
McESE - McMaster EXPERT SYSTEM

ENVIRONMENT

F. Franek
∗

and I. Bruha
†

Dept. of Computer Science and Systems

McMaster University

Hamilton, Ont.

Canada L8S 4L7

Abstract

McESE is an expert system environment (a software tool) designed to
help create problem-specific shells with incomplete and uncertain knowl-
edge, fast and compact expert system applications in a particular pro-
gramming language. Specialized software of McESE is written in C and
facilitates handling of all aspects of dealing with rule-based knowledge
bases. Practical and theoretical aspects of McESE are discussed. For
more details see [FB].

1. INTRODUCTION

McESE (McMaster Expert System Environment) is a software tool to build
problem-specific shells and create expert system applications. It is designed to
satisfy the goals listed below (not in the order of their significance):

• allow the user to deal with imprecise and incomplete knowledge in McESE
knowledge bases with a declarative formalism that has a satisfactory de-
gree of expressive power;

• allow the user to customize the shell as so it handles uncertainty in the
way of his preference;

• allow the user to create expert system applications in a particular pro-
gramming language (C, FranzLISP, and SCHEME are available at the
moment), with a point of reference being the application rather than the
knowledge base (so the creation of such an application resembles ordinary
programming as much as possible);

∗Research supported by SERB 5-26397 and NSERC OGP0025112 research grants.
†Research supported by NSERC A20037 research grant.

1

• allow the user a natural (hierarchical) connection of different knowledge
bases in an application;

• allow rapid prototyping;

• allow fast inferring.

2. HOW THOSE GOALS ARE ATTAINED

(2.1)

In McESE the user can encode the domain knowledge in rules of the following
form:

TERM1 & TERM2 & ...& TERMn == CV PF ==> TERM

where cvpf abbreviates ”certainty value propagation function”.

The meaning of a simple rule TERM1 & TERM2 == F ==> TERM3
is: if we are certain with value v1 that TERM1 is true, and if we are certain
with value v2 that TERM2 is true, then we are certain with value F (v1, v2)
that the left hand side (LHS for short) holds, and so we are certain with that
value that TERM3 holds.

An (meaningless) example of a McESE rule:

R1 : .8 ∗ P1(x, y)[>= .3] & −P2(z) == F2 ==> P3(x, y, z)[< .5]

where R1 is the rule’s id, P1, P2, and P3 are predicates, F2 is a cvpf, x, y, and
z are predicate variables, ”-” stands for negation, .8 preceding P1 is the weight
of the first term (must be a real number between 0 and 1 inclusive; if omitted,
it is assumed to be 1), [>= .3], [< .5] are threshold directives (>= and > in []
are threshold operators, and .3 and .5 in [] are threshold values, must be real
values between 0 and 1 inclusive).

A predicate, possibly preceded by a weight, possibly preceded by ”-” or ” ”
(denoting negation), and possibly followed by a threshold directive, is called a
term.

The firing of the above mentioned rule consists of: first, for the rule to be
fired, all predicate variables in the rule must be bound to some data structures,
called objects. Let x be bound to the object X, let y be bound to the object
Y and let z be bound to the object Z. Second, the certainty values (real values
between 0 and 1 inclusive) of all LHS terms must be known. Then the certainty
value of the right hand side (RHS for short) predicate can be computed as:
Let v1 be the value of the first term of the LHS of the rule R1 (i.e. the term
.8∗P1(X, Y)[>= .3]), let v2 be the value of the second LHS term of the rule R1
(i.e. the term P2(Z)). Then the value of the LHS is F2(v1, v2). (F2 must be a
function of two real arguments returning a real value between 0 and 1 inclusive,
or -1.) From this the value of the RHS predicate P3(X, Y, Z) is determined by

2

the threshold directive. In this case, if the value of the LHS is strictly less than
.5, the value of P3(X, Y, Z) will be set to 1, otherwise it will be set to 0.

The value of a LHS term is computed from the value of the term’s pred-
icate according to the weight and the threshold directive. E.g. the value of
P1(X, Y)[>= .3] will be 1 if the value of P1(X, Y) is greater or equal to .3,
otherwise it will be 0. If the weight is not specified, it is assumed to be 1, and
so the final value of the term is completed at this point. On the other hand when
the weight is specified, as in this case, the final value of the term is obtained by
multiplying by the weight.

The value of P2(Z) will be (1-value of P2(Z)).

If the cvpf F2 returns -1, then the rule is considered not fired.

Rules in this form allow to capture an imprecise, uncertain and incomplete
knowledge, since the rules are guaranteed to fire for any values of LHS terms
(except some situations when the firing is prevented by the cvpf), and only the
resulting value of the RHS predicate is affected by the values of LHS terms.
Thus, we can formulate our rules in vague terms, as in this example from an
expert system to play a card game Canasta:

opponent collect(x) & used stck high = F => discard(x)

where we can never be sure if the opponent really collects x, and when the used
stack is high. But we can build into the knowledge base enough information
to estimate these facts numerically (based on current input data) and these
numbers project via cvpf F into the value of discard(x). Even in the case of
complete lack of information, say if the value of opponent collect(x) is 0 we may
want to associate the value of .25 with discard(x) (since there are 4 possible
types the opponent may be collecting and so in the absence of any relevant
information a good guess is that there is .25 chance of the opponent collecting
x) and that’s what cvpf F can do.

(2.2)

If no cvp function in a rule is stipulated, the default one is used. If unchanged
by the user, it is so-called weighted cumulative evidence computed according the
following formula: let

w = w1 + w2 + w3 + .. + wn

where w1 is the weight of term1, w2 the weight of term2, ... , wn is the of
termn. Let v1 be the value of LHS TERM1, v2 the value of LHS TERM2, ...,
vn the value of LHS TERMn. Then (v1 + v2 + ... + vn)/w is the value of the
LHS.

As any cvpf can be defined as the default choice, one can pre-determine that
all rules in the knowledge base will be handled uniformly, in essence fixing a
particular method of the treatment of uncertainty in the whole knowledge base.

3

(2.3)

Most of expert systems shells are either presented with the knowledge rep-
resentation language as the main language of the application, and hence the
application is centered around the model (knowledge base), and the procedu-
ral parts are connected to it by different means (in the case of OPS languages
and PROLOG it is the only language), or they themselves are written in the
language of application (for example KEE in LISP). We tried to give the user
a possibility to write an application in the usual way, at least the procedural
parts, and in the programing language of his choice, but still preserve the pos-
sibility of having access to a declarative knowledge base when needed. This
is achieved by extending a particular programming language by McESE com-
mands to facilitate all required communication between the application and the
knowledge bases. The software to performer the communication is written in
C, but is transparent to the user. Thus, a particular application is completely
built using a single programming language and the language of McESE rules.
At this point, McESE extensions of C, FranzLISP, and SCHEME are available.
Note that this shift in emphasis changes the focal point from knowledge base
to the application in an effort to allow for ordinary programming techniques,
methods, and experience to be utilized.

(2.4)

Predicates which never occur on RHS of any rule correspond to facts and
observations; we shall call them level 0 predicates for they will be on level
0 of the knowledge tree (see 3.2). They represent data input nodes of the
knowledge tree. Their values are not derived (inferred) using rules, they must
be obtained from so-called predicate service procedures. These may be ordinary
procedures to supply the facts and/or observations, or they may in fact be
other expert systems. This mechanism allows for convenient partitioning of the
domain knowledge into a hierarchy of knowledge bases (or more precisely expert
systems), see Fig. 1.

(2.5)

Since McESE built-in inference engine automatically prompts the user for
the result of the invocation of a predicate service procedure in the case that
the predicate service procedure is not available to the system (and similarly
for cvpf’s), one can just test and modify rules in the knowledge base without
the overhead of building the complete application. Moreover since McESE in-
teractions and inferences are identical in McESE-C, McESE-FranzLISP, and
McESE-SCHEME, one can quickly build a prototype in McESE-FranzLISP
(utilizing versatility and flexibility of FranzLISP) to verify the methods and
approaches, and when satisfied, the knowledge bases can be used as they are for
the McESE-C application.

(2.6)

4

P1 P3 P2 P4 P5 P9

R1

R2

P7

R3

R4

P8

P6

Level 0

Level 1

Level 2

Level 3

Figure 1: Fig. 1

McESE knowledge bases are first compiled before they can be used in an
application. The compiled knowledge base (for short called knowledge tree)
allows for direct linking of relevant predicates, so only relevant rules are in fact
considered when a predicate must be evaluated. Thus inferring with such a
knowledge tree amounts to a walk through the tree, and hence the speed of
inferring depends entirely on the depth of the knowledge tree rather than on
its size. The result is a fast performance, knowledge base queries are quickly
evaluated and returned to the application program.

3. McESE COMPONENTS

McESE source knowledge base

McESE source knowledge base consists of two separate sets: the set (RSET)
of McESE rules (in descriptive form), and the set (FSET) of corresponding
cvpf’s (in procedural form). In addition to the above mentioned syntax of
McESE rules, each rule has to satisfy the condition that all predicate variables
occurring in predicates of the LHS, must be variables of the RHS predicate,
and vice versa, all RHS predicate variables must occur as predicate variables of
some predicate of the LHS.

Although RSET and FSET are maintained in separate files, McESE built-in

5

editor allows the user to edit both parts together in two windows on the screen.
This simplifies the task of knowledge and software engineering with McESE.

McESE compiled knowledge base

The McESE source knowledge base as a set of rules (RSET) and a set of
cvpf’s (FSET) is a structure well suited to store the desired knowledge in its
declarative and procedural form respectively, suitable for humans to understand,
modify and manipulate easily. But for many reasons it is not a well suited
structure for a computer program to access and infer with it. Thus, McESE
first compiles the knowledge base into a data structure which may be visualized
as a tree capturing the essential relations between predicates.

McESE compiler parses source RSET providing syntactical checking of rules,
providing as well other checking as described above, and builds the knowledge
tree in main memory with address links relative to the beginning of the knowl-
edge tree. After successful compilation the resulting data structure is recorded
in a disk file.

McESE inference engine and inferring

McESE inference engine provides the mechanism for inferring. It can work in
two basic modes, forward chaining and backward chaining. Backward chaining
from a given predicate (node) with given bindings for its variables is performed
as depth-first walk down to level 0 nodes (with simultaneous propagation of
bindings for predicate variables). Only the required 0 level nodes are activated
(and so appropriate known facts are fetched and/or appropriate observations
are made) and then the resulting certainty values are propagated (and recorded
in the knowledge tree, too) back through the selected subtree to the required
node. The backward chaining mode has four submodes which amount to rule
conflict resolution: max mode, sufficient max mode, min mode, and sufficient

min mode. Forward chaining is implemented only from 0 level up, to a specified
level. Specified nodes from level 0 and their ascendents up to the specified level
are evaluated.

The inference engine can work in two modes as far as explaining what it is
doing: the silent mode when all inferring is transparent to the user and only the
resulting value is available, or in trace mode when all inferring is done on the
screen, rule by rule, predicate by predicate, with all relevant information being
displayed, too. The trace mode is useful mainly for testing and debugging of
knowledge bases.

A run time consistency checking takes place: McESE allows to preset for the
knowledge base what inconsistency level can be tolerated. If the inconsistency
level tolerance is exceeded, ALARM is issued and the inferred value is returned
to the application. Also, a run time completness checking takes place: in the
case a predicate cannot be evaluated, ALARM is also issued and -1 is returned
by the inference engine.

6

Explanation component

As a simple explanation mechanism the inference engine keeps track of the
subtree used for the max (and min) evaluation for each predicate evaluated dur-
ing the last inference cycle (and similarly for the min evaluation), and displays
it when asked for, together with the input data which affected the particular
values of facts on level 0 at the time of the evaluation.

References

[FB] F. Franek, I. Bruha, The McESE project, Tech. Rep., Dept. of Comp.
Sci. & Systems, McMaster University, Hamilton, Ont., Canada, 1988.

7

