Repetitions in Two-Pattern Strings

Frantisek Franék! Weilin Lul W. F. Smythl!:2

1 Algorithms Research Group
Department of Computing & Software
McMaster University
Hamilton, Ontario, Canada L8S 4L7

2 School of Computing
Curtin University
GPO Box U-1987

Perth WA 6845, Australia

ABSTRACT

A recent paper shows that it can be determined in
O(n) time whether or not a given string z of length n
is a substring of an infinite Sturmian string; further,
if = is such a substring, the repetitions in z can be
computed in ©(n) time, generalizing a similar result
for Fibonacci strings. This paper extends these results
to “two-pattern” strings formed recursively from con-
catenations of strings piq and pJq, where p and q are
so-called “suitable patterns”. Sturmian strings thus
constitute the special case of two-pattern strings when
p = a, ¢ = b, |j—i| = 1, while Fibonacci strings consti-
tute the special case of Sturmian strings when ¢ = 1.
Thus we significantly extend the class of strings whose
repetitions can be calculated in linear time. This re-
sult is a part of the ongoing two-pronged research ef-
fort to identify and describe the class of strings whose
repetitions can be determined in linear time, and to
show (or refute) that, in general, repetitions in any
string can be listed in a list of linear length using the
succinct notation of “runs” even though the list itself
may not be possible to calculate in linear time.

Keywords: Repetition, Two-Pattern String, Suit-
able Pair of Patterns, A-Canonical Reduction, Linear
Configuration.

1. INTRODUCTION

It was recently shown in [4] that repetitions in Fi-
bonacci strings can be calculated in linear time. This
result was generalized to Sturmian strings, of which
Fibonacci strings form a proper subclass, in [3]. Also,
it was shown in [1] that finite Sturmian strings can be

recognized in linear time. In this paper, we general-
ize these results to so-called “two-pattern” strings, of
which block-complete Sturmian strings form a proper
subclass.

Given a string z = z[l..n] of length n, we will
show that O(n) time is required to decide whether or
not a given string z is a two-pattern string. Further,
in the case that z is indeed two-pattern, we will show
that all the repetitions in z can be computed in ©(n)
time.

We begin by defining “suitable patterns”:

DEFINITION 1.1 A binary string q is said to
be p-regular if corresponding to a binary string p,
there exist binary strings u # € and v, and integers
1 >0, m > 1 such that ¢ = uplvp™ --- uplvp™muy
where |{n1, -, nm}| <2 (i.e. n1-- Ny can attain at
most 2 distinct values) and if | = 0, then v = ¢.

DEFINITION 1.2 An (ordered) pair of binary
strings p, q is said to be a suitable pair of patterns
if
(1) p is primitive, i.e. has no non-trivial borders,
(2) p is neither a prefix nor o suffic of g,
(3) q is neither a prefiz nor a suffiz of p,
(4) q is not p-regular.

DEFINITION 1.3 A morphism is a mapping
o :a — piq, b — piq, 0 < i < j, where p and
q are a suitable pair of patterns. (We also call o an
expansion.) We use the notation [p, q,1, j] for o and
[p, 4,1, §]a to indicate in addition |p| < X and |q| < A.

DEFINITION 1.4 Let ¥ = {01,02,...0,} denote
an expansion sequence, where the choices of p, g,
i and j for distinct expansions o and oy are not
required to be the same. Suppose that © = o, ---02 -
o1(a). Then z is o two-pattern string of scope A

if each o, : a — piq,b — piq satisfies |p|,|q| < .

Note that the use of the scope does not really
restrict the generality of the problem, since all of the
possible two-pattern strings with scope A are included
in the set of two-pattern strings with scope A+1.

2. THE RECOGNITION ALGORITHM

We begin by outlining our approach to recognizing
whether or not z is a two-pattern string for a given
scope A. At each step we identify the elements of a 4-
tuple [p, q, 1, j], if it exists, such that: (1) p and ¢is a
suitable pair of patterns; (2) |p|,|g| < A; (3) for some
string ¥, z is an expansion of y under the morphism o
defined by the 4-tuple. The 4-tuple then also defines
an inverse morphism, or reduction, o=1 : pig —
a,piq — b, such that o—1(z) = y.

The recognition algorithm executes simply by per-
forming successive reductions on z, while recording at
each step the corresponding 4-tuple (if it exists). If
at any step no 4-tuple can be found within the given
scope A, we conclude that zis not a two-pattern string
for that scope; while if a sequence of reductions to the
letter a can be found, then z is in fact a two-pattern
string of scope A.

In general, for a two-pattern string z there may
exist more than one expansion sequence from a. More-
over, there might be a sequence of reductions {d; o
8; '} such that y = 6; ' --67 ' (z) is not a two-pattern
string. These indicate that the recognition algorithm
should try all possible reductions on each level of re-
cursions, blowing up the time complexity of such an
algorithm to at least O(nlogn). However, the follow-
ing two lemmas prove that on each level of recursions
we can use the so-called canonical reduction and hence
assure that the recognition algorithm works in linear
time.

DEFINITION 2.1 A reduction =1 given by o =
[p, ,%,j]x is called A-canonical

(1) whenever there exists a suitable pair (p1, q1) such
that |p1] < A |gi| < X and z = prqu, then |p| >
|p1] and z = pq; otherwise,

(2) whenever o7 given by [p1, q1,i1,J1]x is another
reduction of z, then either |p| < |pi|, or |p| = |p1|
and |g| < [q-

LEMMA 2.1 If x is a two-pattern string of scope

A and o~ is the A-canonical reduction for z, then
o~ 1(z) is again a two-pattern string of scope A.

By using induction from Lemma 2.1, we can easily
prove that

LEMMA 2.2 For a two-pattern string x of scope
A, there is a unique expansion sequence {o1,---,0n}
such that each o' is a A-canonical reduction.

It follows that the recognition algorithm need only
try the canonical reduction on each level of recursions
without any need to try different possible reductions.
A straightforward algorithm may then be outlined as
shown in Figure 1. RECOGNIZE) utilizes three algo-
rithms: PRIMITIVE(p) that returns true whenever p
is primitive (in O(|p|) steps), SUITABLE(p,q) that re-
turns true whenever p, ¢is a suitable pair of patterns
(in O(|p||q|) steps), and BASECASE(z) that returns
true and outputs (p, ¢,1,0) if it finds the largest p
such that z = pg where (p, ¢) is a suitable pair of pat-
terns (in O(A*) steps using algorithms PRIMITIVE
and SUITABLE).

boolean RECOGNIZE) (z)

— Deal first with trivial cases
if |z| = 1 then return true
if 2 = al*l or b7l then return false
if |z] <2\ and BASECASE(z) then
return true

for r + 1 to min()\, |z|) do
p + z[l.r] — a candidate for p
if not PRIMITIVE(p) then
continue forloop for next r

else
compute the maximum k such that
z[1l..kr] = pk

for s < 1 to min(\,|z| — kr) do
g < zlkr+1.kr+s] — a candidate for ¢

if not SUITABLE(p,¢) then
continue forloop for next s
if for some 0 <i < j, z is formed
from the concatenations of strings
piq and piq then
output [p, ¢,i,j] — which defines o
return RECOGNIZE)(0—1(z))
endif
endfor
endfor
return false — as we did not find a suitable
pair of patterns

Figure 1. Recursive Recognition of a
Two-Pattern String

RECOGNIZE, is a recursive algorithm that re-
duces the length of z by a factor of at least 2 at each
step, and thus over all recursive calls at most 2|z| po-
sitions need to be scanned. Based on this discussion,
and knowing that each call to PRIMITIVE requires
at most A steps, each call to SUITABLE at most A2
steps, and each call to BASECASE at most A* steps,
we state formally the main result of this section:

THEOREM 2.1 For every fixed integer A > 1,
the algorithm RECOGNIZE) determines in O(2X\4n)
time whether or not z is a two-pattern string of scope

A, and, if so, outputs its expansion sequence, also in
O(2\%n) time.

3. COMPUTING THE REPETITIONS

In this section, we state two theorems and the main
idea of the algorithm REP) for computing all the rep-
etitions in a two-pattern string. Due to the limited
space, we skip the proofs for the theorems and the
details of the algorithm REP .

The main idea of the algorithm REP, can be
described in the following way: given a two-pattern
string z of scope A and its reduction sequence, if y is a
reduction of z, then all repetitions in z can be derived
through a formula from repetitions in y and other lin-
ear configurations in y. The repetitions in y and the
linear configurations are themselves derived (in a re-
cursive manner) from repetitions and linear configu-
rations in its reduction. Since the required contribu-
tion at each level of reduction (recursion) is linear, the
whole algorithm finishes the task in linear time.

The next theorem shows that runs with “small”
generators (i.e. length smaller than or equal to a fixed
K, which for REP , will in fact be 3)) can be calculated
in time that depends on k only, and thus we need
to concentrate only on calculating runs with “large”
generators (i.e. length greater than «).

THEOREM 3.1 There is an algorithm that for
any k > 1 and any input binary string x outputs all
runs in x whose generator is of size < k in < (2511 —
2)8k2|z| steps.

Now, we briefly introduce how to compute runs
with “large” generators as illustrated in Figure 2. Ac-
tually, every run in a two-pattern string z with a gen-
erator of size > 3 is an expansion of a run from y, the
reduction of z, or is derived from the linear configura-
tions avbva, bvavb, bvav (if a suffix of y), bvaavb, aa,
ab, ba or bb in y; further, the linear configurations in

y with |v| > 3\ can be derived from the linear config-
urations in its reduction. For instance, every configu-
ration avbva in y with |v| > 3A can be derived from
the configurations aubua, buaaub, aa, ab, ba or bb in
its reduction. (Obviously, the configurations aa, ab,
ba, bb and the other configurations in y with |v| < 3
can be calculated directly from y in linear time.)

Runs in @ with a generator of size > 3A

in y, the

Runs avbva bvavb bvav bvaavb aa, ab,ba, bb avbv | — .
reduction of

—_ in the reduction

aubua buaaub aa, ab, ba, bb aubu
of y for [v| > 3\

Figure 2. Computation of Runs and Linear
Configurations in Two-Pattern Strings

We give an example as follows for illustration.
The two-pattern strings of scope 2 generated from the
sequence of expansions

o1: a— ab, b— (a)3b
(pl =a,q =b71 =1,j :3)
o2 : a — (ab)2bb, b — (ab)5bb
(p2 = ab) @2 = bb,Z = 4).7 = 5)
o3 : a— ab,b— (a)2b
(p3 =a,qs =b77’ =]-7.7 =2)
are:
Iy = 01 (a) : a_b
22 = o2(x1) : ababababbbabababababbb

23 = o3(22) : abaababaababaababaabaabaababaababa
ababaababaababaabaabaab

To compute the runs in z3 with a generator of size
> 3\ (where A = 2), we can derive them from the
configuration avbva in 22, which can be calculated
directly from 2, for |v| < 3\ while for |v| > 3\ being
derived from the only possible source (configuration)
ab (as underlined) in =z, the reduction of zp. After
obtaining the configuration ab in z;, we can derive
from it the avbva (as underlined where v = b(ab)3) in
22, from which we can further derive the corresponding
run (whose generator as underlined is (abaab)%a) in 3,
the expansion of zs.

For the details of how to compute all the runs
and the linear configurations involved, the interested
readers can refer to Theorem 3 — Theorem 8 in the
full version of this paper with all proofs at the URL
http://www.cas.mcmaster.ca/~franek. Also, the

details of the algorithm REP, can be found there.
The following is a theorem for this algorithm.

THEOREM 3.2 For any integer A > 1, there is
an integer constant Ky such that for any two-pattern
string x with a scope < X and its reduction sequence S,
the algorithm REP computes all the repetitions in x
in time O (K |z|), where the constant K depends only
on A.

4. CONCLUSIONS AND FUTURE WORK

We have shown how to recognize a two-pattern string
with scope A and how to compute all the repetitions
in it in linear time. Actually, when A is big enough,
any string can be regarded as a two-pattern string as
long as there exists a partitioning of the string where
the left part and the right part form a suitable pair
of patterns. To apply the “two-pattern” approach to
DNA analysis, we can first group the four letters in
a DNA sequence into two, with each group contain-
ing two letters; then map the DNA sequence to a bi-
nary string. After all the repetitions in the mapped

sequence have been computed, we can filter out all
the real repetitions according to the original DNA se-
quence. Our future work is to generalize the results in
two-pattern strings to k-pattern strings (where k is a
constant > 2). At that time, it will be straightforward
to apply “k-pattern” (when k = 4) to DNA analysis.

REFERENCES

[1] M. Boshernitzan & A. S. Fraenkel, A Linear Algo-
rithm for Nonhomogeneous Spectra of Num-

bers, Journal of Algorithms 5 (1984) 187-198.

[2] Maxime Crochemore, An optimal algorithm for
computing the repetitions in a word, IPL 12-5
(1981) 244-250.

[3] FrantiSek Franék, Ayse Karaman & W. F. Smyth,
Repetitions in Sturmian strings, Theoretical
Computer Science 249-2 (2000) 289-303.

[4] C. S. Iliopoulos, Dennis Moore & W. F. Smyth, A
characterization of the squares in a Fibonacci
string, Theoretical Computer Science 172 (1997) 281-
291.

