|γ)↑Vγ ‖
Pγ↑Vγ

`̀ (∃t∈C
◦

β)(t ≤ p(γ), q(γ) in C
◦

)´́ . Thus there is t
◦

∈V
Pγ↑Vγ

β+1 so that

(r|γ)↑Vγ ‖
Pγ↑Vγ

`̀ t
◦

∈C
◦

β & t
◦

≤ p(γ), q(γ) in C
◦

´́ . By Lemma 17, (r|γ)↑Vγ ‖ Pγ

`̀ t
◦

∈C
◦

β & t
◦

≤ p(γ), q(γ) in C
◦

´́ . By (30.11), r|γ ‖ Pγ
`̀ t

◦

∈C
◦

β & t
◦

≤ p(γ), q(γ) in C
◦

´́ . Since

r|γ ≤ p|γ, q|γ, by Lemma 15, using (30.8) (r|γ)↑Vβ ≤ p|γ, q|γ. By Lemma 19, (r|γ)↑Vβ ‖
Pγ↑Vβ

`̀ t
◦

∈C
◦

β & t
◦

≤ p(γ), q(γ) in C
◦

´́ , and so by Lemma 17, using (30.11), (r|γ)↑Vβ ‖ Pγ
`̀ t

◦

∈C
◦

β &

t
◦

≤ p(γ), q(γ) in C
◦

´́ . Define s so that s|γ = (r|γ)↑Vβ , s(γ) = t
◦

, and s(ξ) = ∅ for all γ < ξ < α.

Then s∈Pα↑Vβ by (*), s ≤ p, q. Thus p⊃⊂q in Pα↑Vβ .

Verify (30.10): Let q = p↑Vβ . Let p′∈Pα↑Vβ so that p′⊃⊂q in Pα↑Vβ . There is r∈Pα↑Vβ such

that r ≤ p′, q. There are two possibilities:

(i) supp(r)⊂γ. Then supp(p′), supp(q)⊂γ. r|γ ≤ p′|γ, q|γ in Pγ↑Vβ . q|γ = (p↑Vβ)|γ = (p|γ)↑Vβ ,

so p′|γ⊃⊂(p|γ)↑Vβ in Pγ↑Vβ . By (30.10) p′|γ⊃⊂p|γ in Pγ , and so p′⊃⊂p in Pα.

(ii) γ∈supp(r)⊂γ+1. Then r|γ, p′|γ, q|γ∈Pγ↑Vβ , r(γ), p′(γ), q(γ)∈V
Pγ↑Vγ

β+1 , and r|γ ≤ p′|γ, q|γ,

and r|γ ‖ Pγ
`̀ r(γ) ≤ p′(γ), q(γ) in C

◦

& r(γ), p′(γ), q(γ)∈C
◦

β ´́ . By Lemma 19, using (30.10),

(r|γ)↑Vγ ‖
Pγ↑Vγ

`̀ r(γ) ≤ p′(γ), q(γ) in C
◦

& r(γ), p′(γ), q(γ)∈C
◦

β ´́ . Since q(γ) = p(γ)∩Vβ ,

(r|γ)↑Vγ ‖
Pγ↑Vγ

`̀ r(γ) ≤ p′(γ), p(γ)∩V
Pγ↑Vγ

β in C
◦

& r(γ), p′(γ)∈C
◦

β ´́ . By (28.5), (r|γ)↑Vγ

‖
Pγ↑Vγ

`̀ p′(γ)⊃⊂p(γ) in C
◦

´́ . Hence (r|γ)↑Vγ ‖
Pγ↑Vγ

`̀ (∃t∈C
◦

)(t ≤ p′(γ), p(γ))´́ . Thus there

is t
◦

∈V
Pγ↑Vγ
κ so that (r|γ)↑Vγ ‖

Pγ↑Vγ

`̀ t
◦

∈C
◦

& t
◦

≤ p′(γ), p(γ)´́ . By Lemma 17, (r|γ)↑Vγ ‖ Pγ

`̀ t
◦

∈C
◦

& t
◦

≤ p′(γ), p(γ)´́ . By (30.11), r|γ ‖ Pγ
`̀ t

◦

∈C
◦

& t
◦

≤ p′(γ), p(γ)´́ . r|γ ≤ p′|γ, q|γ in

Pγ↑Vβ , q|γ = (p↑Vβ)|γ = (p|γ)↑Vβ . Thus r|γ⊃⊂(p|γ)↑Vβ in Pγ↑Vβ , and so by (30.10), r|γ⊃⊂p|γ

in Pγ . Let t∈Pγ so that t ≤ r|γ, p|γ. Define s so that s|γ = t, s(γ) = t
◦

, s(ξ) = ∅ for all

γ < ξ < α. Then s ≤ p, p′ and so p′⊃⊂p in Pα.

Verify (30.11): Let p∈Pα. There are two possibilities:

(i) supp(p)⊂γ. p|γ∈Pγ , by (30.11) p|γ ≤ (p|γ)↑Vβ = (p↑Vβ)|γ, thus p ≤ p↑Vβ .

γ∈supp(p)⊂γ+1. Then p|γ∈Pγ , p(γ)∈V
Pγ↑Vγ
κ so that p|γ ‖ Pγ

`̀ p(γ)∈C
◦

´́ . By Lemma 19, using

(30.10), (p|γ)↑Vγ ‖
Pγ↑Vγ

`̀ p(γ)∈C
◦

´́ . By (28.2), (p|γ)↑Vγ ‖
Pγ↑Vγ

`̀ p(γ) ≤ p(γ)∩V
Pγ↑Vγ

β in

C
◦

´́ . So, (p|γ)↑Vγ ‖
Pγ↑Vγ

`̀ p(γ) ≤ q(γ) in C
◦

´́ , since q(γ) = p(γ)∩Vβ . By Lemma 17,

(p|γ)↑Vγ ‖ Pγ
`̀ p(γ) ≤ q(γ) in C

◦

´́ . Using (30.11), p|γ ‖ Pγ
`̀ p(γ) ≤ q(γ) in C

◦

´́ . Again by

(30.11), p|γ ≤ (p|γ)↑Vβ = (p↑Vβ)|γ = q|γ. Thus p ≤ q = p↑Vβ .

(C) Case α ≤ κ, is a limit inacc., i.e. there is a cofinal sequence of inacc. cardinals bellow α.

By (29.3), Pα contains only direct limits.

Verify (30.7): Let p∈Pα. Then there is an inacc. γ < α so that supp(p)⊂γ. Then p|γ∈Pγ and

(p↑Vβ)|γ = (p|γ)↑Vβ ∈Pγ↑Vβ ⊂⊂Pγ by (3*). Thus (p↑Vβ)|γ∈Pγ , and since

supp(p↑Vβ)⊂supp(p)⊂γ, p↑Vβ∈Pα. Thus Pα↑Vβ⊂Pα.

Verify (30.8): Let p, q∈Pα↑Vβ so that p 6≤ q. There is an inacc. γ < α so that supp(p), supp(q)⊂γ.

Then p|γ 6≤ q|γ in Pγ↑Vβ . By the induction hypothesis (30.8), there is t∈Pγ↑Vβ so that t ≤ p|γ

and t⊃⊂q|γ. Define s so that s|γ = t, s(ξ) = ∅ for all γ ≤ α. Then s∈ Pα↑Vβ , s ≤ p, and s⊃⊂q

in Pα↑Vβ .



Verify (30.9): It suffices to prove right-to-left direction. Let p, q∈Pα↑Vβ so that p⊃⊂q in

Pα. There is t∈Pα so that t ≤ p, q in Pα. Then there is an inacc. γ < α so that

supp(t), supp(p), supp(q)⊂γ. Hence t|γ ≤ p|γ, q|γ in Pγ . Since p|γ, q|γ∈Pγ↑Vβ , by the induction

hypothesis (30.9)p|γ⊃⊂q|γ in Pγ . So there is r∈Pγ so that r ≤ p|γ, q|γ. Define s so that s|γ =

r, s(ξ) = ∅ for all γ ≤ ξ < α. Then s∈Pα and s ≤ p, q.

Verify (30.10): Let p∈Pα. There is an inacc. γ < α so that supp(p)⊂γ. Then p|γ∈Pγ . By the

induction hypothesis (30.10) (p|γ)↑Vβ ≺
Pα↑Vβ

p|γ. Let p′∈Pα↑Vβ so that p′⊃⊂p↑Vβ in Pα↑Vβ .

Since (p↑Vβ)|γ = (p|γ)↑Vβ , p′|γ⊃⊂(p↑Vβ)|γ in Pγ↑Vβ , and so p′|γ⊃⊂p|γ in Pγ . Since supp(p)⊂γ,

p′⊃⊂p in Pα.

Verify (30.11): Let p∈Pα, there is an inacc. γ < α so that supp(p)⊂γ. Then p|γ∈Pγ and by

the induction hypothesis (30.11) p|γ ≤ (p|γ)↑Vβ in Pγ . Then p|γ ≤ (p↑Vβ)|γ in Pγ . Since

supp(p), supp(p↑Vβ)⊂γ, p ≤ p↑Vβ in Pα. tu

Def. 31: If C, I, κ, and 〈Pα : α ≤ κ〉 are as in Lemma 30, we shall call 〈Pα : α ≤ κ〉 the

(I, κ)-iteration of C in V .

Properties 32: Let C(γ, δ) define a poset in V (γ ≤ δ cardinals). Let λ be cardinal.

(32.1) For every transitive M⊂V such that Mα = Vα for all α ≤ λ, C(γ, δ)V = C(γ, δ)M whenever

δ ≤ λ, δ inacc. in V as well as in M .

Properties 33: Let I = 〈Iα : α ≤ κ, α limit〉. Let j:V →M be an elementary embedding with critical

point κ. Let j(I) = 〈Îα : α ≤ j(κ), α limit〉.

(33.1) Iα = Îα for all α ≤ κ, α limit.

Lemma 34: Let 〈Pα : α ≤ κ〉 be the (I, κ)-iteration of C in V . Let j:V →M be a huge elementary

embedding with critical point κ. Let I = 〈Iα : α ≤ κ, α limit〉 satisfy (33.1) with respect to j. Let C

satisfy (32.1) with respect to j(κ). Let 〈P̂α : α ≤ j(κ)〉 = j(〈Pα : α ≤ κ〉. Then

〈P̂α : α ≤ j(κ)〉 is the (j(I), j(κ))-iteration of C in V , and Pκ∗C(κ, j(κ))Pκ ⊂⊂ j(Pκ) in V .

Proof: Let 〈Rα : α ≤ j(κ)〉 be the (j(I), j(κ))-iteration of C in V . By induction we shall prove that

(1) Rα = P̂α for every α ≤ j(κ);

(2) Pα↑Vβ = Rα↑Vβ = P̂α↑Mβ , for every inacc. α ≤ κ, and every inacc. β so that α ≤ β ≤ κ.

Let α = 0. R0 = C(ω0, j(κ))V . By (32.1) C(ω0, j(κ))V = C(ω0, j(κ))M = P̂0. Thus R0 = P̂0.

Assume that α < j(κ) is not inacc. in V (and hence in M , by Lemma 4). Then Rα+1 = Rα∗{∅}, while

P̂α+1 = P̂α∗{∅}. By the induction hypothesis (1) Rα = P̂α, hence Rα+1 = P̂α+1.

Let α < j(κ) be inacc. in V (and hence in M , by Lemma 4). Let C
◦

∈V Rα↑Vα be a name for C(α, j(κ))

as defined in V Rα↑Vα . Let Let D
◦

∈M P̂α↑Mα be a name for C(α, j(κ)) as defined in M P̂α↑Mα . Then Rα+1

= Rα⊗
Rα↑Vα

C
◦

as defined in V , and P̂α+1 = P̂α⊗
P̂α↑Mα

D
◦

as defined in M . Thus

〈p, q
◦

〉∈Rα+1 iff p∈Rα & q
◦

∈V Rα↑Vα

j(κ) & p ‖ V
Rα

`̀ q
◦

∈C
◦

´́ .

〈p, q
◦

〉∈P̂α+1 iff p∈P̂α & q
◦

∈M P̂α↑Mα

j(κ) & p ‖ M
P̂α

`̀ q
◦

∈D
◦

´́ .

Let 〈p, q
◦

〉∈Rα+1.

Then p ‖ V
Rα

`̀ q
◦

∈C
◦

´́ , so p↑Vα ‖ V

Rα↑Vα

`̀ q
◦

∈C
◦

´́ , by Lemma 19, using (30.10). Let p1 ≤ p↑Vα in

Rα↑Vα = P̂α↑Mα. p1 ‖ V

Rα↑Vα

`̀ q
◦

∈C
◦

´́ . Let G be Rα↑Vα-generic over V (and hence

P̂α↑Mα-generic over M by Lemma 25, as |Rα↑Vα| = |P̂α↑Mα| ≤ α < κ) so that p1∈G. Then

V [G]|= `̀ q
◦G

∈C(α, j(κ))´́ , and so q
◦G

∈C(α, j(κ))V [G]. By (26.3) V [G]ξ = M [G]ξ for all ξ ≤ j(κ),

hence by (32.1), q
◦G

∈C(α, j(κ))M [G]. So M [G]|= `̀ q
◦G

∈C(α, j(κ))´́ , and so for some p2∈G,



p2 ‖ M

P̂α↑Mα

`̀ q
◦

∈D
◦

´́ . Since p2⊃⊂p1 in P̂α↑Mα, there is p3 so that p3 ≤ p1 in P̂α↑Mα and p3 ‖ M

P̂α↑Mα

`̀ q
◦

∈D
◦

´́ . Thus, p↑Vα ‖ M

P̂α↑Mα

`̀ q
◦

∈D
◦

´́ . p↑Vα = p↑Mα, hence by Lemma 17, using (30.11), p ‖ M
P̂α

`̀ q
◦

∈D
◦

´́ . Now it follows that 〈p, q
◦

〉∈P̂α+1.

Let 〈p, q
◦

〉∈P̂α+1.

Then p ‖ M
P̂α

`̀ q
◦

∈D
◦

´́ . By Lemma 19, using (30.10), p↑Mα ‖ M

P̂α↑Mα

`̀ q
◦

∈D
◦

´́ . Let p1 ≤ p↑Mα

in P̂α↑Mα = Rα↑Vα. Then p1 ‖ M

P̂α↑Mα

`̀ q
◦

∈D
◦

´́ . Let G be P̂α↑Mα-generic over M (and hence

Rα↑Vα-generic over V by Lemma 25, as |Rα↑Vα| = |P̂α↑Mα| ≤ α < κ) so that p1∈G. Then

M [G]|= `̀ q
◦G

∈C(γ, j(κ))´́ , and so q
◦G

∈C(γ, j(κ))M [G]. By Lemma 26 V [G]ξ = M [G]ξ for all

ξ ≤ j(κ),and so by (32.1) C(γ, j(κ))M [G] = C(γ, j(κ))V [G]. Hence q
◦G

∈C(γ, j(κ))V [G] and so

V [G]|= `̀ q
◦G

∈C(γ, j(κ))´́ . Therefore there is p2∈G so that p2 ‖ V

Rα↑Vα

`̀ q
◦

∈C
◦

´́ . Since p2⊃⊂p1 in

Rα↑Vα, there is p3 ≤ p1, p2 in Rα↑Vα and so p3 ‖ V

Rα↑Vα

`̀ q
◦

∈C
◦

´́ . Thus p↑Mα ‖ V

Rα↑Vα

`̀ q
◦

∈C
◦

´́ ,

and thus p ‖ V
Rα

`̀ q
◦

∈C
◦

´́ , by Lemma 17, using (30.11) and the fact that p↑Mα = p↑Vα. It follows

that 〈p, q
◦

〉∈Rα+1.

Let α ≤ j(κ) be limit.

Let’s prove (1) first.

p∈Rα iff supp(p)∈Îα & p(ξ) = ∅ if ξ < α not inacc. in V , and p(ξ)∈V
Rξ

↑Vξ

j(κ) if ξ < α is inacc. in V ,

and p|ξ∈Rξ for every ξ < α.

p∈P̂α iff supp(p)∈Îα & p(ξ) = ∅ if ξ < α not inacc. in M , and p(ξ)∈M
P̂ξ

↑Mξ

j(κ) if ξ < α is inacc. in M ,

and p|ξ∈P̂ξ for every ξ < α.

Since ξ < α is inacc. in V iff ξ < α is inacc. in M (by Lemma 4), and since M
P̂ξ

↑Mξ

j(κ) = V
Rξ

↑Vξ

j(κ) for

every inacc. ξ < α (as P̂ξ↑Mξ = Rξ↑Vξ by the induction hypothesis (2)), and since Rξ = P̂ξ for every

ξ < α by the induction hypothesis (1), then Rα = P̂α.

Let’s prove (2) for inacc. α ≤ κ, inacc. β so that α ≤ β ≤ κ.

(A) α is the least inacc. (and so α < κ). Then

p∈Pα↑Vβ iff supp(p) = {0} & p(0)∈C(ω0, β)V (by (28.2)),

p∈Rα↑Vβ iff supp(p) = {0} & p(0)∈C(ω0, β)V (by (28.2)),

hence Pα↑Vβ = Rα↑Vβ . By (1) Rα↑Vβ = P̂α↑Mβ , since Vβ = Mβ .

(B) α has an immediate inacc. predecessor γ (and so α < κ).

Let C
◦

β∈V Pγ↑Vγ = V Rγ↑Vγ be a name for C(γ, β) as defined in V Rγ↑Vγ . Let p∈Pα↑Vβ . Then

there are two possibilities (see (*) in the proof of Lemma 30):

(i) supp(p)⊂γ and p|γ∈Pγ↑Vβ . Since Pγ↑Vβ = Rγ↑Vβ by the induction hypothesis (1), p∈Rα↑Vβ .

(ii) γ∈supp(p)⊂γ+1, p|γ∈Pγ↑Vβ , p(γ)∈V
Pγ↑Vγ

β+1 so that p|γ ‖ Pγ
`̀ p(γ)∈C

◦

β ´́ . By Lemma 19,

using (30.10), (p|γ)↑Vγ ‖
Pγ↑Vγ

, `̀ p(γ)∈C
◦

β ´́ . Thus (p|γ)↑Vγ ‖
Rγ↑Vγ

, `̀ p(γ)∈C
◦

β ´́ , as Rγ↑Vγ

= Pγ↑Vγ by the induction hypothesis. By Lemma 17, using (30.11), p|γ ‖
Rγ↑Vγ

`̀ p(γ)∈C
◦

β ´́ .

Hence p∈Rα↑Vβ (by (*) in the proof of Lemma 30).

On the other hand, let p∈Rα↑Vβ . Then there are two possibilities (see (*) in the proof of Lemma

30):

(i) supp(p)⊂γ and p|γ∈Rγ↑Vβ . Since Rγ↑Vβ = Pγ↑Vβ by the induction hypothesis (1), p∈Pα↑Vβ .

(ii) γ∈supp(p)⊂γ+1, p|γ∈Rγ↑Vβ , p(γ)∈V
Rγ↑Vγ

β+1 so that p|γ ‖ Rγ
`̀ p(γ)∈C

◦

β ´́ . By Lemma 19,

using (30.10), (p|γ)↑Vγ ‖
Rγ↑Vγ

, `̀ p(γ)∈C
◦

β ´́ . Thus (p|γ)↑Vγ ‖
Pγ↑Vγ

, `̀ p(γ)∈C
◦

β ´́ , as

Pγ↑Vγ = Rγ↑Vγ by the induction hypothesis. By Lemma 17, using (30.11), p|γ ‖
Pγ↑Vγ



`̀ p(γ)∈C
◦

β ´́ . Hence p∈Pα↑Vβ (by (*) in the proof of Lemma 30).

Thus Pα↑Vβ = Rα↑Vβ . Since Vβ = Mβ , by (1) Rα↑Vβ = P̂α↑Mβ .

(C) α ≤ κ has a cofinal sequence of inacc. cardinals below.

Then M |= `̀ (∀X∈Mκ)(X∈Îα ⇒ |X| < α)´́ . Since Mκ = Vκ, and using Lemma 4,

V |= `̀ (∀X∈Vκ)(X∈Îα ⇒ |X| < α)´́ . Hence both, Pα and Rα contain only direct limits with

the same support.

Let p∈Pα↑Vβ . Then for some inacc. γ < α supp(p)⊂γ and p|γ∈Pγ↑Vβ . Hence p|γ∈Rγ↑Vβ by

the induction hypothesis, and so p∈Rα↑Vβ .

The proof that p∈Rα↑Vβ ⇒ p∈Pα↑Vβ is identical.

Thus (1) and (2) are proven.

By (30.6), if p∈Pκ, then p(ξ)∈Vκ for every ξ < κ, and so p↑Vκ = p. Hence Pκ↑Vκ = Pκ, and by (1) and

(2), Rκ↑Vκ = P̂κ↑Vκ = Pκ.

(Rκ↑Vκ)⊗
Rκ↑Vκ

C(κ, j(κ))Rκ↑Vκ ⊂⊂ Rκ⊗
Rκ↑Vκ

C(κ, j(κ))Rκ↑Vκ = Rκ+1 by Lemma 22 as Rκ is separative

(by (30.5)), and Rκ↑Vκ ⊂⊂ Rκ by (3*) in the proof of Lemma 30. As we have proven (see above) that

Rκ↑Vκ = Pκ, it follows that (Rκ↑Vκ)⊗
Rκ↑Vκ

C(κ, j(κ))Rκ↑Vκ = Pκ⊗Pκ
C(κ, j(κ))Pκ = Pκ∗C(κ, j(κ))Pκ .

Since j(Pκ) = P̂j(κ) = Rj(κ) and contains only direct limits (by (29.3)) as j(κ) is inacc. in both, M and

V by Lemma 4). Rκ+1⊂⊂Rj(κ). Hence Pκ∗C(κ, j(κ))Pκ⊂⊂j(Pκ).tu

To simplify the notation, we shall fix it for the rest of this chapter.

Let j:V →M , κ, I = 〈Iα : α limit ≤ κ〉, Î = j(I) = 〈Îα : α limit ≤ j(κ)〉, P = 〈Pα : ω ≤ α ≤ κ〉, P̂ =

j(P) = 〈P̂α : α ≤ j(κ)〉, and C be as in Lemma 34.

Let P denote Pκ. Then |P | ≤ κ. Let G1 be P -generic over V . Let Q denote C(α, j(κ))V [G1]. Let Q
◦

be a

V P -term for Q. Let B denote P∗Q
◦

. Then by Lemma 34, B can be completely embedded in j(P ) and so

j(P ) = B ∗ j(P )/B. Let G2 be Q-generic over V [G1], and G3 j(P )/B-generic over V [G] (G = G1 ∗ G2),

then H1 = G ∗ G3 is j(P )-generic over V (and hence over M). If p∈P , then supp(p)∈Iκ and so

supp(p) = supp(j(p)). Thus j(p)(α) = p(α) for ω ≤ α ≤ κ, and j(p)(α) = 1Pα
for κ < α ≤ j(κ). Hence

p∈G1 iff j(p)∈H1. By Lemma 26 there is an elementary ̂:V [G1]→M [H1] definable in V [H1] and

extending j, so that (V [H1])α = (M [H1])α for every α ≤ j(κ). Then ̂(Q) = C(j(κ), j(j(κ)))M [H1].

Lemma 35: assume that

(35.1) j is huge;

(35.2) P satisfies the κ-c.c. in V ;

(35.3) V [G1]|= `̀ |Q| ≤ j(κ)´́ ;

(35.4) for every directed A⊂̂


Q of size ≤ j(κ) and A∈M [H1], there is a q∈̂(Q) so that q << A.

Then there is a so-called master condition qm∈̂(Q) so that if H2 is ̂(Q)-generic over V [H1] and qm∈H2,

then j(p)∈H = H1 ∗ H2 whenever p∈G. Therefore, there is an elementary embedding i:V [G]→M [H]

definable in V [H] extending ̂ so that if V [G1]|= `̀ Q satisfies the j(κ)-c.c.´́ , then if X∈V, Y ∈V [H],

Y ⊂X, |Y | ≤ j(κ), Y ⊂M [H], then Y ∈M [H].

Proof: G2∈V [H1] and |G2| ≤ j(κ) by (35.3). Let G2 = {eα : α < j(κ)}. Since ̂ is definable in V [H1],

̂


G2 = {̂(eα) : α < j(κ)}∈V [H1], and ̂


G2⊂̂


Q. Since j(κ)M⊂M , and since P satisfies the κ-c.c. in

V by (35.2), j(P ) satisfies the j(κ)-c.c. in M , and by hugeness of j, in V as well, by (26.2) ̂


G2∈M [H1].

Since ̂


G2 is directed, there is a qm∈̂(Q) so that qm << ̂


G2 by (35.4). Let H2 be ̂(Q)-generic over

V [H1] (and hence also over M [H1]) so that qm∈H2. Then, if 〈p, q〉∈G = G1 ∗ G2, ̂(〈p, q〉) = 〈̂(p), ̂(q)〉,

and ̂(p)∈H1 and ̂(q) ≥ qm, and so ̂(q)∈H2. Thus ̂(〈p, q〉)∈H. By Lemma 26 there is an elementary

embedding i:V [G]→M [H] definable in V [H] extending j (and also ̂). If V [G1]|= `̀ Q satisfies the

j(κ)-c.c.´́ , then B satisfies the j(κ)-c.c., and so if X∈V , Y ∈V [H], |Y | ≤ j(κ), Y ⊂X, and Y ⊂M [H],

then Y ∈M [H] by (26.2). tu



Lemma 36: Assume that

(36.1) j is huge;

(36.2) P satisfies the κ-c.c. in V ;

(36.3) V [G1]|= `̀ |Q| ≤ j(κ)´́ ;

(36.4) V [G1]|= `̀ Q is κ-closed´́ ;

(36.5) V [G]|= `̀ |℘(κ)| = κ+´́ ;

(36.6) for every directed A⊂̂


Q of size ≤ j(κ) and so that A∈M [H1], there is a q∈̂(Q) so that

q << A.

Then V [H1]|= `̀ (∃U)(U is a non-principal V [G]−κ-complete V [G]-ultrafilter over j(κ))´́ .
(

In fact ‖ V [G]
j(P )/B `̀ (∃U)(U is a non-principal V [G]−κ-complete V [G]-ultrafilter over j(κ))´́ , since G3

was chosen arbitrarily.
)

.

Proof: Apply Lemma 35 to obtain a master condition qm∈̂(Q), and H2 ̂(Q)-generic over V [H1] so that

qm∈H2, and an elementary i:V [G]→M [H] definable in V [H] and extending ̂ (where H = H1 ∗ H2). In

V [H] define for X∈V [G]∩℘(j(κ)): X∈W iff
⋃

(i


j(κ))∈i(X).

It is easy to check that W is a non-principal V [G]−κ-complete V [G]-ultrafilter over j(κ) in V [H]. Hence

qm ‖ V [H1]
̂(Q) `̀ (∃W)(W is a non-principal V [G]−κ-complete V [G]-ultrafilter over j(κ))´́ . Let

W
◦

∈V [H1]
̂(Q) so that qm ‖ V [H1]

̂(Q) `̀ W
◦

is a non-principal V [G]−κ-complete V [G]-ultrafilter over

j(κ)´́ . Now, V [G]|= `̀ |℘(κ)| = κ+´́ , so M [H]|= `̀ |℘(j(κ))| = j(κ)+´́ by the elementarity of i. Hence

M [H]|= `̀ |℘(j(κ))∩V [G]| ≤ j(κ)+´́ , and so V [H]|= `̀ |℘(j(κ))∩V [G]| ≤ j(κ)+´́ . Since Q is κ-closed,

̂(Q) is j(κ)-closed, and so (j(κ)+)V [H] = (j(κ)+)V [H1]. Thus V [H1]|= `̀ |℘(j(κ))∩V [G]| ≤ j(κ)+´́ . Let

{Kα : α < j(κ)+} = ℘(j(κ))∩V [G] in V [H1]. In V [H1] let 〈sα : α < j(κ)+〉 be a descending sequence of

elements of ̂(Q) so that each sα decides `̀ Kα∈W
◦

´́ . In V [H1] define U by:

if X∈℘(j(κ))∩V [G], then X∈U iff (∃α < j(κ)+)(sα ‖ V [H1]
̂(Q) `̀ X∈W

◦

)´́ .

It is left to the reader to verify that U is a non-principal V [G]−κ-complete V [G]-ultrafilter over j(κ) in

V [H1]. tu

Lemma 37: Assume that

(37.1) j is huge;

(37.2) P satisfies the κ-c.c. in V ;

(37.3) V [G1]|= `̀ |Q| ≤ j(κ)´́ ;

(37.4) V [G1]|= `̀ Q is <κ-closed´́ ;

(37.5) V [G]|= `̀ |℘(κ)| = j(κ)´́ ;

(37.6) for every directed A⊂̂


Q of size ≤ j(κ) and so that A∈M [H1], there is a q∈̂(Q) so that

q << A.

Then V [H1]|= `̀ (∃U)(U is a non-principal V [G]−κ-complete V [G]-ultrafilter over κ)´́ .
(

In fact ‖ V [G]
j(P )/B `̀ (∃U)(U is a non-principal V [G]−κ-complete V [G]-ultrafilter over κ)´́ , since G3 was

chosen arbitrarily.
)

.

Proof: So similar to the proof of Lemma 36, that it is left to the reader. tu

Lemma 38: If ‖ V [G]
j(P )/B `̀ (∃U)(U is a non-principal V [G]−κ-complete V [G]-ultrafilter over λ)´́ , then

V [G]|= `̀
(

∃I
)(

I is a κ-complete ideal over λ so that ℘(λ)/I can be embedded into Comp(j(P )/B)
)

´́ .

Proof: Let U
◦

be a V [G]j(P )/B-term so that ‖ V [G]
j(P )/B `̀ U

◦

is a non-principal V [G]−κ-complete V [G]-

ultrafilter over λ´́ . Define I in V [G] by:

if X⊂λ, then X∈I iff for no p∈j(P )/B, p ‖ V [G]
j(P )/B `̀ X∈U

◦

´́ .

(1) Let X⊂Y ⊂λ, and Y ∈I.

By the way of contradiction assume that X /∈I. Hence for some p∈j(P )/B, p ‖ V [G]
j(P )/B



`̀ X∈U
◦

´́ . Also p ‖ V [G]
j(P )/B `̀ X⊂Y ´́ . Then p ‖ V [G]

j(P )/B `̀ Y ∈U
◦

´́ , and so Y /∈I, a contradiction.

(2) Let {Xα : α < ξ}⊂I, ξ < κ.

By the way of contradiction assume that
⋃

{Xα : α < ξ}∈I. Then for p∈j(P )/B, p ‖ V [G]
j(P )/B

`̀
⋃

{Xα : α < ξ}∈U
◦

´́ . But then p ‖ V [G]
j(P )/B `̀ (∃α<ξ)(Xα∈U

◦

)´́ . Hence there are q∈j(P )/B

and α < ξ so that q ≤ p and q ‖ V [G]
j(P )/B `̀ Xα∈U

◦

)´́ , hence Xα /∈I, a contradiction.

(3) ∅∈I, for no p can force `̀ ∅∈U
◦

´́ .

(4) λ/∈I, for ‖ V [G]
j(P )/B `̀ λ∈U

◦

´́ .

(5) if α∈λ, then {α}∈I, for no p can force `̀ {α}∈U
◦

´́ .

To embed ℘(λ)/I into D = Comp(j(P )/B), notice that

(i) X∈I iff ‖X∈U
◦

‖D = OD, and

(ii) X, Y /∈I and X = Y (mod I), then ‖X∈U
◦

‖D = ‖Y ∈U
◦

‖D. For (X−Y ), (Y −X)∈I and so then

‖(X−Y )∈U
◦

‖D = ‖(Y −X)∈U
◦

‖D, thus ‖X∈U
◦

‖D = ‖(X∩Y )∈U
◦

‖D = ‖Y ∈U
◦

‖D.

For [X]∈℘(λ)/I define h([X]) = ‖X∈U
◦

‖D. By (i) and (ii), this is a well-defined mapping from ℘(λ)/I

into D. Let [X] ≤ [Y ]. Then (X−Y )∈I and so ‖X∈U
◦

‖D ≤ ‖Y ∈U
◦

‖D, hence h([X]) ≤ h([Y ]). Also, if

[X] 6= [Y ], then ‖X∈U
◦

‖D 6= ‖Y ∈U
◦

‖D, so h([X]) 6= h([Y ]). Thus h is an embedding. tu

Chapter 2.

Model I.

A model with an ℵ1-complete ℵ2-saturated ideal over ω1, and which satisfies Chang’s conjecture.

(Kunen’s model, see [K2].)

We shall start with a huge embedding j:V →M with critical point κ. We shall do a (finite support,κ)-

iteration of Silver’s collapse S.

Def. 39: Let γ, δ be regular cardinals, γ < δ. Silver’s collapse of δ to γ+ is a poset S(γ, δ) defined by:

s∈S(γ, δ) iff

(39.1) s⊂δ×℘(γ×δ) is a function with dom(s)⊂δ;

(39.2) |s| ≤ γ;

(39.3) there is β∈γ so that for every α∈dom(s), s(α)⊂β×α is a function with dom(s(α))⊂β;

(39.4) if s, t∈S(γ, δ), then s ≤ t iff dom(t)⊂dom(s) and for every α∈dom(t), t(α)⊂s(α).

Note: If δ is inacc., then S(γ, δ) is a <γ-closed δ-c.c. poset and ‖ S(γ,δ) `̀ 2γ = γ+ = δ´́ (see [J],[K1]).

Lemma 39: Silver’s collapse satisfies (28.1) - (28.6), and also (32.1).

Proof: Left to the reader. tu

Lemma 40: Let Iα = [α]<ω for every limit α ≤ κ. Then I = 〈Iα : α ≤ κ〉 satisfies (29.1) - (29.3), and

(33.1).

Proof: Easy, and hence left to the reader. tu

Let P = 〈Pα : α ≤ κ〉 be the (I, κ)-iteration of S in V (see Lemma 30). Then P̂ = j(P) = 〈P̂α : α ≤ j(κ)〉

is the (j(I), j(κ))-iteration of S in V by Lemma 34.

Lemma 41: Pκ satisfies the κ-c.c. in V . (and so j(Pκ) satisfies j(κ)-c.c. in V .)

Proof: A sketch:



It is carried by induction in the usual way. The limit case is standard, for we are using finite support

iteration (e.g. see [K1], [B]). Thus we shall prove that each Pα for α a successor satisfies the κ-c.c. For

P0 it is known. Consider Pα+1. If α is not inacc., then Pα+1 = Pα∗{∅}, and so satisfies the κ-c.c. as Pα

does. For α inacc. it is a bit harder.

Let {〈pξ, q
◦

ξ〉 : ξ∈κ} be an antichain in Pα+1. Let C
◦

∈V Pα↑Vα be a name for S(α, κ) as defined in V Pα↑Vα .

Since |Pα↑Vα| ≤ α < κ, by pigeon-hole argument there exists X∈[κ]κ and p∈Pα↑Vα so that pξ↑Vα = p for

every ξ∈X. Then pξ ‖ Pα
`̀ q

◦

ξ∈C
◦

´́ for any ξ∈X. By Lemma 19, using 30.10, pξ↑Vα ‖
Pα↑Vα

`̀ q
◦

ξ∈C
◦

´́

for any ξ∈X, and so p ‖
Pα↑Vα

`̀ q
◦

ξ∈C
◦

´́ for any ξ∈X, and hence p ‖
Pα↑Vα

`̀ |q
◦

ξ| ≤ α´́ . By Lemma

12, we can assume WLOG that |q
◦

ξ| ≤ γ for some α < γ < κ, as |Pα↑Vα| ≤ α < γ and hence satisfies

the γ-c.c. By the 4-system lemma (see e.g. [K1]), there must be Y ∈[X]κ, q
◦

∈V Pα↑Vα , |q
◦

| ≤ γ, so that

dom(q
◦

ξ) ∩ dom(q
◦

ρ) = dom(q
◦

) whenever ξ, ρ∈Y . Hence for every ξ, ρ∈Y , p ‖
Pα↑Vα

`̀ q
◦

ξ ∩ q
◦

ρ = q
◦

´́ ,

and so p ‖
Pα↑Vα

`̀ q
◦

ξ⊃⊂q
◦

ρ´́ . Then pξ↑Vα ‖
Pα↑Vα

`̀ q
◦

ξ⊃⊂q
◦

ρ´́ , and by Lemma 17, using (30.11),

pξ ‖ Pα
`̀ q

◦

ξ⊃⊂q
◦

ρ´́ . Since 〈pξ, q
◦

ξ〉⊃⊂〈pρ, q
◦

ρ〉, it follows that pξ⊃⊂pρ. Therefero {pξ : ξ∈Y } is an

antichain of size κ in Pα, which contradicts the induction hypothesis.tu

Let G1 be P -generic over V . Let Q denote S(κ, j(κ)) as defined in V [G1]. Let Q
◦

be a V P -term so that

(Q
◦

)G1 = Q. Let B = P ∗Q
◦

. Let G2 be Q-generic over V [G1]. Let G = G1∗G2. By Lemma 34, B can be reg-

ularly embedded into j(P ). By Lemma 26 there is an elementary embedding ̂:V [G1]→M [H1] extending

j and definable in V [H1]. Since ̂


S(κ, j(κ))V [G1]⊂S(j(κ), j(j(κ)))M [H1], for every A⊂̂


S(κ, j(κ))V [G1],

A directed, |A| ≤ j(κ), and A∈M [H1], there is s∈S(j(κ), j(j(κ)))M [H1] so that s << A (s is the set union

of A; note that for every s∈S(κ, j(κ)), the β [see (39.3)] is not moved by j, hence j(s) has the same

β as s, and that ’s why the union of A is a condition from S(j(κ), jj(κ))). Therefore, by Lemma 37,

there exists a non-principal V [G]-κ-complete V [G]-ultrafilter over κ in V [H1]. By Lemma 38 there is a

κ-complete ideal I over κ so that ℘(κ)/I can be embedded into Comp(j(P )/B). Since j(P ) satisfies the

j(κ)-c.c. in V , j(P )/B satisfies the j(κ)-c.c. in V [G]. Hence Comp(j(P )/B) satisfies the j(κ)-c.c. in

V [G], and so ℘(κ)/I satisfies the j(κ)-c.c. in V [G] as well; and so, V [G]|= `̀ I is j(κ)-saturated´́ . Since

V [G]|= `̀ ℵ1 = κ and ℵ2 = j(κ)´́ , V [G]|= `̀ I is an ℵ1-complete, ℵ2-saturated ideal over ω1´́ .

Now to show that Chang’s conjecture holds in V [G]: by Lemma 35 there are H j(B)-generic over V and

an elementary embedding i:V [G]→M [H] definable in V [H] and extending ̂ so that if X∈V , Y ∈V [H],

Y ⊂X, |Y | ≤ j(κ), and Y ⊂M [H], then Y ∈M [H]. Let A be a structure of type (ℵ1, ℵ2)
(

i.e. of type

(κ, j(κ))
)

in V [G]. WLOG assume that its universe is j(κ). Then i(A) is a structure of type (ℵ1, ℵ2) in

M [H]. Since i


A⊂M [H], i


A∈V [H] and has size ≤ j(κ), i


A∈M [H] and it is not hard to prove that

M [H]|= `̀ i


A is a structure of type (κ, j(κ)), it is an elementary substructure of i(A), |κ| = ℵ0 and

|j(κ)| = ℵ1´́ . Hence M [H]|= `̀ i(A) has an elementary substructure of type (ℵ0, ℵ1)´́ . By the elemen-

tarity of i, V [G]|= `̀ A has an elementary substructure of type (ℵ0, ℵ1)´́ . tu

Note: If GCH holds in V , then GCH also holds in V [G].

Model II.

A model with an ℵ1-complete ℵ3-saturated ideal over ω3.

(Magidor’s model - see [M].)

We shall start with a huge embedding j:V →M with critical point κ. We shall do a (finite support,κ)-

iteration of Magidor’s collapse D.

Def. 42: Let γ, δ be regular cardinals, γ < δ. Magidor’s γ, δ collapse is a poset D(γ, δ) defined by:

D(γ, δ) =

{

S(ω0, δ), if γ = ω0;
S(γ+, δ), otherwise,



where S is Silver’s collapse (see Def. 39).

Note: if δ is inacc. and γ regular so that ω < γ < δ, then D(γ, δ) is a γ-closed, δ-c.c. poset.

Lemma 43: Magidor’s collapse satisfies (28.1)-(28.6), (32.1).

Proof: See Lemma 39. tu

For every α limit so that ω < α ≤ κ define Iα = [α]<ω. Then I = 〈Iα : limit α ≤ κ〉 satisfies (29.1) -

(29.3), (33.1) (see Lemma 40). Let P = 〈Pα : α ≤ κ〉 be the (I, κ)-iteration of D in V . Then P̂ =

j(P) = 〈P̂α : α ≤ j(κ)〉 is the (j(I), j(κ))-iteration of M in V by Lemma 34. By induction in the usual

way (see Lemma 41) it is easy to show that Pκ satisfies the κ-c.c. in V , and so j(Pκ) = P̂j(κ) satisfies the

j(κ)-c.c. in V . Let P denote Pκ. Let G1 be P -generic over V . Let Q denote D(κ, j(κ)) = S(κ+, j(κ))

as defined in V [G1]. Let Q
◦

be a V P -term so that (Q
◦

)G1 = Q. Let B = P ∗ Q
◦

. Let G2 be Q-generic over

V [G1]. Let G = G1 ∗G2. By Lemma 34, B can be regularly embedded into j(P ). Since j(P ) satisfies the

j(κ)-c.c. in V , by Lemma 26 there is an elementary embedding ̂:V [G1]→M [H1] extending j, definable

in V [H1]. Since ̂


D(κ, j(κ))V [G1]⊂D(j(κ), j(j(κ)))M [H1], for every A⊂̂


D(κ, j(κ))V [G1], A directed,

|A| ≤ j(κ), and A∈M [H1], there is s∈D(j(κ), j(j(κ)))M [H1] so that s << A; s is the set union of A. Since

Q is κ-closed, by Lemma 36 there is a non-principal V [G]-κ-complete V [G]-ultrafilter over j(κ) in V [H1].

Therefore by Lemma 38 there is a κ-complete ideal I over j(κ) so that ℘(j(κ))/I can be embedded into

Comp(j(P )/B). Since j(P ) satisfies the j(κ)-c.c. in V , j(P )/B satisfies the j(κ)-c.c. in V [G]. Hence

Comp(j(P )/B) satisfies the j(κ)-c.c. in V [G], and so ℘(j(κ))/I satisfies the j(κ)-c.c. in V [G]. In other

words, V [G]|= `̀ I is j(κ)-saturated´́ . Since V [G]|= `̀ ℵ1 = κ and ℵ3 = j(κ)´́ , V [G]|= `̀ I is an

ℵ1-complete, ℵ3-saturated ideal over ω3´́ . tu

Note: If GCH holds in V , then GCH also holds in V [G].

Model III.

A model with an ℵ1-complete (ℵ2, ℵ2, ℵ0)-saturated ideal over ω1, and which satisfies Chang’s conjecture.

(Laver’s model, see [L].)

We shall start with a huge embedding j:V →M with critical point κ. We shall do an (ω-Easton,κ)-iteration

of Easton’s collapse E.

Def. 44: Let γ, δ be regular cardinals, γ < δ. Easton’s collapse of δ to γ+ is a poset E(γ, δ) defined by:

s∈E(γ, δ) iff

(44.1) s⊂δ×℘(γ×δ) is a function with dom(s)⊂δ;

(44.2) dom(s) is a γ-Easton subset of δ;

(44.3) there is β∈γ so that for every α∈dom(s), s(α)⊂β×α is a function with dom(s(α))⊂β;

(44.4) if s, t∈s(γ, δ), then s ≤ t iff dom(t)⊂dom(s) and for every α∈dom(t), t(α)⊂s(α).

Note: If δ is Mahlo, then E(γ, δ) is a <γ-closed δ-c.c. poset and ‖ E(γ,δ) `̀ 2γ = γ+ = δ´́ (see [L]).

Lemma 45: Let δ be Mahlo and let γ be regular so that γ < δ. Let A be a family of γ-Easton subsets

of δ so that |A| ≥ δ. Then there is a family B⊂A, |B| ≥ δ so that B forms a 4-system with root 4⊂σ

for some σ < δ.

Proof: WLOG assume that |A| = δ. Let A = {β∈δ : β regular}, and let A = {Xβ : β∈A}. By Lemma

4, for each Xβ there is some σβ so that γ ≤ σβ < δ and Xβ⊂σβ . Let B = {β∈A : σβ ≤ β}.

(a) Assume that B is stationary in δ.



For every β∈B−γ define f(β) = `̀ the least τ so that Xβ∩β⊂τ ´́ . Since |Xβ∩β| < β and β is

regular, f is regressive. By Fodor’s theorem there are stationary C⊂B−γ and σ < δ so that

f


C = {σ}. Thus, if β∈C, Xβ∩β⊂σ and Xβ⊂σβ⊂β, so Xβ⊂σ.

Thus D = {X∈A : X⊂σ} has size δ. Now apply the 4-system lemma to D to obtain a 4-system

B⊂D of size δ. Then 4, the root of B, is a subset of σ.

(b) Assume that B is not stationary in δ.

Then there is a cub C in δ so that B∩C = ∅. D = A∩C is stationary and if β∈D, then β /∈B and

so β < σβ . Define a regressive function f on D−γ by f(β) = `̀ the least τ so that Xβ∩β⊂τ ´́ . By

Fodor’s theorem there are a stationary E⊂D−γ and σ < δ so that f


E = {σ}. So for all β∈E,

Xβ∩β⊂σ and β < σβ . By induction choose a sequence 〈βα : α < δ〉⊂E so that σβα
< βα+1 for

all α < δ. Let µ < ν < δ and let ξ∈Xβµ
∩Xβν

. Then ξ∈Xβµ
⊂σβµ

⊂βν , so ξ∈Xβν
∩βν⊂σ. Thus

Xβµ
∩Xβν

⊂σ whenever µ, ν < σ. Now apply 4-system lemma to {Xβα
∩σ : α < δ}. So there is

F∈[δ]δ so that {Xβα
∩σ : α∈F} is a 4-system with root 4⊂σ. Then B = {Xβα

: α∈F} is also

a 4-system with the same root 4. tu

Lemma 46: Easton’s collapse satisfies (28.1) - (28.6), (32.1), if one replaces `̀ inacc.´́ by `̀ Mahlo´́ .

Proof: Left to the reader. tu

Lemma 47: Let Iα is the ideal of ω-Easton subsets of α, for every limit α ≤ κ. Then I = 〈Iα : limit

α ≤ κ〉 satisfies (29.1) - (29.3), and (33.1) with respect to j, if one replaces `̀ inacc.´́ by `̀ Mahlo´́ .

Proof: Left to the reader. tu

Let P = 〈Pα : α ≤ κ〉 be the (I, κ)-iteration of E in V as described in Lemma 30 with `̀ inacc.´́ replaced

by `̀ Mahlo´́ . One can check that (30.7) - (30.11) still hold true with this replacement. Using the fact

that κ is huge (in fact for this measurability suffices), the set of Mahlo cardinals bellow κ is stationary

in κ. Since all Mahlo cardinals ≤ j(κ) in M are the same as in V (see Lemma 4), conclusions of Lemma

34 still hold. Hence j(P) = 〈P̂α : α ≤ j(κ)〉 is the (j(I), j(κ))-iteration of E in V , and Pκ∗E(κ, j(κ))Pκ

can be regularly embedded into j(Pκ) in V .

Lemma 48: Pκ satisfies the (κ, κ, <κ)-c.c..

Proof: By Induction.

(a) Let α be the least Mahlo. We shall show that Pα satisfies the (κ, κ, σ)-c.c.. WLOG assume that

α < σ.

Since α is the least Mahlo, Pα is isomorphic to P0 = E(ω, κ). Let X∈[E(ω, κ)]κ. By Lemma

45 there is X1∈[X]κ so that {dom(p) : p∈X1} is a 4-system with root 4⊂ν < κ. WLOG

assume σ < ν. Since κ is inacc., there are less than κ possibilities for p|ν. Thus, by pigeon-

hole argument, there is Y ∈[X1]
κ so that if p1 6= p2∈Y , then p1|ν = p2|ν. Let Z∈[Y ]ν . Define

q∈E(ω, κ) by dom(q) =
⋃

{dom(p) : p∈Z} and q(α) = p(α) for any p∈Z so that α∈dom(p).

Then q ≤ p for all p∈Z, since a union of ν ω-Easton sets is ν-Easton, hence dom(q) is ν-Easton

and so dom(q)−ν is ω-Easton. But dom(q)∩ν = dom(p)∩ν for any p∈Z and hence ω-Easton.

So dom(q) is ω-Easton. Therefore q∈E(ω, κ) and q << Z.

(b) Assume that α has an immediate Mahlo predecessor γ. We are going to show that Pα satisfies

the (κ, κ, σ)-c.c. for σ < κ. WLOG assume that α < σ.

Let E
◦

∈V Pγ↑Vγ be a name for E(γ, κ) as defined in V Pγ↑Vγ . p∈Pα iff supp(p)⊂γ+1, p|γ∈Pγ ,

p(γ)∈V Pγ↑Vγ , and p|γ ‖ Pγ
`̀ p(γ)∈E

◦

´́ . Since |Pγ↑Vγ | ≤ γ < κ, there are p∈Pγ↑Vγ , and

X1∈[κ]κ so that pξ↑Vγ = p for every ξ∈X1. Since each pξ|γ ‖ Pγ
`̀ pξ(γ)∈E

◦

´́ , be Lemma



19, using (30.10), (pξ|γ)↑Vγ ‖
Pγ↑Vγ

`̀ pξ(γ)∈E
◦

´́ , and so p ‖
Pγ↑Vγ

`̀ pξ(γ)∈E
◦

´́ for all ξ∈X1.

Define Aξ = {δ∈κ : p ‖
Pγ↑Vγ

`̀ δ∈dom(pξ(γ))´́ }, for ξ∈X1. Let Bξ = Aξ − σ. Then each Bξ

is an ω-Easton subset of κ:

If not, then for some regular τ ≥ ω, |Bξ ∩ τ | = τ (so τ > σ > α > γ). Let Bξ ∩ τ =

{δη : η < τ}. Then each δη∈τ . For every η < τ , p ‖
Pγ↑Vγ

`̀ δη∈dom(pξ(γ))´́ . Since

Pγ↑Vγ preserves τ , p ‖
Pγ↑Vγ

`̀ |dom(pξ(γ)) ∩ τ | = τ ´́ , which is a contradiction.

By Lemma 45 there is X2∈[X]κ so that {Bξ : ξ∈X2} form a 4-system with the root 4⊂ν, for

some ν < κ. WLOG assume that σ < ν. By smallness of Vν , there is X3∈[X2]
κ so that

pξ∩Vν = pρ∩Vν whenever ξ, ρ∈X3.

Let Y ∈[X3]
σ. Since Pγ satisfies the (κ, κ, σ)-c.c., as by the induction hypothesis it satisfies the

(κ, κ, <κ)-c.c., there is r∈Pγ so that r ≤ pξ|γ for every ξ∈Y . Since the root of {Bξ : ξ∈X2} is

a subset of ν, for every δ > ν, at most one ξ∈Y satisfies that p ‖
Pγ↑Vγ

`̀ δ∈dom(pξ(γ))´́ . So,

p ‖
Pγ↑Vγ

`̀
⋃

{dom(pξ(γ)) : ξ∈Y } is a σ-Easton subset of κ´́ . It follows that (for σ < ν)

p ‖
Pγ↑Vγ

`̀
⋃

{dom(pξ(γ)) : ξ∈Y } is a γ-Easton subset of κ´́ , and so p ‖
Pγ↑Vγ

`̀
⋃

{pξ(γ) :

ξ∈Y }∈E
◦

´́ . Let t
◦

∈V Pγ↑Vγ be so that p ‖
Pγ↑Vγ

`̀ t
◦

=
⋃

{pξ(γ) : ξ∈Y }´́ . Then for every ξ∈Y ,

p ‖
Pγ↑Vγ

`̀ t
◦

≤ pξ in E
◦

´́ . By (5*) from the proof of Lemma 30, r↑Vγ ≤ (pξ|γ)↑Vγ = p, so

r↑Vγ ‖
Pγ↑Vγ

`̀ t
◦

≤ pξ in E
◦

´́ , for every ξ∈Y . By Lemma 17, using (30.11), r ‖ Pγ
`̀ t

◦

≤ pξ

in E
◦

´́ , for every ξ∈Y . Now define t so that t|γ = r, t(γ) = t
◦

, and t(ξ) = ∅ for all γ < ξ < α.

t∈Pα, and t ≤ pξ for every ξ∈Y .

(c) Assume that α has a cofinal sequence of smaller Mahlo cardinals. Then the support is (by

Lemma 3) is of size smaller than α, and in fact direct limits are taken. The proof now continues

along standard lines, using Lemma 45 to obtain the required 4-system of supports (see e.q. [K1],

[B]).tu

Since j(P) is the same kind of iteration in V , and since j(κ) is Mahlo in V , we also proved that j(Pκ)

satisfies the (j(κ), j(κ), <j(κ))-c.c. in V .

As before, let P denote Pκ, let Q denote E(κ, j(κ)) as defined in V P , and let B denote P ∗ Q.

Lemma 49: ‖ B `̀ j(P )/B satisfies the (j(κ), j(κ), <κ)-c.c.´́ .

Proof: Let ‖ B `̀ j(P )/B = {sα : α < j(κ)}´́ . Let X
◦

∈V B and b0∈B so that b0 ‖ B `̀ X
◦

∈

[j(κ)]j(κ)´́ . There is Y0∈[j(κ)]j(κ) so that for any α∈Y0 there is b∈B, b ≤ b0 and b ‖ B `̀ α∈X
◦

´́ . For

each α∈Y0 choose one such b and denote it bα. Since B = P ∗ Q, for each α∈Y0 there are pα∈P and

qα∈Q so that bα = 〈pα, qα〉. Hence, for every α∈Y0, 〈pα, qα〉 ‖ B `̀ α∈X
◦

´́ . Since |P | < j(κ), there are

Y1∈[Y0]
j(κ) and p∈P so that 〈pα, qα〉 = 〈p, qα〉 whenever α∈Y1. Thus, for every α∈Y1, 〈p, qα〉 ‖ B

`̀ α∈X
◦

´́ . For any α∈Y1, 〈p, qα, sα〉∈j(P ). By the proof of Lemma 48,

(*) there is Y2∈[Y1]
j(κ) so that the coordinatewise union of {〈p, qα, sα〉 : α∈C} is a condition from

j(P ) whenever C∈[Y2]
<j(κ).

Let G1 be P -generic over V so that p∈G1. Now switch to V [G1]. Since j(κ) still is Mahlo here

(as |P | < j(κ)), there are Y3∈[Y2]
j(κ) and σ < j(κ) so that {dom(qα) : α∈Y3} form a 4-system

with root 4⊂σ. By pigeon-hole argument there are Y4∈[Y3]
j(κ) and q∈Q so that qα|σ = q for

every α∈Y4. Hence

(**) {dom(qα) : α∈Y4} form a 4-system with root 4⊂σ, and qα|σ = q for every α∈Y4.



Let Y
◦

5∈V [G1]
Q so that ‖ V [G1]

Q `̀ α∈Y
◦

5 iff α∈Y4 & qα∈G2´́ , where G2 is the canonical name

for the Q-generic filter over V [G1]. Let Y
◦

∈V [G1]
Q so that ‖ V [G1]

Q `̀ α∈Y
◦

iff α∈X
◦

∩Y
◦

5´́ . Let

G2 be Q-generic over V [G1] so that q∈G2. Let G = G1 ∗ G2. Then G is B-generic over V .

(***) V [G]|= `̀ |Y | = j(κ)´́ , where Y = (Y
◦

)G2 .

It will suffice to prove that q ‖ V [G1]
Q `̀ |Y

◦

| = j(κ)´́ , since q∈G2. Let us assume by the way of

contradiction that q ‖ V [G1]
Q

/

`̀ |Y
◦

| = j(κ)´́ . There are q̄ ≤ q and ν < j(κ) (WLOG assume that

σ ≤ ν) so that q̄ ‖ V [G1]
Q `̀ Y

◦

⊂ν´́ . Since q̄ ≤ q, by (**) there is τ∈Y4−ν so that

(dom(q̄)∩dom(qτ ))−σ = ∅. Thus q̄ and qτ are compatible, i.e. there is q′ ≤ q̄, qτ . Since qτ

‖ V [G1]
Q `̀ qτ∈G2´́ , qτ ‖ V [G1]

Q `̀ τ∈Y
◦

5´́ . Hence q′ ‖ V [G1]
Q `̀ τ∈Y

◦

5´́ . Since qτ ‖ V [G1]
Q `̀ τ∈

X
◦

´́ , q′ ‖ V [G1]
Q `̀ τ∈X

◦

´́ . Therefore q′ ‖ V [G1]
Q `̀ τ∈Y

◦

´́ . On the other hand, q̄ ‖ V [G1]
Q `̀ Y

◦

⊂

ν´́ , and so q′ ‖ V [G1]
Q `̀ Y

◦

⊂ν´́ , a contradiction as τ ≥ ν.

(****) V [G1]|= `̀ (∀D∈[Y3]
<κ)(∃t∈Q ∗ j(P )/B)(t = 〈

⋃

{qα : α∈D}, s〉 << {〈qα, sα〉 : α∈D})´́

Let V [G1]|= `̀ D∈[Y3]
<κ´́ . Then V [G1]|= `̀ D∈[Y2]

<κ´́ . Since P satisfies the κ-c.c. in V , and

since Y2∈V , there is C∈[Y3]
<κ so that V [G1]|= `̀ D⊂C´́ . By (*), the coordinatewise union of

{〈p, qα, sα〉 : α∈C} is a condition from j(P ). Since p∈G1, in V [G1], the coordinatewise union of

{〈qα, sα〉 : α∈C} is a condition from Q ∗ j(P )/B. Since D⊂C, the coordinatewise union of of

{〈qα, sα〉 : α∈D} is a condition t from Q ∗ j(P )/B. The condition t has the form

〈
⋃

{qα : α∈D}, s〉 for some V B-term s so that ‖ B `̀ s∈j(P )/B´́ , and clearly

t << {〈qα, sα〉 : α∈D}.

(*****) V [G]|= `̀ (∀Z∈[Y ]<κ)(∃s∈j(P )/B)(s << {sα : α∈Z}).

If V [G]|= `̀ Z∈[Y ]<κ´́ , then V [G]|= `̀ Z∈[Y3]
<κ´́ . Since Y3∈V [G1], and since Q is κ-closed,

Z∈V [G1]. By (****), in V [G1] there is a condition t = 〈
⋃

{qα : α∈Z}, s〉∈Q ∗ j(P )/B so that

t << {〈qα, sα〉 : α∈Z}. Since Z⊂Y , and so Z⊂(Y
◦

5)
G2 , each qα, α∈Z, is in G2. Since

{qα : α∈Z}∈V [G1], and G2 is Q-generic over V [G1],
⋃

{qα : α∈Z}∈G2. Thus V [G]|=

`̀ s << {sα : α∈Z}´́ .

If α∈Y , then b0 ≥ 〈p, qα〉 and 〈p, qα〉∈G, hence b0∈G. Thus there is b1 ≤ b0 so that b1 ‖ B

`̀ (∀Z∈[Y
◦

]<κ)(∃s∈j(P )/B)(s << {sα : α∈Z}). tu

Let G1 be P -generic over V , let G2 be Q-generic over V [G1]. Then G = G1 ∗G2 is B-generic over V . Let

G3 be j(P )/B-generic over V [G] (possible by Lemma 34). Then H1 = G1 ∗ G2 ∗ G3 is j(P )-generic over

V . By Lemma 26 there is an elementary embedding ̂:V [G1]→M [H1] definable in V [H1] and extending

j. Similarly as in Model I, for every directed A⊂̂


E(κ, j(κ))V [G1], |A| < j(κ), and A∈V [H1], there is

q∈E(j(κ), j(j(κ)))V [H1] so that q << A; the set union of A. Thus, by Lemma 37 there is a non-principal

V [G]-κ-complete V [G]-ultrafilter over κ in V [H1]. By Lemma 38 there is a κ-complete ideal I over κ in

V [G], so that ℘(κ)/I can be embedded into Comp(j(P )/B). By Lemma 49, j(P )/B satisfies the

(j(κ), j(κ), <κ)-c.c. in V [G]. Since κ = ℵ1 and j(κ) = ℵ2 in V [G], I is ω1-complete (ℵ2, ℵ2, ℵ0)-saturated

ideal over ω1.

Note:

(1) If GCH holds in V , then it also holds in V [G].

(2) V [G] also satisfies Chang’s conjecture (see Model I).

(3) Laver showed (see [L]) that from the existence of an ω1-complete (ℵ2, ℵ2, ℵ0)-saturated ideal over

ω1 follows that
(

ℵ2

ℵ1

)

→
(

ℵ0

ℵ1

)1,1

2
. Juhazs and Hajnal (private communication to Laver) showed that

adding ℵ1 Cohen reals destroys the partition relation, hence destroys all ω1-complete

(ℵ2, ℵ2, ℵ0)-saturated ideals over ω1. Since adding ℵ1 Cohen reals is a σ,finite-c.c. forcing, it

preserves (see [BT]) ω1-complete ℵ2-saturated ideals over ω1. Hence if N is a model with an

ω1-complete ℵ2-saturated ideal over ω1, and if P is a forcing notion for adding ℵ1 Cohen reals,



than any generic extension of N via P is a model with an ω1-complete ℵ2-saturated ideal over

ω1, and with no ω1-complete (ℵ2, ℵ2, ℵ0)-saturated ideal over ω1.
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